
3GPP TSG-SA3 (Security)
S3-100154
SA3#58, 1-5 February 2010, Xian, China
revision of
Source:
Ericsson, ST-Ericsson,
Title:
Corrections to scenario 2 and 3 in split terminal case
Document for:
Discussion and decision

Agenda Item:
OpenID – GAA interworking
Work Item / Release:
GBA-IdM
1
Introduction

The OpenID – GAA interworking TR 33.924 (9.0.0) includes a clause 4.4.2 for split terminal case, which includes three different split terminal scenarios.
The steps for scenario 1, 2, and 3 are merged in one message flow description in clause 4.4.2. As explained in another PCR (S3-100152) the steps for scenario 1 should be described separately from steps of scenario 2 and 3. The separation, as well as corrections to scenario 1, are proposed in S3-100152.

In addition to separation from scenario 1, several corrections are needed to scenarios 2 and 3. Since these corrections would not be visible in a the CR (which is provided in S3-100157) as scenarios 2 and 3 need to be also moved to another place in the TR, the current pseudo CR shows the needed changes against the current baseline. A real CR for scenarios is provided in S3-100157.
Changes proposed in current PCR:
Scenarios 2 and 3 are described with steps of its own.

In addition, the following main corrections are proposed:

- Move session identifier mapping before GBA authentication.

- Combine scenarios is one figure
*****BEGIN OF PCR*****

4.4.2
Message Flow for Split Terminal GBA Interworking Scenario

This section will outline the split terminal implementation where the GBA agent (authenticating agent) is not located in the same device as the OpenID user Agent (browsing agent). It will detail 3 scenarios involving an authentication of the authenticating device and for which a successful completion will trigger a success status for the OpenID session on the browsing device.
In the first scenario the GBA session is initiated asynchronously by the server on the authenticating device via a GBA push message.

In a second scenario a GBA session is initiated asynchronously by the server on the authenticating device
In a third scenario, the GBA session is initiated by the authenticating device. This variant includes the approach, where the BA and the AA can utilize a local communication link to exchange a session identifier.

In the following a message flow is defined to allow the interworking of the GBA Architecture and the OpenID Architecture as defined in clause 4.3 and focuses on the scenarios where we have an Authenticating Agent (AA) and a Browsing Agent (BA) that do not reside in the same physical entity (the case where both reside in the same entity can be found in 4.2). The message flow in the 2 first scenarios will involve asynchronous notification of the authenticating Agent (AA). When registering to the OpenID service using a Split UE scenario, then the user has to provide an information of how to contact the AA i.e. phone number and operator, this information is mapped to the User-Supplied-Identifier. If no SplitUE scenario is utilized, then this information is not required.

Message flow for scenarios 2 and 3
1. The Browser Agent sends a User-Supplied Identifier to the Relying Party.

2. The User-Supplied Identifier is normalized as described in Appendix A.1 of [8]. The RP retrieves the address of the OpenID Provider (OP) and performs a discovery of the OP Endpoint URL (based on the User-Supplied Identifier) that the end user wishes to use for authentication.
3. The RP and the OP may then establish a shared secret (called association) using the Diffie-Hellman Key Exchange Protocol. The purpose of this shared secret is that the OP can secure subsequent messages and the RP can easily verify those messages.
NOTE1:
This association is an optional feature in [8] and not required for interworking purposes. If the OP and RP do not both reside under the control of the same MNO, the usage of this option seems advisable.

4. The RP redirects the Browsing Agent to the OP with an OpenID Authentication Request as defined in chapter 9 in [8].

Following this redirect operation the three scenarios will be now described in parallel. They correspond to three different ways to implement the split terminal function as follows:
Scenario 1 involves the use of a GBA push challenge which is pushed from the OP/NAF to the AA agent. The high level flow of operations for this scenario is described in Figure 4.4.2-1. Note, that the GBA Push challenge is not an HTTP response.

[image: image1.wmf]NAF/OP

NAF/OP

BA

BA

AA

AA

Initial HTTP request following OpenID redirect

Session ID

Session ID+GBA push challenge

Challenge proof of processing

HTTP redirect to OpenID success or failure address

Figure 4.4.2-1: Scenario 1: use of GBA push challenge

· Scenario 2 involves the use of a push request from the OP/NAF to the AA agent, triggering the AA to initiate a GBA session. The high level flow of operations for this scenario is described in Figure 4.4.2-2

[image: image2.wmf]NAF/OP

NAF/OP

BA

BA

AA

AA

Initial HTTP request following OpenID redirect

Session ID

SessionID + trigger event to start GBA session

HTTP request start GBA authentication

GBA challenge

HTTP redirect to OpenID success or failure address

GBA challenge response

Figure 4.4.2-2: Scenario 2: use of push request to trigger GBA session

Scenario 3 involves local communication between the AA and the BA to share a session ID token generated by the OP/NAF. Following the retrieval of this session id token from the BA, the AA will initiate a GBA session with the NAF, providing the session ID token. Once GBA authentication is completed, the BA will be redirected to the OpenID success or failure URL. The high level flow of operations for this scenario for this scenario is described in Figure 4.4.2-3.

