S3-091345
Network Working Group N. N

Internet-Draft Ericsson Research

Updates: 3830 (if approved) M. M

Intended status: Standards Track QUALCOMM

Expires: December 31, 2009 June 29, 2009

 MIKEY-TICKET: An Additional Mode of Key Distribution

 in Multimedia Internet KEYing (MIKEY)

 draft-nn-mikey-ticket-00

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 31, 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

 Provisions Relating to IETF Documents in effect on the date of

 publication of this document (http://trustee.ietf.org/license-info).

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document.

Abstract

 The Multimedia Internet KEYing (MIKEY) specification describes a key

N & M Expires December 31, 2009 [Page 1]

Internet-Draft MIKEY-TICKET June 2009

 management scheme for real-time applications. In this document, we

 note that the currently defined MIKEY modes are insufficient to

 address deployment scenarios built around a centralized key

 management service. Such deployments are gaining in interest.

 Therefore, a new MIKEY mode that works well in such scenarios is

 defined. The new mode uses a trusted key management service and a

 ticket concept, similar to that in Kerberos. The new mode also

 extends Kerberos-type protocols with new features required by many

 existing applications, e.g. so called forking where the exact

 identity of the other end-point may not be known at the initiation of

 the communication session.

Table of Contents

 1. Introduction . 4

 2. Terminology . 4

 2.1. Definitions and Notation 5

 2.2. Abbreviations . 6

 2.3. Payloads . 6

 3. Design Considerations . 7

 4. A New Mode: MIKEY-TICKET 9

 4.1. Overview . 9

 4.2. Exchanges . 11

 4.2.1. Ticket Request . 11

 4.2.2. Ticket Transfer 14

 4.2.3. Ticket Resolve . 16

 5. Selected Key Management Functions 19

 5.1. Key Derivation . 19

 5.1.1. Deriving Forking Keys 19

 5.1.2. Deriving Keys from a TGK 20

 5.1.3. Deriving Keys from a MPK 20

 5.2. CSB Updating . 21

 5.3. Ticket Reuse . 22

 5.4. MAC/Signature calculation 22

 6. Adding New Ticket Types to MIKEY-TICKET 22

 7. Alternative Use Cases . 22

 7.1. Optional Exchanges . 23

 7.2. Compatibility Mode . 23

 7.3. Distribution of Pre-Encrypted Content 24

 7.4. Routing of Resolve Messages 24

 7.5. Deferred Delivery of e2e Protected Content 25

 7.6. KMS Initiated Ticket Transfer 26

 7.7. Group Communication 26

 7.7.1. Forking key generation 27

 8. Payload Encoding . 28

 8.1. Common Header Payload (HDR) 28

 8.2. Ticket Payload (TICKET) 29

N & M Expires December 31, 2009 [Page 2]

Internet-Draft MIKEY-TICKET June 2009

 8.3. Key Data Sub-Payload 29

 8.4. Error payload (ERR) 30

 9. Security Considerations 30

 9.1. General . 30

 9.2. Denial of Service . 31

 9.3. Replay . 32

 9.4. Key Forking . 32

 9.5. Group Key Management 32

 10. Acknowledgements . 33

 11. IANA Considerations . 33

 12. References . 34

 12.1. Normative References 34

 12.2. Informative References 34

 Appendix A. Example Ticket Format 35

 Appendix B. Default Ticket Type 36

 B.1. Components of the Default Ticket Type 36

 B.2. Ticket Header Payload (THDR) 37

 Authors' Addresses . 37

N & M Expires December 31, 2009 [Page 3]

Internet-Draft MIKEY-TICKET June 2009

1. Introduction

 Normally, key management systems are either based on negotiation and

 exchange between peers (e.g. Diffie-Hellman based schemes), pre-

 distribution of user credentials (shared secrets/certificates), or

 availability of a trusted key management service. The modes

 described in the Multimedia Internet KEYing (MIKEY) specification

 [RFC3830] and its updates [RFC4650] [RFC4738] are all variants of the

 first two alternatives.

 In security systems serving a large number of users, a key management

 service is often preferred. With such a service in place, there is

 no need to distribute user credentials to other users in advance as

 users can request credentials for any other user when needed.

 Solutions based on a trusted key management service also scale very

 well when the number of users grows and make it easier to provide

 keying material to authorised intermediate nodes (e.g. transcoding

 services, recording services, conference bridges).

 In this document, it is noted that the currently defined MIKEY modes

 are insufficient to address deployment scenarios and common use cases

 based on a key management service as above. Therefore, a new MIKEY

 mode MIKEY-TICKET that works well in such scenarios is proposed. A

 ticket concept, similar to that in Kerberos [RFC4120], is used to

 identify and deliver keys. A high level outline of MIKEY-TICKET as

 defined herein is that the sender requests a ticket from the key

 management service and sends the ticket containing a reference to the

 key(s), or the enveloped key(s), to the receiver. The receiver then

 (typically) sends the ticket to the key management service, which

 returns the appropriate key(s).

 MIKEY-TICKET is primarily designed to fulfill the requirements for

 media plane security in the 3GPP IP Multimedia Subsystem (IMS). This

 implies that some extensions to the basic Kerberos concept are need.

 For instance, the sender may not always know the exact identity of

 the receiver when the communication with the key management server is

 initiated, i.e. support for forking is an example of such an

 extension. This document defines a signaling framework enabling

 peers to request, transfer, and resolve tickets using a key

 management service. It does not define any specific ticket types.

 For the ticket types used in 3GPP IMS, see [3GPP.33.828].

 This document updates [RFC3830] with the MIKEY-TICKET mode.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

N & M Expires December 31, 2009 [Page 4]

Internet-Draft MIKEY-TICKET June 2009

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in [RFC2119].

 Definitions of terms and notation will, unless otherwise indicated,

 be as defined in [RFC3830].

2.1. Definitions and Notation

 KMS domain: A KMS domain is a logical group of users that share a

 central KMS, with which they have, or can establish, shared

 credentials. The KMS Domains are not necessarily disjoint.

 Default KMS: In case a user belongs to several KMS domains, one KMS

 MUST be the default KMS.

 Forking: In SIP, forking is the delivery of a request (e.g. INVITE)

 to multiple endpoints.

 Key forking: When used in conjunction to forking, key forking refers

 to the process of modifying keys, making them statistically unique

 for each responder targeted by the forking.

 (Media) session: The communication session intended to be secured by

 the MIKEY-TICKET provided key(s).

 Session information: Information related to the security protocols

 used to protect the media session: keys, salts, policies

 (algorithms), etc.

 Ticket: A Kerberos-like TBD.

 Ticket Request: Exchange used by the Initiator to request keys and a

 ticket from a trusted Key Management Service.

 Ticket Transfer: Exchange used to transfer the ticket as well as

 session information from the Initiator to the Responder.

 Ticket Resolve: Exchange used by the Responder to request the KMS to

 return the keys encoded in a ticket.

 Ticket meta data: Information needed when resolving the ticket;

 issuer, issuing time etc.

 Ticket policy: Policies for ticket resolution, applications, and key

 derivation etc.

 Solid arrows (----->) indicate mandatory messages.

 Dashed arrows (- - ->) indicate optional messages.

N & M Expires December 31, 2009 [Page 5]

Internet-Draft MIKEY-TICKET June 2009

 E(k, x): Encryption of x with the key k

 PKx: Public Key of x

 [x] x is optional

 {x} Zero or more occurrences of x

 (x) One or more occurrences of x

 || Concatenation

 | OR (selection operator)

2.2. Abbreviations

 3GPP: 3rd Generation Partnership Project

 CS: Crypto Session

 CSB: Crypto Session Bundle

 DDoS: Distributed Denial of Service

 DoS: Denial of Service

 EKT: Encrypted Key Transport

 IMS: IP Multimedia Subsystem

 KEK: Key Encryption Key

 KMS: Key Management Service

 MAC: Message Authentication Code

 MIKEY: Multimedia Internet KEYing

 MPK: MIKEY Protection Key

 PKE: Public-Key Encryption

 PRF: Pseudo-Random Function

 PRNG: Pseudo-Random Number Generator

 PSK: Pre-Shared Key

 SIP: Session Initiation Protocol

 TEK: Traffic Encryption Key

 TGK: TEK Generation Key

 TPK: Ticket Protection Key

2.3. Payloads

 CERTx: Certificate of x

 CHASH: Hash of the certificate used

 HDR: Common Header payload

 IDx: Identity of x

 IDcert: Identity specified in the certificate used

 IDmod: Forking key modifier

 IDpsk: Identifier for the pre-shared key

 IDre: Identity of a recipient

 IDtp: Ticket policy

 KEMAC: Key data transport payload

 PKE: Encrypted envelope key

 RANDx: Random value generated by x

 SIGNx: Signature created using x's private key

 SP: Security Policy payload

 T: Timestamp payload

N & M Expires December 31, 2009 [Page 6]

Internet-Draft MIKEY-TICKET June 2009

 TICKET: Ticket payload

 V: Verification payload

 where x = i, r, kms (Initiator, Responder, KMS)

3. Design Considerations

 Normally, key management systems are either based on negotiation and

 exchange between peers (e.g. Diffie-Hellman based schemes), pre-

 distribution of user credentials (shared secrets/certificates), or

 availability of a trusted key management service. The modes

 described in the Multimedia Internet KEYing (MIKEY) specification

 [RFC3830] and its updates [RFC4650] [RFC4738] are all variants of the

 first two alternatives. The pre-shared key method and the public-key

 encryption method defined in [RFC3830] are examples of systems based

 on pre-distribution of user credentials. The Diffie-Hellman method

 [RFC3830] is an example of a system based on negotiation and

 exchange.

