3GPP TSG-SA3 (Security)
S3-100752
SA3#60, 28 June – 2 July; Montreal, Canada

Source:
Orange
Title:
UDC security, sensitive information protection
Document for:
Discussion

Agenda Item:
7.10
Work Item / Release:
UDC-CN
Abstract of the contribution:
This contribution proposes some more evolved and more secured solutions for storing and transferring sensitive information in the context of the UDC architecture.
During last SA3#59 meeting, the SA3 working group proposed a solution for securing the transfer of sensitive information such as mobile subscriber authentication keys between the UDC back-end database and UDC front-ends in charge of the data processing, and the storage of such information in the back-end. This solution consists in using a common encryption algorithm based on AES with a common UDC encryption / decryption key, shared between all UDC front-ends. This enables the sensitive information to be encrypted and decrypted by the UDC front-ends, and to transfer and store this sensitive information in an encrypted form in the UDC back-end database. However, this solution has the main following drawback: if only one of the UDC front-end is courrupted, and the UDC encryption / decryption key is leaked, then all the sensitive information stored inside the UDC back-end has to be considered corrupted. In the context of UDC, it means it impacts all the subscribers sensitive data. Such consequence is much more severe compared to the existing standard HLR / AuC (or HSS / AuC) architecture, where the corruption of one HLR / AuC impacts in general only a part of the subscribers' sensitive information, as the management of all the subscribers is distributed between several HLR / AuC.

This threat can be leverage with the use of specific cryptographic processes. This contribution proposes 2 different principles that should be discussed by the SA3 working group, in order to evaluate their benefits, drawbacks and feasibility.

1) Use of commutative encryption algorithms:

The principle of commutative encryption algorithm is the following:
Given a commutative encryption algorithm E, 2 different encryption keys K1 and K2, and a clear message M, the encryption algorithm E must respect the following property:

E(K2, E(K1, M)) = E(K1, E(K2, M))

The figure 1 below illustrates the way UDC front-ends would have to use such encryption scheme in order to cipher / decipher sensitive data, stored encrypted into the UDC back-end database:

[image: image1]
Figure 1: use of commutative encryption algorithm
1) The UDC Front-End 1 uses the sensitive data M; after the processing of such data is complete, it has to send it back to the UDC Back-End in an encrypted form. It uses its key K1 to encrypt it: the ciphered data is C1 = E(K1, M); and sends it to the UDC Back-End server, which overwrites the last value of this data with this new encrypted data, identifies the UDC Front-End 1 and associates it with the encrypted data.
2) The UDC Front-End 2 gets the same sensitive data from the UDC Back-End. It gets also from the Back-End the information that it has been encrypted by the Front-End 1. At this time, the Front-End 2 is not able to decipher the encrypted data. So it ciphers it with its own key K2 to obtain the following ciphered data:
C21 = E(K2, C1) = E(K2, E(K1, M)) = E(K1, E(K2, M)).

3) The UDC Front-End 2 sends C21 to the UDC Front-End 1. This last one can then decipher it with its own key K1 to obtain the following ciphered data C2: C2 = E(K2, M). At this step, the clear message is still encrypted and cannot be retrieved by the UDC Front-End 1, which sends it back to the UDC Front-End 2.

4) The UDC Front-End 2 gets C2 from the Front-End 1, can decipher it with its own key K2 to retrieve the clear message M, and process it as much as needed.
This cycle can be repeated as needed between front-ends and the back-end. This is also applicable to group of front-ends and not only single front-ends: e.g. the operator can use one given key K1 for a group of front-ends, in order to avoid too much transfers between a large number of front-ends and to provide high-availibility of front-ends' cluster.
With this principle, the following properties have to be respected:

· The encryption algorithm is commutative

· Front-ends (or front-ends groups / clusters) can always communicate between themselves

· The back-end stores the front-end (or front-ends' group / cluster) identity associated with the encrypted data received

This principle is applicable to the UDC architecture and provides a more secured way to store sensitive data within the back-end database compared to the solution described by SA3 last meeting: sensitive information will never be encrypted with a single key, shared between all front-ends. If one front-end is corrupted and its encryption key is leaked, only a part of the data within the back-end database will have to be considered corrupted.