In this scenario, the AA and BA need to be securely connected and authenticated to each other, for example they may use a cable connection or BT Security.

Alternatively, the local communication may utilize GBA based security as outlined in TS 33.259 [14]. The BA would act as the remote device and the AA would take the role of the UICC holding device. If the BA has no valid Ks_local_device available, then the AA and the BA have to obtain the Ks_local_device as described in TS 33.259. This procedure results in the possession of the AA and BA of a valid Ks_local_device. The ME and GBA Agent can communicate in secure channel based using the Ks_local_device key..
NOTE2:
The case where the AA sends the Ks_(ext)_NAF through a secure tunnel to the BA and the BA is using the credential is covered by the normal OpenID-GBA interworking. The OP would only exchange messages with the BA for Ks_(ext)_NAF usage and from the OP point of view the BA/AA would be treated then as one entity.
[image: image3.wmf]NAF/OP

NAF/OP

BA

BA

AA

AA

Initial HTTP request following OpenID redirect

Session ID

SessionID (Local link)

HTTP request start GBA authentication+sessionID

GBA challenge

HTTP redirect to OpenID success or failure address

GBA challenge response

Figure 4.4.2-3: Scenario 3: linking of AA and BA sessions via session ID transferred from AA to BA

5. Following this redirection the BA sends a HTTP GET request to the OP/NAF.

6. The NAF generates an authentication session identifier. The NAF sends a session identifier to the BA.
NOTE3:
Depending on the implemented scheme, there might be different ways to pass the session identifier. One approach to send the session identifier is to use the realm attribute in the WWW-Authenticate header (see RFC 2617 [17]). If the NAF intends to populate the field with further information, then the session identifier should be at the end and separated with a ";". Alternatively, the session ID could be carried in the main body of the response for display by the BA.

The NAF identifies the AA associated to the BA. This association has been defined previously, possibly at the time where the user has created his OpenID account and enabled usage of GBA (This might be part of the registration procedure). The AA is identified by an endpoint address i.e. MSISDN which is itself dependant of the communication scheme used to push the triggering message.

NOTE4: The session identifier might be alphanumeric or a graphic or picture (or reference to one).
Editor’s note: The use of a graphic or picture as a session identifier needs to be clarified.

7. In this step scenarios 2 and 3 differ as follows:
7a) Scenario 2: The NAF/OP initiates a push request to the AA. This request is just used to notify the AA to initiate a GBA authentication session with the NAF.
7b) Scenario 3: The BA pushes the session identifier and the NAF contact address to the AA via the local link. If the BA and the AA have an established secure tunnel e.g. using TS 33.259 [14], then this could be utilized to send the session ID and the NAF contact address to the AA.
NOTE5:
The most common approach here is to use SMS for the push message to the AA, but also other Push methods might be used like WAP Push, SIP.

8. The AA receives the push message either from the BA or from the NAF. Upon reception of this push message, the AA and the BA session have to be mapped in order to avoid unauthorized use of GBA authentication. In scenario 2 the user has to do this and give consent to continue with GBA authentication. In scenario 3, this may implicitly be done by using a secure connection between AA and BA and transferring the session identifier.

9.
NOTE7:
The session identifier is used to make the link between the BA session and the AA session. The way this session identifier is processed varies according to the scenario:
In scenario 2, the session identifier may be displayed by both the AA and the BA. The user may visually check that the 2 identifiers displayed match.
In Scenario 3, the Session identifier provided by the OP/NAF to the BA is presented by the AA to the BA. The link between the 2 sessions can therefore be made at the NAF/OP level without the user being involved in the matching operation.
NOTEx1:
In scenario 2, a PIN code or a manual user action is required to prevent risk of unauthorized background usage of the GBA authentication.
In Scenario 3, the need of setting up a local link between the AA and the BA may result from a manual operation and the use of a manual user operation (PIN or key pressing) may be optional.
NOTE8:
The actual methods of linking e.g. PIN, picture comparison is out of scope of this document.

10. Upon successful matching of session identifies (and receiving the user’s consent in scenario 2) the AA will initiate an GBA bootstrapping run according to TS 33.220 (if no valid shared key is available) and then perform a HTTP based GBA authentication with the OP/NAF according to TS 33.222 as outlined in step 10. To that end, the AA sends then an HTTP GET request to the OP/NAF address contained in the push message.

11. The NAF initiates AA authentication by responding with an HTTP response code 401 "Unauthorized" which contains a WWW-Authenticate header carrying a challenge requesting the AA to use Digest authentication with GBA as specified in TS 33.222 [5] with server side certificates. The "realm" attribute starts with the prefix "3GPP-bootstrapping@" or "3GPP-bootstrapping-uicc@".
12. If no valid Ks is available, available to the AA, then the AA bootstraps with the BSF as described in TS 33.220 [2]. If a valid Ks key exists, than the AA computes the NAF specific key Ks_(ext/int)_NAF.