 In SIP, forking is the delivery of a request (e.g. INVITE) to

 multiple endpoints. This happens when a receiver is registered on

 several devices (e.g. mobile phone, fixed phone, and computer). To

 prevent eavesdropping, only the endpoint that answers should get

 access to the session keys. A naive application of the pre-shared

 key method is not secure when it comes to forking. All endpoints

 must share the same pre-shared key and as a consequence all endpoints

 get access to the session keys. Conversely, having per-user unique

 keys/certificates have more fundamental problems with forking, as the

 sender does not know which key/certificate to use at session

 initiation. Forking is described in [RFC5479] and the applicability

 of different MIKEY modes is discussed in [RFC5197].

 The use of public-key or Diffie-Hellman methods are not applicable in

 some scenarios as certain devices lack sufficient processing power to

 perform the necessary operations (without causing unacceptable

 delays). A single Diffie-Hellman operation can take seconds to

 perform on devices with limited processing power. Moreover, in group

 communication scenarios, the overhead of public-key and Diffie-

 Hellman operations grow linearly with the group size.

 In security systems serving a large number of users, a key management

 service (KMS) is often preferred. With such a service in place,

 there is no need to distribute user credentials to other users in

 advance as users can request credentials for any other user when

 needed. Solutions based on a trusted key management service also

 scale very well when the number of users grows. A KMS based on

 symmetric keys has particular advantages.

N & M Expires December 31, 2009 [Page 7]

Internet-Draft MIKEY-TICKET June 2009

 Systems based on a key management service require a signaling

 mechanism, which allows peers to retrieve other peers credentials. A

 convenient way to implement such a signaling scheme is to use a

 ticket concept, similar to that in Kerberos [RFC4120], to identify

 and deliver keys. The ticket can be forwarded in the signaling

 associated with the session setup. The ticket can contain a

 reference to keys held by the key management system or it can hold

 the keys itself. In the latter case, the ticket needs to be

 confidentiality protected. The sender requests a ticket from the key

 management service and sends the ticket to the receiver. The

 receiver forwards the ticket to the key management service, which

 returns the corresponding keys. It should here be noted that

 Kerberos typically does not require that the receiver also contacts

 the key management service. However, in order to support also the

 aforementioned forking scenarios it becomes necessary that the ticket

 is not bound to the exact identity (or credentials) of the receiver

 until it becomes known. Group and forking communication scenarios

 can also be improved from access control point of view if

 authorization to access the key(s) can be enforced with higher

 granularity at the receiver side.

 There are different alternatives for how the sender gets the ticket

 and how the receiver gets access to the keys in the ticket. The

 first alternative is that the TPK (Ticket Protection Key) is a long-

 term key shared between the receiver and the KMS (similar to

 Kerberos). A second alternative is to use a long-term key shared

 between the sender and the KMS as TPK (similar to Otway-Rees). A

 third alternative is to use a TPK known only by the key management

 service, which implies that both the initiator and the receiver have

 to contact the key management service. The amount of signaling can

 be reduced if the KMS issues base tickets with a certain lifetime

 from which keys can be derived by the users.

 This solution has a number of advantages. It offers a framework

 which is flexible enough to satisfy users with a broad range of

 security needs. By using different ticket types and policies, and

 letting the sender and receiver create and resolve the tickets

 without assistance from the KMS, a wide range of different security

 levels and use cases can be supported. The authorization function in

 the KMS could also be used to help solve the key access problem in

 forking and retargeting scenarios.

 The KMS may also provide keying material to authorized intermediate

 node performing various network functions (e.g. transcoding services,

 recording services, conference bridges). The key management service

 can enforce end-to-end security by only distributing the keys to

 authorized end-users. The use of a ticket based system may also help

 in the handling of keys for deferred delivery of end-to-end protected

N & M Expires December 31, 2009 [Page 8]

Internet-Draft MIKEY-TICKET June 2009

 content to currently off-line users. Deferred delivery of end-to-end

 protected content excludes all key management schemes that are based

 on some type of negotiation between peers as it implies that the

 sender must have access to the keys before the receiver has been

 contacted. Another consequence is that the receiver cannot rely on

 contacting the sender to get access to the keys used.

 At the same time, it is also important to be aware that (centralized)

 key management services may introduce a single point of (security)

 failure. The security requirements on the implementation and

 protection of the KMS may therefore in high security applications be

 more or less equivalent to the requirements of an AAA server or

 Certificate Authority.

4. A New Mode: MIKEY-TICKET

4.1. Overview

 All previously defined MIKEY modes consist of a single (or half)

 roundtrip between two peers. MIKEY-TICKET differs from these modes

 as it consists of up to three different roundtrips (Ticket Request,

 Ticket Transfer, and Ticket Resolve) involving three parties

 (Initiator, Responder, and KMS). The third party, the Key Management

 Service, is only involved in some of the MIKEY exchanges and not at

 all in the resulting media session. The Ticket Request and Ticket

 Resolve exchanges are meant to be used in combination with the Ticket

 Transfer exchange and not on there own. In Figure 1, a conceptual

 signaling diagram for the MIKEY-TICKET mode is depicted.

 +---+ +-----+ +---+

 | I | | KMS | | R |

 +---+ +-----+ +---+

 REQUEST_INIT

 - - - - - - - - - - - - - - - - >

 REQUEST_RESP

 < - - - - - - - - - - - - - - - -

 TRANSFER_INIT

 -->

 RESOLVE_INIT

 < - - - - - - - - - - - - - - - -

 RESOLVE_RESP

 - - - - - - - - - - - - - - - - >

 TRANSFER_RESP

 <--

 Figure 1: Conceptual signaling

N & M Expires December 31, 2009 [Page 9]

Internet-Draft MIKEY-TICKET June 2009

 The Initiator (I) wants to establish a secure media session with the

 Responder (R). The Initiator and the Responder do not share any

 credentials, instead they trust a third party, the Key Management

 Service (KMS), with which they both have, or can establish, shared

 credentials. Rather than a single KMS, several different KMSs may be

 involved, e.g. one for the Initiator and one for the Responder. This

 is discussed in Section 7.4.

 The Initiator requests keys and a ticket (encoding the same keys)

 from the KMS by sending a REQUEST_INIT message. The REQUEST_INIT

 message includes session information (e.g. identifiers for the

 recipients) and is protected via a MAC based on a pre-shared key or

 via a signature (similar to the MIKEY-PSK and MIKEY-RSA modes). If

 the Initiator is authorized to make the request, the KMS generates

 the requested keys, encodes them in a ticket, and returns the ticket

 in a REQUEST_RESP message. In some use cases (e.g. if the Initiator

 has pre-encrypted content), the Initiator rather than the KMS needs

 to supply the session keys. This is discussed in Section 7.3. The

 Ticket Request exchange is optional (depending on the ticket type),

 and MAY be omitted if the Initiator can create the ticket without

 assistance from the KMS.

 The Initiator next includes the ticket in a TRANSFER_INIT message,

 which is sent to the Responder. If the Responder finds the proposed

 policies acceptable, the Responder forwards the ticket to the KMS.

 This is done with a RESOLVE_INIT message, which asks the KMS to

 return the keys encoded in the ticket. The RESOLVE_INIT message is

 protected via a MAC based on a pre-shared key (between Responder and

 KMS) or via a signature. The Ticket Resolve exchange is optional

 (depending on the ticket type), and SHOULD only be used when the

 Responder is unable to resolve the ticket without assistance from the

 KMS.

 The KMS resolves the ticket. If the Responder is an authorized

 receiver of the keys encoded in the ticket, the KMS retrieves the

 keys and other information. If key forking is used, the keys are

 modified (bound to the Responder) by the KMS, see Section 5.1.1. The

 keys and additional information are then sent in a RESOLVE_RESP

 message to the Responder, who sends a TRANSFER_RESP message to the

 Initiator as verification. The TRANSFER_RESP message MAY include

 information used for key derivation.