As examples of commutative ciphering, we can identify:

· Stream ciphers xoring a keystream with the plain / cipher text ("xor" operation is commutative).

· Pohlig Hellman ciphering (S. Pohlig and M. Hellman (1978). "An Improved Algorithm for Computing Logarithms over GF(p) and its Cryptographic Significance". IEEE Transactions on Information Theory (24): 106–110.).

2) Use of proxy re-encryption:

The proxy re-encryption principle is a cryptosystem where a proxy alters a cipher text which has been encrypted by one party, so that it can be decrypted by another. The goal is to avoid the proxy to work directly with both parties ciphering keys, but to make it work with re-encryption keys generated by these parties; this only allows the proxy to re-encrypt the data for one party the other one. It can be adapted to the UDC architecture, where a re-encryption proxy works in front of the UDC back-end database to re-encrypt to newly requesting front-ends, data that has been encrypted by the previous front-end.
The figure 2 below illustrates the use of a proxy re-encryption scheme to be used to secure the storage of sensitive information into the UDC back-end database in an encrypted form:

[image: image2]
Figure 2: use of proxy re-encryption

1) The UDC Front-End 1 generates the re-encryption key K12 for to be used by the proxy, when re-encrypting data from Front-End 1 to Front-End 2. This step can be done off-line, before the UDC architecture enters in operation.
2) After processing a sensitive data in the clear, the Front-End 1 ciphers it with its key K1, and sends it to the UDC Back-End. This last one overwrites the already existing data with the new one, and identifies and associates also the Front-End 1 with this encrypted data.
3) The UDC Front-End 2 gets the same sensitive data from the UDC Back-End. It gets also from the Back-End the information that it has been encrypted by the Front-End 1. At this time, the Front-End 2 is not able to decipher the encrypted data.
4) The UDC Front-End 2 forwards the encrypted data to the proxy re-encryption, which can transcript it with the re-encryption key K12. The data in clear is not disclosed to the proxy.
5) The encrypted data is sent back to the UDC Front-End 2 after being transcripted. The Front-End 2 can now decipher it with its own encryption key K2, and process the data in clear as much as needed.
This cycle can be repeated as needed between front-ends, the back-end and the proxy. This is also applicable to group of front-ends and not only single front-end: e.g. the operator can use one given key K1 for a group of front-ends, in order to avoid too much transfers between a large number of front-ends and to provide high-availibility of front-ends' cluster.

With this principle, the following properties have to be respected:

· The encryption algorithm supports the delegation and transitivity property, as needed for proxy re-encryption.
· Front-ends (or front-ends groups / clusters) can always communicate with the proxy.

· The back-end stores the front-end (or front-end group / cluster) identity associated with the encrypted data received

This principle is applicable to the UDC architecture and provides a more secured way to store sensitive data within the back-end database compared to the solution described by SA3 last meeting: sensitive information will never be encrypted with a single key, shared between all front-ends. If one front-end is corrupted and its encryption key is leaked, only a part of the data within the back-end database will have to be considered corrupted. If the proxy is corrupted, no encrypted information can be retrieved in the clear, as the proxy only handles re-encryption keys.

As examples of proxy re-encryption systems, we can identify:

· M. Blaze, G. Bleumer, M. Strauss. Divertible Protocols and Atomic Proxy Cryptography. EUROCRYPT '98, pp. 127-144.
· G. Ateniese, K. Fu, M. Green, S. Hohenberger. Improved Proxy Re-encryption Schemes with Applications to Secure Distributed Storage. Proceedings of the 12th Annual Network and Distributed Systems Security Symposium (NDSS 2005), San Diego, California, 2005.
1

UDC Back-End

UDC Front-End 1

(K1)

UDC Front-End 2

(K2)

2

3

4

4

3

2

1

UDC Back-End

UDC Front-End 1

(K1)

UDC Front-End 2

(K2)

Proxy re-encryption (K12)

5