13. The AA generates a HTTP GET request to the NAF/OP. The request carries an authorization header carrying the B-TID received from the BSF and a response to the challenge received in step 9 and computed with the (Ks_(ext/int)_NAF.

14. Using the B-TID, and its NAF-ID, the NAF retrieves the shared key Ks_(ext/int)_NAF and optionally the USS (if GBA_U is used, than the GUSS must be supported) from the BSF using the Zn interface, for details see TS 29.109 [7].

Since the OpenID is HTTP(S) based it is recommended that the NAF/OpenID server support for the interworking scenario the Web Service based Zn reference point as specified in [7] TS 29.109. It may support the Diameter based implementation of the Zn reference point.

NOTE12:
It is assumed that the OPs are more likely to support web service based reference points then Diameter based reference points.

The OP/NAF may have received a USS containing authorization information. The OP establishes whether the end user is authorized to perform OpenID Authentication and wishes to do so based on the authorization information stored locally or in the USS.

15. The OP/NAF authenticates the user for OpenID using TS 33.222 [5] section 5.3. Then the NAF redirects the browser to the return OpenID address i.e. the OP redirects the ME’s browser back to the RP with either an assertion that authentication is approved or a message that authentication failed. The response header contains a number of fields defining the authentication assertion.

NOTE13:
At this point, the interworking diverges slightly from TS 33.222. In TS 33.222 the NAF responds with a 200 OK message directly to the UE, here the BA does not reside in the UE.

16. The service provider (RP) checks the assertion (i.e. checks if the authentication was approved) possibly using previously defined shared secrets with the OpenId provider or by direct interrogation of the OpenID provider. Then the user is logged in to the service of the RP.

Figure 4.4.2-5 outlines the message flow based on the usage of TS 33.220 [2] for scenario 2

[image: image5.emf]

NAF/OP

BA

AA

1 - User supplied identifier

BSF

RP

2 - Retrieval of OP address

3 - Setup of shared

Secret(opt)

4 - redirect ME browser to OP with OpenId authentication request

5 - HTTP(S) GET request

6 - OP maps BA to AA

From its database

6 - Session ID

7a) Push message for AA to initiate GBA authentication with

NAF

Includes session ID)

9 - HTTP GET

9 - Session ID displayed ; User visually

NAF/OP NAF/OP

BA BA

AA AA

1 - User supplied identifier

BSF BSF

RP RP

2 - Retrieval of OP address

3 - Setup of shared

Secret(opt)

4 - redirect ME browser to OP with OpenId authenticatio n request

5 - HTTP(S) GET request

6 - OP maps BA to AA

From its database

6 - Session ID

initiate GBA authentication with

Includes session ID)

HTTP GET

8 - Session ID mapping

unauthorized + GBA challenge 401 10

bootstrapping Optional 11

12 HTTP(S) request carrying TID

OP/NAF authenticates the user.

13 NAF retrieves keys related informatione.g lifetime,GUSS,etc

14 Redirect to RP w authentication assertion

15 Check of assertion

7b) Set up secure channel and receive session ID via the local link

-

Figure 4.4.2-5: Detailed flow of operations for scenario 2 and 3 (push message from OP/NAF or BA to trigger GBA authentication)

*****END OF CHANGES*****

_1325807086.doc

[image: image1]

NAF/OP

BA

AA

1

-

User

supplied

identifier

BSF

RP

2

-

Retrieval

of OP

address

3

-

Setup of

shared

Secret(

opt

)

4

-

redirect

ME browser to OP

with

OpenId

authentication

request

5

-

HTTP(S) GET

request

6

-

OP

maps

BA to AA

From

its

database

6

-

Session ID

7a) Push message for AA to

initiate

GBA

authentication

with

NAF

Includes

session ID)

9

-

HTTP GET

9

-

Session ID

displayed

; User

visually

-

NAF/OP

NAF/OP

BA

BA

AA

AA

1

-

User

supplied

identifier

BSF

BSF

RP

RP

2

-

Retrieval

of OP

address

3

-

Setup of

shared

Secret(

opt

)

4

-

redirect

ME browser to OP

with

OpenId

authentication

request

5

-

HTTP(S) GET

request

6

-

OP

maps

BA to AA

From

its

database

6

-

Session ID

7b) Set up secure channel and receive session ID via the local link

initiate

GBA

authentication

with

Includes

session ID)

HTTP GET

8

-

Session ID mapping

10

401

unauthorized

+ GBA challenge

11

Optional

bootstrapping

12

HTTP(S)

request

carrying

TID

13

NAF

retrieves

keys

related

informatione.g

lifetime,GUSS,etc

OP/NAF

authenticates

the user.

14

Redirect

to RP w

authentication

assertion

15

Check of assertion

