SA WG3 Temporary Document

Page 1
-

3GPP TSG SA WG3 Security — SA3#61
S3-101329
SA3#61, 15-19. November 2010, Sorrento, Italy
Source:

ZTE Corporation
Title:

A solution of implementing SSO_APS
Document for:

Discussion and decision
Agenda Item:

8.4
Work Item / Release:

FS_SSO_APS /R10
Abstract of the contribution:

This pCR provides a solution of implementing SSO_APS according to the “System Architecture and Assumptions” in S3-100929. The solution based on SIP Digest authentication mechanism describes re-usage of non-UICC credentials to provide security for the access to applications.

1
Introduction
A High-level architecture for SSO to applications for Common IMS based on SIP Digest is introduced in 3GPP TR33.9de. Based on this, this pCR provides a solution with a security level for access to applications using SSO_APS based on SIP Digest that is as good as that provided by GBA. The solution can realize SSO to applications for Common IMS based on SIP Digest in the UICC-less environment while it provides mutual authentication between the application server and the UE.
This solution defines functional elements in the SSO subsystem and their interworking with each other, with the application server and the HSS. These functional elements can provide the SSO service to application servers based on SIP Digest. After the authentication procedure, the UE shares secrets respectively with the SSO and the RP, the SIP Digest credentials can be reused in IMS for providing security between a terminal and an application server.

This solution also supports interworking and exploit commonalities with existing SSO subsystem deployments e.g. OpenID, Liberty Alliance.
2
Proposal

It is proposed that the following solution is discussed and approved in the TR33.9de.
***** Start of first change *****
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture".
[3]
3GPP TS 33.203: "3G Security, Access security for IP-based services".
[4]
3GPP TS 33.141: "Presence Services, Security".

[5]
IETF, RFC 2617 (1999): "HTTP Authentication: Basic and Digest Access Authentication"
[6]
3GPP TS 33.222: "Generic Authentication Architecture (GAA); Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)"
[7]
3GPP TS 24.623: "Extensible Markup Language (XML) Configuration Access Protocol (XCAP) over the Ut interface for Manipulating Supplementary Services"
[8]
3GPP TR 33.980: "Interworking of Liberty Alliance Identity Federation Framework (ID-FF), Identity Web Service Framework (ID-WSF) and the Generic Authentication Architecture (GAA)".
[9]
3GPP TR 33.924: "Identity management and 3GPP security interworking; Identity management and Generic Authentication Architecture (GAA) interworking"
[10]
3GPP TS 24.229: "IP multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3"
[11] OpenID Foundation "OpenID Authentication 2.0", http://openid.net/.
***** Start of second change *****
3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Relying Party (RP): A Relying Party is an application server that provides service to the end user.

Identity Provider (IdP): An Identity Provider is a SSO authentication central server on which a RP relies for an authentication that the end user obtains a service.

OpenID Provider (OP): An OpenID Provider (OP) is an OpenID authentication server on which a RP relies for an assertion that the end user controls an identifier.
3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

IMS IP Multimedia Subsystem

GBA
Generic Bootstrapping Architecture

SSO
Single Sign On

SIP
Session Initiation Protocol
IdP Identity Provider
OP OpenID Provider

RP Relying Party

SLF Subscriber Locator Function
***** Start of third change *****
7
Solutions
7.1
General
This sub cluase provides a solution which describes the re-usage of non-UICC credentials to provide security for the access to applications bases on SIP Digest authentication mechanism.
In the High-level architecture for SSO to applications for Common IMS based on SIP Digest, the HSS is the linking element between the IMS subsystem and the SSO subsystem, which results from the fact that HSS stores the permanent credentials used in both subsystems. The credentials used with SIP Digest in the non-UICC are shared secrets or passwords stored in the HSS and in the terminal, or held by the user.
This solution has the same security level for access to applications using SSO_APS based on SIP Digest as that provided by GBA. The solution also provides mutual authentication between the application server and the UE. It defines functional elements in the SSO subsystem and their interworking with each other and with the application server and the HSS. These functional elements can provide the SSO service to application servers based on SIP Digest in the UICC-less environment. After the authentication procedure, the UE shares secrets respectively with the SSO and the RP, the SIP Digest credentials can be reused in Common IMS for providing security between a terminal and an application server.
Besides, this solution also supports interworking and exploits commonalities with existing SSO subsystem deployments e.g. OpenID, GBA, Liberty Alliance. It also improves user security by engaging a user-trusted operator in the access control to the applications.
7.2 Solution 1

7.2.1 Solution 1 Description

The solution realizes a SSO function that is available when an IMS UE is authenticated over Ut using SIP Digest authentication mechanism. Figure 7.2-1 shows the message flow of the authentication process to realize SIP Digest-based SSO with the Common IMS in the UICC-less environment.