 The actual signaling depends on both the specific ticket type and the

 policies of the KMS domain. The ticket type is determined by the

 ticket policy, but several ticket policies can use the same ticket

 type. The Initiator signals the identity of the desired ticket

 policy but the KMS MAY grant another policy. The use case and

 signaling described above can be seen as the most typical; in

N & M Expires December 31, 2009 [Page 10]

Internet-Draft MIKEY-TICKET June 2009

 Section 7, some alternative use cases are discussed. In these, a KMS

 MAY take the place of the Initiator or the Responder.

 The ticket itself could be a reference to information (keys etc.)

 stored by the key management service, it could contain all the

 information itself, or it could be a combination of the two

 alternatives. For larger user groups, it is not ideal to use the

 reference-only ticket approach as this would force the key management

 service to keep state of all issued tickets that are still valid. An

 example ticket format is given in Appendix A and security

 considerations regarding different types of tickets are given in

 Section 9.

4.2. Exchanges

4.2.1. Ticket Request

 This exchange is used by the Initiator to request keys and a ticket

 from a trusted Key Management Service, with which the Initiator have

 pre-shared credentials. The request contains information (e.g.

 security protocol policies, participant identities, etc.) describing

 the session the ticket is intended to protect. A full roundtrip is

 required if the Initiator needs to receive either keys or ticket. As

 this message must ensure the identity of the Initiator to the KMS, it

 is protected via a MAC based on a pre-shared key or via a signature.

 The initiation message REQUEST_INIT comes in two variants

 corresponding to the pre-shared key (PSK) and public-key encryption

 (PKE) methods of [RFC3830]. The response message REQUEST_RESP is the

 same for the two variants and SHALL be protected by using the pre-

 shared/envelope key indicated in the REQUEST_INIT message.

 Initiator KMS

 REQUEST_INIT_PSK = ---->

 HDR, T, RAND, [IDi], [IDkms],

 (IDre), {SP}, IDtp, < - - REQUEST_RESP =

 [KEMAC], [IDpsk], V HDR, T, [IDkms], [IDtp],

 [TICKET], [KEMAC], V

 REQUEST_INIT_PKE = ---->

 HDR, T, RAND, [IDi|(CERTi)],

 [IDkms], (IDre), {SP} < - - REQUEST_RESP =

 IDtp, [KEMAC], [CHASH], HDR, T, [IDkms], [IDtp],

 PKE, SIGNi [TICKET], [KEMAC], V

 In addition to the ticket, the Initiator typically receives session

 information, which the Initiator does not already know (e.g. keys).

 The ticket contains both session information and information that the

N & M Expires December 31, 2009 [Page 11]

Internet-Draft MIKEY-TICKET June 2009

 KMS needs when resolving the ticket later. The latter information

 will be referred to as ticket meta data in the sequel.

4.2.1.1. Common Components of the REQUEST_INIT Messages

 The REQUEST_INIT message MUST always include the Header (HDR),

 Timestamp (T), and RAND payloads. The CSB ID (Crypto Session Bundle

 ID) SHALL be randomly selected by the Initiator. If the KMS

 initiates the Ticket Transfer exchange (see Section 7.6) and the

 REQUEST_INIT message contains a KEMAC, the REQUEST_RESP message is

 optional. The Initiator indicates with the V flag whether a

 REQUEST_RESP message is expected. The value of the V flag SHALL

 agree with the ticket policy (IDtp). As no CS (Crypto Session(s))

 SHALL NOT be handled, the #CS MUST be set to '0' and the CS ID map

 type SHALL be the "Empty map" as defined in [RFC4563].

 IDi contains the identity of the Initiator. This identity would

 typically be stored in an "issued to" field in the ticket (e.g.

 alice@operator.example).

 IDkms SHOULD be included, but it MAY be left out when it can be

 expected that the KMS has a single identity.

 IDre is the identity of a recipient or a group of recipients that

 should be allowed to resolve the ticket. If there is more than one

 recipient identity, each recipient identity SHOULD be included in a

 separate ID payload.

 IDtp contains the identity of the desired ticket policy.

 The KEMAC payload SHOULD be used when the Initiator needs to use

 specific keys. The only recommended use is when the Initiator has

 pre-encrypted content and specific TEKs must be included in the

 ticket.

4.2.1.2. Components of the REQUEST_INIT_PSK Message

 The IDi payload SHOULD be included but MAY be left out when it can be

 expected that the KMS can identify the Initiator by other means.

 KEMAC = E(encr_key, [MPK] || {TGK|TEK})

 The KEMAC payload SHOULD use the NULL authentication algorithm, as a

 MAC is included in the V payload. The encryption key (encr_key)

 SHALL be derived from the pre-shared key.

 The IDpsk payload may be used to indicate the pre-shared key used.

N & M Expires December 31, 2009 [Page 12]

Internet-Draft MIKEY-TICKET June 2009

 The last payload SHALL be a Verification payload (V) where the

 authentication key (auth_key) is derived from the pre-shared key (see

 [RFC3830] Section 4.1.4 for key derivation specification).

4.2.1.3. Components of the REQUEST_INIT_PKE Message

 The identity IDi or certificate CERTi SHOULD be included, but they

 MAY be left out when it can be expected that the KMS already knows

 the Initiator's ID, or can obtain the certificate in some other

 manner. If a certificate chain is to be provided, each certificate

 in the chain SHOULD be included in a separate CERT payload.

 PKE contains the encrypted envelope key: PKE = E(PKkms, env_key). It

 is encrypted using the KMS's public key (PKkms). If the KMS

 possesses several public keys, the Initiator can indicate the key

 used in the CHASH payload.

 KEMAC = E(encr_key, IDcert || [MPK] || {TGK|TEK}) || MAC

 The KEMAC payload MUST include an identity payload (IDcert) and a MAC

 calculated over the KEMAC. The identity IDcert MUST be equal to the

 identity specified in the certificate, which generally is the same as

 IDi. The reason to bind the identity to the keys is to stop a man-

 in-the-middle-attack where an attacker includes the KEMAC and PKE

 payloads in a new message with herself as a recipient. The encr_key

 and auth_key SHALL be derived from the envelope key (see [RFC3830]

 Section 4.1.4 for key derivation specification).

 SIGNi is a signature covering the entire MIKEY message, using the

 Initiator's signature key.

4.2.1.4. Processing the REQUEST_INIT Message

 If the KMS can correctly parse the received message, and the

 Initiator is authorized to receive the requested ticket, possibly

 with a modified ticket policy, the KMS MUST send an REQUEST_RESP

 message. In case of a REQUEST_INIT_PKE message, the KMS MUST ensure

 that the IDcert is equal to the identity specified in the

 certificate.

 If the KMS cannot correctly parse the received message, or the

 Initiator is not authorized to receive the requested ticket, the KMS

 SHOULD send an appropriate Error message.

4.2.1.5. Components of the REQUEST_RESP Message

 The Header payload SHOULD be identical to the Header payload in the

 REQUEST_INIT message with the exception of data type, next payload,

N & M Expires December 31, 2009 [Page 13]

Internet-Draft MIKEY-TICKET June 2009

 and V flag. The V flag can be set to anything as it has no meaning

 in this context.

 The timestamp type and value SHALL be identical to the one used in

 the REQUEST_INIT message.

 IDtp identifies the policy that will be used when resolving the

 tickets. As the KMS decides which policy to use, this may not be the

 same policy that the Initiator requested.

 The TICKET payload specifies a ticket type and carries the ticket

 data. The ticket type and the ticket data depends on the granted

 ticket policy (IDtp). If the KMS initiates the Ticket Transfer

 exchange (see Section 7.6) the TICKET payload MAY be omitted.

 KEMAC = E(encr_key, MPK || {TGK|TEK})

 The KEMAC payload SHOULD use the NULL authentication algorithm, as a

 MAC is included in the V payload. Depending on the type of

 REQUEST_INIT message, either the pre-shared key or the envelope key

 SHALL be used to derive the encr_key. If the REQUEST_INIT message

 contains a KEMAC and the KMS does not generate any new keys, the

 KEMAC is optional.

 The last payload SHALL be a Verification payload (V). Depending on

 the type of REQUEST_INIT message, either the pre-shared key or the

 envelope key SHALL be used to derive the auth_key.

4.2.1.6. Processing the REQUEST_RESP Message

 If the Initiator can correctly parse the received message, the ticket

 and the associated session information SHOULD be stored. Otherwise

 the Initiator SHOULD silently discard the message and abort the

 protocol.

 Before using the received ticket, the Initiator SHOULD check that the

 granted ticket policy IDtp is acceptable. If not, the Initiator

 SHALL either silently discard or send a new REQUEST_INIT message

 suggesting a different ticket policy than before.

4.2.2. Ticket Transfer

 This exchange is used to transfer the ticket as well as session

 information from the Initiator to a Responder. As the motive of this

 exchange is to setup a shared secret key between Initiator and

 Responder, the Responder cannot check the authenticity of the message

 before the ticket is resolved. A full roundtrip is required if

 Responder key confirmation and freshness guarantee are needed. The

N & M Expires December 31, 2009 [Page 14]

Internet-Draft MIKEY-TICKET June 2009

 messages are preferably included in the session setup signaling (e.g.

 SIP INVITE).

 Initiator Responder

 TRANSFER_INIT = ---->

 HDR, T, RANDi, [IDi], [IDr],

 {SP}, IDtp, TICKET, V < - - TRANSFER_RESP =

 HDR, T, [RANDr], [IDr],

 [IDmod], V

4.2.2.1. Components of the TRANSFER_INIT Message

 The TRANSFER_INIT message MUST always include the Header (HDR),

 Timestamp (T), and RANDi payloads. The CSB ID (Crypto Session Bundle

 ID) SHALL be randomly selected by the Initiator. As the

 TRANSFER_RESP message is optional, the Initiator indicates with the V

 flag whether a verification message is expected. The value of the V

 flag SHOULD agree with the ticket policy (IDtp).

 The IDi and IDr payloads SHOULD be included but they MAY be left out

 when it can be expected that the Responder has a single identity and

 can identify the Initiator by other means.

 The use of the SP payload is identical to that in [RFC3830].

 IDtp contains the identity of the granted policy to be applied when

 resolving the TICKET payload. The TICKET and IDtp payloads SHOULD be

 taken from the REQUEST_RESP message, unmodified.

 The last payload SHALL be a Verification payload (V) where the

 authentication key (auth_key) is derived from the MPK (MIKEY

 Protection Key).

4.2.2.2. Processing the TRANSFER_INIT Message

 As the Initiator and Responder do not have any pre-shared keys, the

 Responder cannot check the authenticity of the message before the

 ticket is resolved. The Responder SHOULD however check that the

 policies are acceptable. If they are not, the Responder SHOULD

 reject without contacting the KMS and abort the protocol. This is an

 early reject to avoid DoS attacks against the KMS and/or the

 Responder. After the ticket has been resolved the parsing SHALL be

 done as in [RFC3830].

N & M Expires December 31, 2009 [Page 15]

Internet-Draft MIKEY-TICKET June 2009

4.2.2.3. Components of the TRANSFER_RESP Message

 The Header payload SHOULD be identical to the Header payload in the

 TRANSFER_INIT message with the exception that the V flag can be set

 to anything as it has no meaning in this context.

 The timestamp type and value SHALL be identical to the one used in

 the TRANSFER_INIT message.

 Unless indicated by the ticket policy, the Responder SHALL generate a

 new (pseudo-)random bytestring RANDr. RANDr is used to give the

 Responder freshness guarantee for the key derivation, but this is

 sometimes not applicable when e.g. group TGKs are distributed.

 If the Responder received an IDmod payload in the RESOLVE_RESP

 message, the same modifier MUST be sent in an IDmod payload in the

 TRANSFER_RESP message.

 The last payload SHALL be a Verification payload (V) where the

 authentication key (auth_key) is derived from the MPK.

4.2.2.4. Processing the TRANSFER_RESP Message

 If the received message cannot be correctly parsed, the Initiator

 SHOULD silently discard the message and abort the protocol.

4.2.3. Ticket Resolve

 This exchange is used by the Responder to request the KMS to return

 the keys encoded in a ticket. The KMS does not need to be the same

 KMS that originally issued the ticket, see Section 7.4. A full

 roundtrip is required for the Responder to receive the keys. The

 Ticket Resolve exchange is optional (depending on the ticket type),

 and SHOULD only be used when the Responder is unable to resolve the

 ticket without assistance from the KMS. The initiation message

 RESOLVE_INIT comes in two variants corresponding to the pre-shared

 key (PSK) and public-key encryption (PKE) methods of [RFC3830]. As

 this message must ensure the identity of the Responder to the KMS, it

 is protected via a MAC based on a pre-shared key or via a signature.

 The response message RESOLVE_RESP is the same for the two variants

 and SHALL be protected by using the pre-shared/envelope key indicated

 in the RESOLVE_INIT message.

N & M Expires December 31, 2009 [Page 16]

Internet-Draft MIKEY-TICKET June 2009

 Responder KMS

 RESOLVE_INIT_PSK = ---->

 HDR, T, RAND, [IDr], [IDkms],

 IDi, IDtp, TICKET, IDpsk, V <---- RESOLVE_RESP

 HDR, T, [IDkms], [IDmod],

 KEMAC, V

 RESOLVE_INIT_PKE = ---->

 HDR, T, RAND, [IDr|(CERTr)],

 [IDkms], IDi, IDtp, TICKET, <---- RESOLVE_RESP

 [CHASH], PKE, SIGNr HDR, T, [IDkms], [IDmod],

 KEMAC, V

 Upon receiving the RESOLVE_INIT message, the KMS verifies via the

 ticket meta data that the Responder is allowed to resolve the ticket.

 The KMS extracts the session information from the ticket and returns

 this to the Responder. Since the KMS resolved the ticket, the

 Responder is assured of the integrity of the session information.

 The Responder can complete the session information it got from the

 Initiator with the additional session information received from the

 KMS.

4.2.3.1. Common Components of the RESOLVE_INIT Messages

 THE RESOLVE_INIT message MUST always include the Header (HDR),

 Timestamp (T), and RAND payloads. The CSB ID (Crypto Session Bundle

 ID) SHALL be randomly selected by the responder. The V flag MUST be

 set to '1' but SHALL be ignored by the KMS as a response is

 MANDATORY. As crypto session(s) SHALL NOT be handled, the #CS MUST

 be set to '0' and the CS ID map type SHALL be the "Empty map" as

 defined in [RFC4563]. The PRF used MUST be the same as the one used

 in the preceding TRANSFER_INIT message. This is to ensure that keys

 are forked with the same PRF.

 IDkms SHOULD be included, but it MAY be left out when it can be

 expected that the KMS has a single identity.

 The TICKET payload contains the ticket that the Responder wants to

 have resolved. The IDtp and IDi payloads SHOULD be identical to the

 IDtp and IDi payloads in the TRANSFER_INIT message in which the

 ticket was received.

4.2.3.2. Components of the RESOLVE_INIT_PSK Message

 IDr contains the identity of the Responder. IDr SHOULD be included,

 but it MAY be left out when it can be expected that the KMS can

 identify the Responder (or more specifically the pre-shared key) in

N & M Expires December 31, 2009 [Page 17]

Internet-Draft MIKEY-TICKET June 2009

 some other manner.

 The IDpsk payload may be used to indicate the pre-shared key used.

 The last payload SHALL be a Verification payload (V) where the

 authentication key (auth_key) is derived from the pre-shared key.

4.2.3.3. Components of the RESOLVE_INIT_PKE Message

 The identity IDr or certificate CERTr SHOULD be included, but they

 MAY be left out when it can be expected that the KMS already knows

 the Responder's ID, or can obtain the certificate in some other

 manner. If a certificate chain is to be provided, each certificate

 in the chain SHOULD be included in a separate CERT payload.

 PKE contains the encrypted envelope key: PKE = E(PKkms, env_key). It

 is encrypted using the KMS's public key (PKkms). If the KMS

 possesses several public keys, the Responder can indicate the key

 used in the CHASH payload.

 SIGNr is a signature covering the entire MIKEY message, using the

 Responder's signature key.

4.2.3.4. Processing the RESOLVE_INIT Message

 If the KMS can correctly parse the received message, and the

 Responder is authorized to resolve the ticket, the KMS MUST send an

 RESOLVE_RESP message.

 If the KMS cannot correctly parse the received message, or the

 Responder is not authorized to resolve the ticket, the KMS SHOULD

 send an appropriate Error message.

4.2.3.5. Components of the RESOLVE_RESP Message

 The Header payload SHOULD be identical to the Header payload in the

 RESOLVE_INIT message with the exception of data type, next payload,

 and V flag. The V flag can be set to anything as it has no meaning

 in this context.

 The timestamp type and value SHALL be identical to the one used in

 the RESOLVE_INIT message.

 KEMAC = E(encr_key, MPK || [MPK] || {TGK|TEK})

 The KEMAC payload SHOULD use the NULL authentication algorithm, as a

 MAC is included in the V payload. Depending on the type of

 RESOLVE_INIT message, either the pre-shared key or the envelope key

N & M Expires December 31, 2009 [Page 18]

Internet-Draft MIKEY-TICKET June 2009

 SHALL be used to derive the encr_key.