[image: image1.emf]UE

RP(Application

Server)

IdP(SSO)

HSS

7.Generate nonce;

store nonce and H(A1)

9.Generate cnonce,H(A1)

and K0;Calculate response;

11.Check against nonce;calculate

Xresponse and compare Xresponse

with response;obtain UE authentication

result UE_Auth;Generate K0

2.Request

U_credential

3.Redirect request to IdP

U_credential,RP_credential

4.Redirected request to IdP

U_credential,RP_credential

6.Get SD-AV&user profile

based on U_credentials

U_credential,realm,qop,algorithm,H(A1)

10.response challenge

cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

8.401 Auth_Challenge

U_credential,nonce,realm,qop,algorithm

13.redirect UE to RP

EK0(nonce1,RP_Auth);EKr,i(K1,UE_Auth)

15.redirected to RP

EKr,i(K1,UE_Auth)

5.Authenticate RP ;check K0

14.Decrypt EK0(nonce1,RP_Auth);

obtain RP_Auth result and

nonce1;generate K1

1.Register in IMS

Establishment of

shared secret Kr,i

12.Generate nonce1 and then generate

K1;K0 encrypts nonce1and RP_Auth；

EK0(nonce1,RP_Auth);EKr,i(K1,UE_Auth)

16.Decrypt EKr,i(K1,UE_Auth),obtain

UE_Auth and K1;authorized information

for UE UE_Author;EK1(UE_Author)

17.Notify

EK1(UE_Author)

18.Decrypt EK1(UE_Author);

access to the requested service

Figure 7.2-1 authentication process of SIP Digest-based SSO with the Common IMS

The basic steps are as follows:

1. The UE registers in IMS according to the SIP Digest mechanism specified in TS33.203 [3]. After successful registration, the UE obtains an identifier(U_credential)，the generation and the form of the identifier is FFS.

2. The UE issues an authentication request to RP which includes the UE identifier (U_credential).

3. The RP redirects the authentication request sent by the UE. The redirected request includes U_credential and the RP identifier (RP_credential).

4. The authentication request is redirected to the IdP.

5. The IdP authenticates the RP based on the RP_credential and generates related authentication result RP_Auth. According to the U_credential, the IdP first checks whether there is already a shared secret K0 between the UE and IdP. If K0 exists, the process jumps to step 12; otherwise, the process goes on to the next step.

Note: The RP and the IdP shall have a shared secret (Kr,i) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the RP and IdP are out of scope. With this shared secret the IdP can sign subsequent messages and the RP can verify those messages.

6. The IdP sends authentication request to the HSS, it then obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617[5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the IdP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

7. The IdP generates a random nonce, stores H(A1) and the nonce against the U_credential.

8. The IdP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

9. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].

10. The UE sends a response to the IdP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and digest-url.

11. Upon receiving the response, the IdP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the IdP calculates the expected response (Xresponse) using the previously stored H (A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful, the authentication of the UE is succeeded, else the authentication fails. The IdP stores the authentication conclusion (UE_Auth). If the UE is successfully authenticated, the IdP generates the shared secret K0 based on the H(A1), the cnonce, etc.

12. The IdP generates a random nonce1 and generates a shared secret K1 based on K0 and nonce1. The IdP encrypts the nonce1 and RP_Auth using K0, i.e. EK0(nonce1,RP_Auth); and encrypts the K1 and UE_Auth using Kr,i, i.e. EKr,i (K1,UE_Auth).

13. The IdP sends the UE an message including EK0(nonce1,RP_Auth) and EKr,i (K1,UE_Auth) with redirection.

14. The UE decrypts the EK0(nonce1,RP_Auth) and then obtains RP_Auth and nonce1. Based on the RP_Auth the UE knows the legitimacy of the requested RP. If the authentication result indicates that the RP is not valid, the UE will stop visiting the RP, else the UE will generates the shared secret K1 based on K0, nonce1.