 If the key forking (see Section 5.1.1) is used (determined by the

 ticket policy) the KMS SHALL fork the MPK and the TGKs. This means

 that two forked MPKs SHALL be included in the KEMAC. The first MPK

 SHALL be used to protect the TRANSFER_INIT message and the second MPK

 SHALL be used to protect the TRANSFER_RESP message. The modifier

 used to derive the forked keys (except the first MPK) SHALL be

 included in the IDmod payload.

 The last payload SHALL be a Verification payload (V). Depending on

 the type of RESOLVE_INIT message, either the pre-shared key or the

 envelope key SHALL be used to derive the auth_key.

4.2.3.6. Processing the RESOLVE_RESP Message

 If the received message cannot be correctly parsed, the Responder

 SHOULD silently discard the message and abort the protocol.

5. Selected Key Management Functions

5.1. Key Derivation

 For all messages in the Ticket Request and Ticket Resolve exchanges,

 the keys used to protect the MIKEY messages are derived from the pre-

 shared key or the envelope key as specified in [RFC3830]. As crypto

 sessions SHALL NOT be handled, further keying material (i.e TEKs)

 SHALL NOT be derived.

 In the Ticket Transfer exchange, there may be two RANDs, which may be

 used to give each peer key freshness guarantee. Therefore, different

 keys are used to protect the TRANSFER_INIT and TRANSFER_RESP

 messages. In addition, if key forking is used, the KMS and the

 Initiator SHALL fork the MPK and the TGKs.

5.1.1. Deriving Forking Keys

 When key forking is used (determined by the ticket policy), the MPK

 and TGKs SHALL be forked. This key forking is done by the KMS and

 the Initiator. To ensure that the keys are forked with the same PRF,

 the PRF signaled in the TRANSFER_INIT message MUST also be used in

 the corresponding RESOLVE_INIT message. The parameters for the

 default PRF are:

 inkey: : MPK or TGK

 inkey_len : bit length of the inkey

 label : constant || 0xFF || 0xFFFFFFFF || modifier

N & M Expires December 31, 2009 [Page 19]

Internet-Draft MIKEY-TICKET June 2009

 outkey_len : desired bit length of the outkey

 where the constant and modifier depends on the derived key type as

 summarized below.

 derived key | constant | modifier

 -----------------------------+------------+----------------

 Forked MPK for TRANSFER_INIT | 0x2B288856 | "TRANSFER_INIT"

 Forked MPK for TRANSFER_RESP | 0x1512B54A | ID Data

 Forked TGK | 0x220E99A2 | ID Data

 Table 6.1: Constants for forking key derivation

 where the first modifier SHALL be "TRANSFER_INIT" coded in ASCII

 (0x5452414E534645525F494E4954) and ID Data is taken from the IDmod

 payload. The constants are taken from the decimal digits of e as

 described in [RFC3830].

5.1.2. Deriving Keys from a TGK

 This only affects the Ticket Transfer exchange. In the following, we

 describe how keying material is derived from a TGK. If key forking

 is used, the forked TGK SHALL be used. The key derivation method

 SHALL be executed using the PRF indicated in the HDR payload. The

 parameters for the default PRF are given below.

 inkey: : (Forked) TGK

 inkey_len : bit length of the TGK

 label : constant || cs_id || csb_id || RANDi || [RANDr]

 outkey_len : bit length of the outkey

 where the constants are as defined in [RFC3830]. RANDr SHALL be

 included if it is present in the TRANSFER_RESP message.

 Note that the ticket may carry a salt. A security protocol in need

 of a salt key SHALL use the salt key carried in the ticket when

 present. If a salt is not included, it is possible to derive a salt

 key via the key derivation function, as described above.

5.1.3. Deriving Keys from a MPK

 This derivation is to form the keys used to protect the MIKEY

 messages. In the Ticket Request and Ticket Resolve exchanges, the

 key derivation SHALL be done exactly as in [RFC3830]. For the Ticket

 Transfer exchange, the TRANSFER_INIT message SHALL be protected with

 the following keys derived from a MPK. If key forking is used, a

 forked MPK SHALL be used. Parameters for the default PRF are given

 below.

N & M Expires December 31, 2009 [Page 20]

Internet-Draft MIKEY-TICKET June 2009

 inkey: : (Forked) MPK

 inkey_len : bit length of the MPK

 label : constant || 0xFF || csb_id || RANDi

 outkey_len : desired bit length of the output key

 where the constants are as defined in [RFC3830]. The parameters for

 the TRANSFER_RESP message are given below.

 inkey: : (Forked) MPK

 inkey_len : bit length of the MPK

 label : constant || 0xFF || csb_id || RANDi || [RANDr]

 outkey_len : desired bit length of the output key

 RANDr SHALL be included if it is present in the TRANSFER_RESP

 message. Note that if key forking is used, different forked MPKs are

 used to protect the TRANSFER_INIT and TRANSFER_RESP messages.

5.2. CSB Updating

 Similar to [RFC3830], MIKEY-TICKET provides a means of updating the

 CSB (Crypto Session Bundle), e.g. transporting new TGK/TEK or adding

 new Crypto Sessions. The CSB updating is done by executing the

 Ticket Transfer exchange again, e.g. before a TEK expires or when a

 new crypto session is needed.

 It is not necessary to include the ticket and other static payloads

 that was provided in the initial exchange, such payloads MAY

 optionally be left out.

 Initiator Responder

 TRANSFER_INIT = ---->

 HDR, T, [IDi], [IDr], {SP},

 [IDtp], [TICKET], <---- TRANSFER_RESP =

 [KEMAC], V HDR, T, [IDr], [IDmod], V

 The new message exchange MUST use the same CSB ID as the initial

 exchange, but MUST use a new timestamp. New RANDs MUST NOT be

 included in the message exchange (the RANDs will only have effect in

 the initial exchange). The reason that new RANDs should not be used

 is that if several TGKs are used, the peers would need to keep track

 of which RANDs to use for each TGK. This adds unnecessary

 complexity.

 KEMAC = E(encr_key, [MPK] || {TGK|TEK})

 New keying material SHOULD be sent in a KEMAC payload. The KEMAC

 SHOULD use the NULL authentication algorithm, as a MAC is included in

N & M Expires December 31, 2009 [Page 21]

Internet-Draft MIKEY-TICKET June 2009

 the V payload. Unless a new MPK has been exchanged, both messages

 SHOULD be protected with the keys that protected the TRANSFER_RESP

 message in the initial exchange. If a new MPK has been exchanged,

 both messages SHOULD be protected with keys derived from this MPK

 without forking key derivation.

5.3. Ticket Reuse

 When reusing a ticket that has been used in a previous Ticket

 Transfer exchange, a new Ticket Transfer exchange is executed. The

 new exchange MUST use a new CSB ID, a new Timestamp, and new RANDs.

 If the responder has resolved the ticket before, it does not need to

 be resolved again. Note that the ticket MAY include policies that

 prohibit reuse. Such tickets MUST NOT be reused. When group keys

 are used, ticket reuse leaves the Initiator responsible to ensure

 that group membership has not changed since the ticket was last used.

 (Otherwise, unauthorized receivers may gain access to the group

 communication.) Thus, if group dynamics are difficult to verify, the

 Initiator SHOULD NOT initiate ticket reuse.

 When key forking is used, only the user that requested the ticket has

 access to the encoded master keys (MPK, TGKs). Because of this, no

 one else can initiate a Ticket Transfer exchange using the ticket.

5.4. MAC/Signature calculation

 The MAC/Signature in the V/SIGN payloads covers the entire
 MIKEY message, except the MAC/Signature field. The identities of the

 involved parties MUST directly follow the MIKEY message in the

 Verification MAC/Signature calculation.

 exchange | MAC/signature coverage

 ----------------+--

 Ticket Request | MIKEY message || Identity_i || Identity_kms

 Ticket Transfer | MIKEY message || Identity_i || Identity_r

 Ticket Resolve | MIKEY message || Identity_r || Identity_kms

 Table 5.1: MAC/Signature coverage

6. Adding New Ticket Types to MIKEY-TICKET

 TBD ...

7. Alternative Use Cases

N & M Expires December 31, 2009 [Page 22]

Internet-Draft MIKEY-TICKET June 2009

7.1. Optional Exchanges

 Depending on the ticket type and the KMS domain policies, some of the

 exchanges MAY be optional. If the ticket key (used to protect the

 ticket) is encrypted with a KEK (Key Encryption Key) shared between

 the KMS and the Responder, the Ticket Resolve exchange can be

 omitted, as the Responder can resolve the ticket without assistance

 from the KMS. The signaling (shown in alternative (1) of Figure 2),

 becomes similar to the signaling in Kerberos [RFC4120].

 +---+ +-----+ +---+

 | I | | KMS | | R |

 +---+ +-----+ +---+

 Ticket Request

 (1) <----------------------------> Ticket Transfer

 <--->

 Ticket Transfer

 (2) <--->

 <---------------------------->

 Ticket Resolve

 Ticket Transfer

 (3) <--->

 Figure 2: Optional exchanges

 If the tickets are distributed in some other way than a Ticket

 Request exchange, or if the Initiator has all information needed to

 create a specific ticket type without assistance from the KMS, the

 Ticket Request exchange can be omitted. The signaling looks like

 alternative (2) or (3) of Figure 2. Where (2) is a variant of the

 Otway-Rees protocol and (3) can be seen as a variation of the pre-

 shared key method of [RFC3830] with mutual key freshness guarantee.

7.2. Compatibility Mode

 TBD ...

N & M Expires December 31, 2009 [Page 23]

Internet-Draft MIKEY-TICKET June 2009

 +---+ +-----+ +---+

 | I | | KMS | | R |

 +---+ +-----+ +---+

 REQUEST_INIT

 -------------------------------->

 REQUEST_RESP

 <--------------------------------

 3711 MIKEY

 -->

 Figure 3: Distribution of pre-encrypted content

7.3. Distribution of Pre-Encrypted Content

 The default setting is that the KMS operates as a KDC (Key

 Distribution Center) and supplies keys. This is not possible if the

 Initiator has pre-encrypted content (e.g. Video on Demand). In this

 case the KMS has to operate as a Key Translation Center (KTC) and re-

 encode and forward the keys that the Initiator supplied.

 In such use cases, the exchange is typically reversed and MAY be

 carried out as follows. The Responder sends a message (e.g. SIP

 INVITE) to the Initiator requesting delivery of certain content. The

 Initiator includes the TEKs used to protect the requested content in

 a REQUEST_INIT message, which is sent to the KMS. The KMS encodes

 the TEKs in a ticket and replies with a REQUEST_RESP message

 containing the requested ticket, which is forwarded to the Responder

 in a TRANSFER_INIT message.

 +---+ +-----+ +---+

 | I | | KMS | | R |

 +---+ +-----+ +---+

 Media request

 <--

 REQUEST_INIT {KEMAC}

 -------------------------------->

 REQUEST_RESP

 <--------------------------------

 TRANSFER_INIT

 -->

 Figure 4: Distribution of pre-encrypted content

7.4. Routing of Resolve Messages

 A user can in general only be expected to have a trust relation with

 a single KMS. Users belonging to different KMS domains will

 therefore use tickets issued by different KMSs and protected with

N & M Expires December 31, 2009 [Page 24]

Internet-Draft MIKEY-TICKET June 2009

 different keys. Thus, if a user in one KMS domain is to be able to

 establish a secure session with a user in another KMS domain, the

 KMSs involved have to cooperate and there has to be a trust relation

 between them. Under these assumptions, the following approach MAY be

 used.

 +---+ +---+ +-------+ +-------+

 | I | | R | | KMS R | | KMS I |

 +---+ +---+ +-------+ +-------+

 TRANSFER_INIT

 --------------------> RESOLVE_INIT

 - - - - - - - - - - -> RESOLVE_INIT

 - - - - - - - - - - ->

 RESOLVE_RESP

 RESOLVE_RESP <- - - - - - - - - - -

 TRANSFER_RESP < - - - - - - - - - -

 <--------------------

 Figure 5: Routing of resolve messages

 If the Responder cannot directly resolve a ticket, the ticket SHOULD

 be included in a RESOLVE_INIT message sent to a KMS. If the

 Responder does not have a shared credential with the KMS that issued

 the ticket (KMS I) or if the Responder does not know which KMS that

 issued the ticket, the Responder SHOULD send a RESOLVE_INIT message

 to the Resonder's default KMS (KMS R). If KMS R did not issue the

 ticket, KMS R would normally be unable to directly resolve the ticket

 and must hence ask another KMS to resolve it (typically the issuing

 KMS).

 The signaling between different KMSs MAY be done with a Ticket

 Resolve exchange as illustrated in Figure 5. The IDr, IDi, IDtp, and

 TICKET payloads from the previous RESOLVE_INIT message SHOULD be

 reused.

7.5. Deferred Delivery of e2e Protected Content

 TBD ...

N & M Expires December 31, 2009 [Page 25]

Internet-Draft MIKEY-TICKET June 2009

 +-----+ +---+ +---+ +---+

 | KMS | | I | | M | | R |

 +-----+ +---+ +---+ +---+

 Ticket Request

 <--------------------> Ticket Transfer

 <--------------------> Ticket Transfer

 <-------------------->

 Ticket Resolve

 <-->

 Figure 6: Deferred delivery of e2e protected content

7.6. KMS Initiated Ticket Transfer

 As an optimization, the KMS may initiate the Ticket Transfer

 exchange. This might be especially useful when setting up sessions

 sensitive to setup delays (e.g. Push-to-talk). The REQUEST_INIT and

 REQUEST_RESP messages would typically be sent through a proxy server,

 which forwards the messages to the correct receiver. The KMS SHOULD

 use the same CSB ID, RAND, and timestamp in the TRANSFER_INIT message

 as was used in the REQUEST_INIT message. The KMS SHOULD also use the

 Initiator's identity in the IDi payload of the TRANSFER_INIT message.

 The Initiator MUST know from the ticket policy that the KMS will send

 the TRANSFER_INIT message.

 +---+ +-----+ +---+

 | I | | KMS | | R |

 +---+ +-----+ +---+

 REQUEST_INIT

 -------------------------------->

 REQUEST_RESP

 < - - - - - - - - - - - - - - - - TRANSFER_INIT

 -------------------------------->

 TRANSFER_RESP

 <--

 Figure 7: KMS initiated Ticket Transfer

 When the REQUEST_INIT message contains a KEMAC, the REQUEST_RESP

 message MAY be optional and the Initiator SHOULD use the V flag in

 the HDR payload to indicate if a response is expected.

7.7. Group Communication

 What has been discussed up to now can also be used to distribute

 group keys for small-size interactive groups. The signaling for

 multi-party sessions can either be centralized (C) or decentralized

 (D) as illustrated in Figure 8.

N & M Expires December 31, 2009 [Page 26]

Internet-Draft MIKEY-TICKET June 2009

 +---+ +---+ +---+

 | A | | B | | C |

 +---+ +---+ +---+

 Ticket Transfer

 (C) <----------------------------> Ticket Transfer

 <--->

 Ticket Transfer

 (D) <----------------------------> Ticket Transfer

 <---------------------------->

 Figure 8: Centralized and decentralized signaling

 If the Ticket Transfer exchange is used to distribute a group TGK, a

 RANDr SHOULD not be sent in the TRANSFER_RESP message. Note also

 caveats with ticket reuse in group communication settings as

 discussed in Section 5.3.

7.7.1. Forking key generation

 When key forking is used, the MIKEY signaling MUST be centralized.

 Decentralized signaling does not work, as only the user that

 requested the ticket could initiate the Ticket Transfer exchange, see

 Section 5.3.

 +---+ +---+ +---+

 | A | | B | | C |

 +---+ +---+ +---+

 Ticket Transfer

 <----------------------------> Ticket Transfer

 <--->

 Rekeying

 -----------------------------> Rekeying

 -->

 Figure 9: Multi-party forking

 Another problem is that different users get different TEKs if TGKs

 are used, so if the mixing is decentralized, a new group TGK MUST be

 distributed before the session starts, see Figure 9. The rekeying

 does not need to be done with a CSB Updating exchange (see

 Section 5.2); it can be done with any appropriate rekeying mechanism,

 e.g. EKT (Encrypted Key Transport).[I-D.mcgrew-srtp-ekt].

 Rekeying might also be preferred when centralized mixing is used; the

 mixer does not have to re-encrypt, which minimizes CPU and memory

 use, and means that an untrusted conferencing server can be used.

N & M Expires December 31, 2009 [Page 27]

Internet-Draft MIKEY-TICKET June 2009

8. Payload Encoding

 This section does not describe all the payloads that are used in the

 new message types. It describes in detail the new TICKET payload and

 in less detail the payloads for which changes has been made compared

 to [RFC3830]. For a detailed description of the MIKEY payloads, see

 [RFC3830].

8.1. Common Header Payload (HDR)

 For the Common Header Payload, new values are added to the data type

 and the next payload name spaces.

 * Data type (8 bits): describes the type of message.

 Data type | Value | Comment

 -----------------+-------+--

 REQUEST_INIT_PSK | TBD1 | Ticket request initiation message (PSK)

 REQUEST_INIT_RKE | TBD2 | Ticket request initiation message (PKE)

 REQUEST_RESP | TBD3 | Ticket request response message

 | |

 TRANSFER_INIT | TBD4 | Ticket transfer initiation message

 TRANSFER_RESP | TBD5 | Ticket transfer response message

 | |

 RESOLVE_INIT_PSK | TBD6 | Ticket resolve initiation message (PSK)

 RESOLVE_INIT_PKE | TBD7 | Ticket resolve initiation message (PKE)

 RESOLVE_RESP | TBD8 | Ticket resolve response message

 Table 8.1: Data type (Additions)

 * Next payload (8 bits): identifies the payload that is added after

 this payload.