15. The message sent by the IdP is redirected to the RP including EKr,i (K1,UE_Auth).

16. The RP decrypts the EKr,i (K1,UE_Auth), and obtains UE_Auth and K1. After verifying the UE_Auth, the RP generates authorization information for the UE, i.e. UE_Author and encrypts UE_Author using K1 EK1(UE_Author).

17. The RP notifies the UE about the authorization information.

18. The UE decrypts the EK1(UE_Author) and then accesses to the requested service.

If there is a failure in steps 1 through 18 – the authentication procedure stops.

The SSO subsystem under the solution can provide some forms of interworking with, or support for, other SSO systems, notably OpenID and Liberty Alliance. The solution to utilize SIP Digest authentication for SSO can maximize commonality with the already defined 3GPP approaches for interworking with non-3GPP-defined SSO system as described in TR33.924 [9] and TR33.980 [8]. In the following， a message flow of the authentication process is defined to allow the interworking of the SIP Digest-based SSO with the OpenID[11].

[image: image2.emf]UE

RP(Application

Server)

OP(SSO)

HSS

7.Generate nonce;

store nonce and H(A1)

9.Generate cnonce,H(A1)

and K0;calculate response;

11.Check against nonce;calculate

Xresponse and compare Xresponse with

response;Generate UE authentication

assertion UE_Assert and K0

2.AuthnOpenID request

OpenID identifier

3.Redirect request to OP

OpenID identifier;RP_credential

4.Redirected request to OP

OpenID identifier;RP_credential

6.Get SD-AV&user

profile based on U_credentials

U_credential,realm,qop,algorithm,H(A1)

10.response challenge

cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

8.401 Auth_Challenge

U_credential,nonce,,realm,qop,algorithm

13.redirect UE to RP

EK0(nonce1,RP_Assert);EKr,o(K1,UE_Assert)

15.redirected to RP

EKr,o(K1,UE_Assert)

5.Authentication RP and genarate RP

authenticate assertion;check of K0

14.Decrypt EK0(nonce1,RP_Assert);

obtain RP_Assert and nonce1;

genarate K1

1.Register in IMS

Establishment of

shared secret Kr,o

12.Generate nonce1 and then generate

K1;K0 encrype nonce1andRP_Assert；

EK0(nonce1,RP_Assert);EKr,o(K1,UE_Assert)

16.Decrypt EKr,o(K1,UE_Assert),obtain

UE_Assert and K1;authorized information

for UE UE_Author;EK1(UE_Author)

17.Notify

EK1(UE_Author)

18.Decrype EK1(UE_Author);

access to the requested service

Figure 7.2-2 authentication process of interworking of the SIP Digest-based SSO with the OpenID

The basic steps are as follows:

1. The UE registers in IMS according to the SIP Digest mechanism specified in TS33.203 [3]. After successful registration, the UE obtains an OpenID identifier.

2. The UE issues an authentication request AuthnOpenID to RP which includes an OpenID identifier.

3. The RP redirects the authentication request sent by the UE which includes the OpenID identifier and the RP identifier (RP_credential).

4. The authentication request is redirected to the OpenID identity provider (OP)

5. The OP authenticates the RP based on the RP identifier and generates an authentication assertion RP_Assert. According to the OpenID identifier, the OP checks whether there is already a shared secret K0 between the UE and the OP. If K0 exists, the process jumps to step 12; otherwise, the process goes on to the next step.

Note: The RP and the OP shall have a shared secret (Kr,i) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the RP and OP are out of scope. With this shared secret the OP can sign subsequent messages and the RP can verify those messages.

6. The OP sends authentication request to the HSS, then it obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617[5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the OP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

7. The OP generates a random nonce, stores H(A1) and the nonce against the U_credential.

8. The OP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

9. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].
10. The UE sends a response to the OP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and Digest-url.

11. Upon receiving the response, The OP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the OP calculates the expected response (Xresponse) using the previously stored H(A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful the authentication of the UE is succeeded, else the authentication fails. The OP stores an authentication assertion (UE_Assert). If the UE is successfully authenticated, the OP generates the shared secret K0 based on the H(A1), the cnonce, etc.