 Next payload | Value | Section

 -------------+-------+--------

 TICKET | TBD9 | 8.2

 Table 8.2: Next Payload (Additions)

 * V (1 bits): flag to indicate whether a response message is

 expected or not (this only has meaning when it is set in an

 initiation message). If a response is required (determined by the

 ticket policy), the V flag SHALL always be set to 1 in the

 initiation messages and the receiver of the initiation message

 (Responder or KMS) SHALL ignore it.

N & M Expires December 31, 2009 [Page 28]

Internet-Draft MIKEY-TICKET June 2009

 * #CS (8 bits): indicates the number of crypto sessions that will be

 handled within the CBS. It SHALL be set to 0 in the Ticket

 Request and Ticket Resolve exchanges, as crypto sessions SHALL NOT

 be handled.

 * CS ID map type (8 bits): specifies the method of uniquely mapping

 crypto sessions to the security protocol sessions. In the Ticket

 Request and Ticket Resolve exchanges, the CS ID map type SHALL be

 the "Empty map" (defined in [RFC4563]) as crypto sessions SHALL

 NOT be handled.

8.2. Ticket Payload (TICKET)

 The ticket payload contains an indicator of the ticket type provided

 as well as the ticket data.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 ! Next payload ! Ticket type ! Ticket data length !

 +-+

 ! Ticket data ~

 +-+

 * Next payload (8 bits): identifies the payload that is added after

 this payload.

 * Ticket type (8 bits): specifies the ticket type used.

 Ticket Type | Value | Comments

 ------------------------+-------+-------------------------

 3GPP Protected Ticket | 1 | Defined in [3GPP.33.828]

 3GPP Unprotected Ticket | 2 | Defined in [3GPP.33.828]

 Table 8.3: Ticket type

 * Ticket data length (16 bits): the length of the ticket data field

 (in bytes).

 * Ticket data (variable length): The ticket data.

8.3. Key Data Sub-Payload

 For the key data sub-payload, a new type of key is defined. The

 MIKEY Protection Key (MPK) is used to protect the MIKEY messages in

 the Ticket Transfer exchange. The MPK is used as the pre-shared key

 in the pre-shared key method of [RFC3830], it is however not known by

 the Responder before the ticket has been resolved.

N & M Expires December 31, 2009 [Page 29]

Internet-Draft MIKEY-TICKET June 2009

 The KEMAC in the REQUEST_RESP message SHALL contain exactly one MPK.

 If key forking is not used, the KEMAC in the RESOLVE_RESP message

 SHALL also contain exactly one MPK, otherwise it SHALL contain

 exactly two MPKs. In the latter case the first MPK SHALL be used to

 protect the TRANSFER_INIT message and the second MPK SHALL be used to

 protect the TRANSFER_RESP message.

 * Type (4 bits): indicates the type of key included in the payload.

 Type | Value | Comments

 -----+-------+---------------------

 MPK | TBD10 | MIKEY Protection Key

 Table 8.4: Key Data Type (Additions)

8.4. Error payload (ERR)

 For the key data sub-payload, new types of errors is defined.

 * Error no (8 bits): indicates the type of error that was

 encountered.

 Error no | Value | Comments

 ------------------+-------+--------------------------------

 Invalid TICKET | TBD11 | Ticket type not supported

 Invalid TICKETpar | TBD12 | Ticket parameters not supported

 Table 8.5: Error no (Additions)

9. Security Considerations

 Unless otherwise stated, the security considerations in [RFC3830]

 still apply and contain additional notes on the security properties

 of the MIKEY protocol, key derivation functions, and other

 components.

 As some security properties depend on the specific ticket type, only

 generic security considerations concerning the MIKEY-TICKET framework

 are discussed. New ticket type specifications MUST include

 comprehensive security considerations concerning the specific ticket

 type.

9.1. General

 In the standard MIKEY modes [RFC3830], the TGKs are generated by the

 Initiator (or by both peers in the Diffie-Hellman scheme). If a bad

 random number generator is used, this is likely to make any key

N & M Expires December 31, 2009 [Page 30]

Internet-Draft MIKEY-TICKET June 2009

 management protocol sensitive to different kinds of attacks, and

 MIKEY is no exception. As the choice of the random number generator

 is implementation specific, the easiest (and often bad) choice is to

 use the PRNG supplied by the operating system. In MIKEY-TICKET's

 default mode of operation, the key generation is done by the KMS,

 which can be assumed to be less likely to use a bad random number

 generator.

 The use of random nonces (RANDs) in the key derivation is of utmost

 importance to counter off-line pre-computation attacks. A key of

 length n, using RANDs of length r, has effective key entropy of (n +

 r) / 2 against a birthday attack. Therefore, the length of RAND

 generated by the Initiator MUST at least be equal to the length of

 the pre-shared key/envelope key and the sum of the lengths of the

 RANDs (RANDi, RANDr) MUST be at least be equal to the key size of the

 longest TGK.

 Note that the CSB Updating messages reuse the old RANDs. This means

 that the total effective key entropy (relative to table lookup) for k

 consecutive key updates, assuming the TGKs are each n bits long, is

 still no more than n bits. In other words, a 2^n work enables an

 attacker to get all k n-bit keys. While this might seem like a

 defect, this is in practice (for all reasonable values of k) not

 better than brute force, which on average requires k * 2^(n-1) work

 (even if different RANDs would be used). A birthday attack would

 only require 2^(n/2) work, but would need access to 2^(n/2) sessions

 protected with equally many different keys using a single pair of

 RANDs. This is, for typical values of n, clearly totally infeasible.

 The success probability of such an attack can be controlled by

 limiting the number of updates correspondingly. As stated in

 [RFC3830], the fact that more than one key can be compromised in a

 single attack is inherent to any solution using secret- or public-key

 algorithms. An attacker gets access to all the exchanged keys by

 doing an exhaustive search on the pre-shared key/envelope key/MPK.

 This requires 2^m work, where m is the size of the key.

 As the Responder MAY generate a RAND, The Ticket Transfer exchange

 can provide mutual freshness guarantee for all derived keys.

9.2. Denial of Service

 This protocol is resistant to Denial of Service attacks against the

 KMS in the sense that it does not construct any state (at the key

 management protocol level) before it has authenticated the Initiator

 or Responder. Typical prevention such as rate-limiting and ACL

 (Access control list) capability SHOULD be implemented in the KMS as

 well as the clients. The types and amount of prevention needed

 depends on how critical the system is and may vary depending on the

N & M Expires December 31, 2009 [Page 31]

Internet-Draft MIKEY-TICKET June 2009

 ticket type.

 Since the Responder in general cannot verify the validity of a

 TICKET_TRANSFER_INIT message without first contacting the KMS, Denial

 of Service may be launched against the Responder and/or the KMS via

 the Responder. The Responder SHOULD therefore implement additional

 protection such as early abort if the Initiator's identity is

 suspicious, if the policy is not acceptable, etc.

9.3. Replay

 In a replay attack an attacker may intercept and later retransmit the

 whole or part of a MIKEY message, attempting to trick the receiver

 into undesired operations, leading e.g. to lack of key freshness.

 MIKEY-TICKET implements several mechanisms to prevent such attacks.

 Timestamps together with a replay cache efficiently stop the replay

 of entire MIKEY messages. Parts of the received messages (or the

 hash of them) are saved in the replay cache until their timestamp is

 outdated. To prevent replay attacks, the sender's (Initiator or

 Responder) and the receiver's identity (KMS or Responder) is always

 included in the MAC/the calculation.

 An attacker may also attempt to replay the TICKET payload by

 including it in a new MIKEY message. A possible scenario is that

 Alice and Bob first communicate based on a ticket, T, which Mallory

 intercepts and blindly copies. Later, Mallory (acting as herself)

 invites Bob by inserting the ticket T into her own TRANSFER_INIT

 message. Such replays will not be detected at the MIKEY level but

 will be prevented either by failure of Mallory to properly insert T

 into the MIKEY-TICKET message, or, will anyway not enable to Mallory

 to communicate with Bob due to inability to deduce the session key(s)

 encoded in T.

9.4. Key Forking

 When key forking is used together with TGKs, only the endpoint that

 answers get access to the actual session keys. As only the Initiator

 and the KMS has access to the master keys, no one else can derive the

 session keys.

9.5. Group Key Management

 In a group scenario, only authorized group members must have access

 to the keys. In some situation, the communication may be initiated

 by the Initiator using a group identity and the Initiator may not

 even always know exactly who the authorized group members are.

 Moreover, group membership may change over time due to leaves/joins.

 In such a situation, it is foremost the responsibility of the KMS to

N & M Expires December 31, 2009 [Page 32]

Internet-Draft MIKEY-TICKET June 2009

 reject ticket resolution requests from unauthorized recipients,

 implying that the KMS needs to be able to map an individual's

 identity (carried in the RESOVLVE_INIT message) to group membership

 (where the group identity is carried in the ticket).

 As noted, reuse of tickets, which bypasses the KMS, is NOT

 RECOMMENDED when the Initiator is not fully ensured about group

 membership status.

10. Acknowledgements

 TBD...

11. IANA Considerations

 This document defines several new values for the namespaces Data

 Type, Next Payload, and Key Data Type defined in [RFC3830]. The

 following IANA assignments were added to the MIKEY Payload registry

 (in bracket is a reference to the table containing the registered

 values):

 o Data Type (see Table 8.1)

 o Next Payload (see Table 8.2)

 o Key Data Type (see Table 8.4)

 The Ticket payload defines an 8-bit Ticket Type field for which IANA

 is to create and maintain a new namespace in the MIKEY Payload

 registry. Assignments consist of a Ticket Type name and its

 associated value. Initial values are given below.

 Value Ticket Type

 ------- -----------------------

 0 Reserved

 1 3GPP Protected Ticket

 2 3GPP Unprotected Ticket

 3-239 Unassigned

 240-254 Private Use

 255 Reserved

 Values in the range 1-239 SHOULD be approved by the process of

 Specification Required, values in the range 240-254 are for Private

 Use, and the values 0 and 255 are Reserved according to [RFC5226].

N & M Expires December 31, 2009 [Page 33]

Internet-Draft MIKEY-TICKET June 2009

12. References

12.1. Normative References

 [3GPP.33.828]

 3GPP, "IP Multimedia Subsystem (IMS) media plane

 security", 3GPP TR 33.828 1.3.0, June 2009.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3830] Arkko, J., Carrara, E., Lindholm, F., Naslund, M., and K.

 Norrman, "MIKEY: Multimedia Internet KEYing", RFC 3830,

 August 2004.

 [RFC4563] Carrara, E., Lehtovirta, V., and K. Norrman, "The Key ID

 Information Type for the General Extension Payload in

 Multimedia Internet KEYing (MIKEY)", RFC 4563, June 2006.

 [RFC4650] Euchner, M., "HMAC-Authenticated Diffie-Hellman for

 Multimedia Internet KEYing (MIKEY)", RFC 4650,

 September 2006.

 [RFC4738] Ignjatic, D., Dondeti, L., Audet, F., and P. Lin, "MIKEY-

 RSA-R: An Additional Mode of Key Distribution in

 Multimedia Internet KEYing (MIKEY)", RFC 4738,

 November 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an

 IANA Considerations Section in RFCs", BCP 26, RFC 5226,

 May 2008.

12.2. Informative References

 [I-D.mcgrew-srtp-ekt]

 McGrew, D., Andreasen, F., and L. Dondeti, "Encrypted Key

 Transport for Secure RTP", draft-mcgrew-srtp-ekt-04 (work

 in progress), March 2009.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.

 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

 RFC 3711, March 2004.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The

 Kerberos Network Authentication Service (V5)", RFC 4120,

 July 2005.

 [RFC5197] Fries, S. and D. Ignjatic, "On the Applicability of

N & M Expires December 31, 2009 [Page 34]

Internet-Draft MIKEY-TICKET June 2009

 Various Multimedia Internet KEYing (MIKEY) Modes and

 Extensions", RFC 5197, June 2008.

 [RFC5479] Wing, D., Fries, S., Tschofenig, H., and F. Audet,

 "Requirements and Analysis of Media Security Management

 Protocols", RFC 5479, April 2009.

Appendix A. Example Ticket Format

 Tickets may carry many different types of information helping to

 enforce usage policies. The policies may be group policies or per-

 user policies. Not all information needs to be included in the

 ticket as the ticket itself could be a reference to information

 stored in the key management service. Depending on how much state

 the KMS keeps, it might be enough with only a Ticket ID. For larger

 user groups it may not be ideal to use the reference only ticket

 approach as this would force the key management service to keep state

 of all issued tickets that are still valid. Examples of information

 forwarded in a typical ticket format are given below:

 Ticket ID: Unique per KMS

 Issuer: Identity of the issuing KMS

 (e.g. kms@operator.example)

 Issued to: Identity of the user that requested the ticket

 (e.g. john@operator.example)

 Recipients: Identities of the intended recipients

 (e.g. hugo@operator.example, emil@operator.example)

 Valid from: Start of validity period

 (e.g. 2010-04-21 14:09)

 Valid to: End of validity period

 (e.g. 2010-04-22 14:09)

 Master keys: TGKs, TEKs, MPK etc.

 Master salt: Master salt

 Policies: Policies for ticket resolving, applications, and key

 derivation etc.

 TPK: Ticket Protection Key, typically encrypted with a KEK.

 KEK ID: Key Encryption Key ID

 MAC: Message Authentication Code

 Tickets may either be transparent, meaning they can be resolved

 without contacting the KMS that generated them; or opaque, meaning

 that the original KMS must be contacted. The ticket information must

 typically be integrity protected and certain fields need

 confidentiality protection, in particular the keys. Other types of

 information may also require confidentiality protection due to

 privacy reasons. The ticket protection is based on a TPK. It may be

 preferable to include several encrypted TPKs (similar to S/MIME) as

N & M Expires December 31, 2009 [Page 35]

Internet-Draft MIKEY-TICKET June 2009

 this allows multiple peers to resolve the ticket.

Appendix B. Default Ticket Type

 The default ticket type SHALL be constructed as an MIKEY message with

 the following payloads.

 Ticket data =

 THDR, [Ti], RAND, IDkms, (IDre),

 Ts, Te, IDi, KEMAC, IDtpk, V

B.1. Components of the Default Ticket Type

 The default ticket type MUST always begin with a Ticket Header

 (THDR). The ticket header is a new payload type, for definition see

 Appendix B.2.

 Ti is the time of issue.

 RAND is used as input to the key derivation function when keys are

 derived from the TPK.

 IDkms contains the identity of the KMS that issued the ticket.

 IDre is the identity of a recipient or a group of recipients that

 should be allowed to resolve the ticket. If there is more than one

 recipient identity, each recipient identity SHOULD be included in a

 separate ID payload.

 Ts is the start of the validity period.

 Te is the end of the validity period.

 IDi contains the identity of the user that requested the ticket.

 KEMAC = E(encr_key, MPK || {TGK|TEK})

 The KEMAC payload SHOULD use the NULL authentication algorithm, as a

 MAC is included in the V payload. The encryption key (encr_key)

 SHALL be derived from the TPK (see [RFC3830] Section 4.1.4 for key

 derivation specification).

 IDtpk contains an identifier that enable the KMS/Responder to retrieve

 the TPK.

 The last payload SHALL be a Verification payload (V) where the

 authentication key (auth_key) is derived from the TPK. The MAC SHALL

N & M Expires December 31, 2009 [Page 36]

Internet-Draft MIKEY-TICKET June 2009

 be calculated over the entire MIKEY message except the MAC field.

 THE MAC SHALL not cover any other fields.

B.2. Ticket Header Payload (THDR)

 The ticket payload contains an indicator of the ticket type provided

 as well as the ticket data.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 ! Next payload ! Ticket type ! Subtype ! Version !

 +-+

 !R!F!G! X ! Issuer ID

 +-+

 Issuer ID (cont) !

 +-+

 * Next payload (8 bits): identifies the payload that is added after

 this payload.

 * Ticket type (8 bits): specifies the ticket type used.

 * Subtype (6 bits): specifies the ticket subtype used.

 * Version (6 bits): specifies the ticket subtype version used.

 * R (1 bit): flag to indicate whether the ticket may be reused and

 therefore may be cached.

 * F (1 bit): flag to indicate whether key forking is used. If this

 flag is set to '1' the MPK SHALL be forked and if the G flag is

 set to '0' the TGKs SHALL also be forked.

 * G (1 bit): flag to indicate whether the TGKs are group keys. The

 G flag SHALL be ignored if the F flag is set to '0'.

 * X (5 bits): Reserved for special uses.

 * Issuer ID (48 bits): a globally unique identifier of the KMS.

N & M Expires December 31, 2009 [Page 37]

Internet-Draft MIKEY-TICKET June 2009

Authors' Addresses

 N N

 Ericsson Research

 SE-164 80 Stockholm

 Sweden

 Phone: +46 10 12 34 567

 Email: n.n@ericsson.com

 M M

 QUALCOMM

 Phone:

 Email: mm@qualcomm.com

N & M Expires December 31, 2009 [Page 38]