12. The OP generates a random nonce1 and generates a shared secret K1 based on K0, nonce1. The OP encrypts the nonce1 and RP_Assert using K0, i.e. EK0(nonce1,RP_Assert); and encrypts the K1 and UE_Assert using Kr,o, i.e. EKr,o (K1,UE_Assert)..

13. The OP sends the UE an message including EK0(nonce1, RP_Assert) and EKr,o (K1,UE_Assert) with redirection.

14. The UE decrypts the EK0(nonce1, RP_Assert); and then obtains RP_Assert and nonce1; Based on the RP_Assert the UE knows the legitimacy of the requested RP. If the authentication result indicates that the RP is not valid, then an appropriate error message shall be sent to the UE, else the UE will generates the shared secret K1 based on K0, nonce1.

15. The message sent by the OP is redirected to the RP including EKr,o (K1,UE_Assert).

16. The RP decrypts the EKr,o (K1,UE_Assert), and obtains UE_Assert and K1. After verifying the UE_Assert, the RP generates authorization information for the UE, i.e. UE_Author and encrypts UE_Author using K1 EK1(UE_Author).

17. The RP notifies the UE about the authorization information.

18. The UE decrypts the EK1(UE_Author) and then accesses to the requested service.

If there is a failure in steps 1 through 18 – the authentication procedure stops.

Note: The interworking with the Liberty Alliance is similar to the interworking with the OpenID.

***** End of changes *****

3GPP

SA WG3 TD

_1350722755.vsd
�

UE�

RP(Application Server)�

IdP(SSO)�

HSS�

7.Generate nonce;
store nonce and H(A1)�

9.Generate cnonce,H(A1) and K0;Calculate response;

11.Check against nonce;calculate Xresponse and compare Xresponse with response;obtain UE authentication result UE_Auth;Generate K0

2.Request
U_credential

3.Redirect request to IdP
U_credential,RP_credential

4.Redirected request to IdP
U_credential,RP_credential

6.Get SD-AV&user profile
based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

10.response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

8.401 Auth_Challenge
U_credential,nonce,realm,qop,algorithm

13.redirect UE to RP
EK0(nonce1,RP_Auth);EKr,i (K1,UE_Auth)

15.redirected to RP
EKr,i (K1,UE_Auth)

12.Generate nonce1 and then generate K1;K0 encrypts nonce1 and RP_Auth；EK0(nonce1,RP_Auth);EKr,i (K1,UE_Auth)

5.Authenticate RP ;check K0

14.Decrypt EK0(nonce1,RP_Auth);
obtain RP_Auth result and nonce1;generate K1

1.Register in IMS�

16.Decrypt EKr,i (K1,UE_Auth),obtain UE_Auth and K1;authorized information for UE UE_Author;EK1(UE_Author)

Establishment of shared secret Kr,i

17.Notify
EK1(UE_Author)

18.Decrypt EK1(UE_Author);
access to the requested service

_1350722756.vsd
�

UE�

RP(Application Server)�

OP(SSO)�

HSS�

7.Generate nonce;
store nonce and H(A1)�

9.Generate cnonce,H(A1) and K0;calculate response;

11.Check against nonce;calculate Xresponse and compare Xresponse with response;Generate UE authentication assertion UE_Assert and K0

2.AuthnOpenID request
OpenID identifier

3.Redirect request to OP
OpenID identifier;RP_credential

4.Redirected request to OP
OpenID identifier;RP_credential

6.Get SD-AV&user
profile based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

10.response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

8.401 Auth_Challenge
U_credential,nonce,,realm,qop,algorithm

13.redirect UE to RP
EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

15.redirected to RP
EKr,o (K1,UE_Assert)

5.Authentication RP and genarate RP authenticate assertion;check of K0

14.Decrypt EK0(nonce1,RP_Assert);
obtain RP_Assert and nonce1; genarate K1

1.Register in IMS�

Establishment of shared secret Kr,o

12.Generate nonce1 and then generate K1;K0 encrype nonce1 and RP_Assert； EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

16.Decrypt EKr,o (K1,UE_Assert),obtain UE_Assert and K1;authorized information for UE UE_Author;EK1(UE_Author)

17.Notify
EK1(UE_Author)

18.Decrype EK1(UE_Author);
access to the requested service

