SA WG3 Temporary Document

Page 3
-

3GPP TSG SA WG3 Security — S3#56
S3-091297
6 – 10 July 2009
Seattle, USA
Source:
Ericsson, ST-Ericsson
Title:
GPL client type
Document for:
Discussion and decision
Agenda Item:
6.6.6 GPL
Work Item / Release:
GBAPush enhancements / Rel-9
1
Introduction
At SA3 #56 the following issue was identified and was recorded in the TS clause 4.1:

Each push message contains the parameter "Key Indication ID" to indicate which type of key (Ks_ext_NAF or Ks_int_NAF) the UE should use to decrypt the message in GBA_U case. It may occur that the key indication in the GPL message is not consistent with the GPL client type the UE supported, i.e. the GPL capable client is not in the position of UE that key indication indicates. Thus the UE can’t decrypt the push message to obtain the payload in the message.
Editor’s note:
1. It is FFS that how to solve the problem as above.
2. It is FFS whether it is allowed to use Ks_ext_NAF in GBA_U case.

3. It is FFS that how the NAF knows UE is GPL_U capable or GPL_ME capable, e.g. from GUSS or other meanings.
4. It is FFS whether the key indicator needs to be extended with a second indication. The second indication would inform the UE whether the GPL message is intended for the UICC or for the ME.
This contribution addresses the issues described above.

It should be noted that this contribution is partly dependent (in particular, the proposed modifications to clauses 5.6 “Inbound processing”) on the outcome of the contribution which specifies combined delivery (S3-091308).
2 Analysis
When analysing the issue, an analogy to TS 33.222, which describes a generic security layer for HTTP based applications, may be useful. In TS 33.222, the HTTPS client may reside in the UICC or in the ME or both, independently of each other.
In order to allow the use of GPL with both GBA_ME and GBA_U it seems evident that there needs to be two GPL client types, one residing in the UICC (here called GPL_U) and the other residing in the ME (called GPL_ME). These may exist independently of each other, but may not be used simultaneously with the same GPL-SA.
The issues captured in the editor’s note are analysed in the following.

Issue 1. It is FFS that how to solve the problem as above (i.e., how to identify which key was used to protect the message).
Issue 2. It is FFS whether it is allowed to use Ks_ext_NAF in GBA_U case.

Issue 4. It is FFS whether the key indicator needs to be extended with a second indication. The second indication would inform the UE whether the GPL message is intended for the UICC or for the ME.

It seems clear that using Ks_int_NAF is possible and allowed with GPL_U (case 1), but not with GPL_ME (case 2).

Also it seems clear that using Ks_NAF is possible and allowed with GPL_ME (case 6), but not with GPL_U (case 5).
Case 3 is not allowed either as the UICC external key cannot be used within the UICC.
Case 4 would be possible in principle as GPL_ME would be able get hold of Ks_ext_NAF. However, TS 33.223 seems to rule out this case in clause 4.3.1 General GBA push requirements:

ME based GBA Push shall be used when only ME based NAF keys are needed, i.e. Ks is established in the ME. UICC based GBA Push shall be used only when UE contains a GBA aware UICC (GBA_U), and UICC and ME based NAF keys are needed, i.e. Ks is established in the UICC.

Therefore case 4 is not allowed.
The table below summarizes the possible combinations for using GBA_U and GBA_ME based keys with different GPL client types.
	
	GPL_U client
	GPL_ME client

	GBA_U established keys
	Ks_int_NAF
	Case 1: Allowed
	Case 2: Not allowed

	
	Ks_ext_NAF
	Case 3: Not allowed
	Case 4: Not allowed

	GBA_ME established key
	Ks_NAF
	Case 5: Not allowed
	Case 6: Allowed

The analysis above shows that there is a one-to-one mapping between Ks_int_NAF <-> GPL_U and Ks_NAF <-> GPL_ME. Therefore one bit for the Key Indication seems sufficient, and no other indications are needed. Some rewording of Key Indication would still be beneficial to clarify the handling in TS 33.224, cf. PCR below.

This analysis has solved issues 1, 2 and 4 from the editor’s note. This leaves issue 3 from the editor’s note still unsolved: 3. It is FFS that how the NAF knows UE is GPL_U capable or GPL_ME capable, e.g. from GUSS or other meanings.
From security perspective, decision to use a specific GPL client (GPL_U or GPL_ME) should be based on the required security level. However, the NAF should somehow gain knowledge of the UE's capabilities to support GPL_ME and/or GPL_U. Otherwise the NAF cannot know if it can send GPL messages to the UE (or which type of GPL messages the UE understands).
The GUSS usually includes information on the subscription, and the UICC capabilities. Terminal capabilities are usually not included in the GUSS. One reason for this is that the user may change the terminal without notifying the operator and such information may thus get outdated. However, capabilities of the terminal to support GPL can be indicated to the NAF during GBA-Push UE registration procedure which is specified in Annex B in TS 33.223. Capabilities of the UICC to support GPL_U could be indicated within the GUSS.
3 Conclusion and proposal

The analysis above has shown that:
· Both ME and UICC may (independently of each other) host a GPL client. These applications are said to be of type GPL_U and GPL_ME respectively.
· ME and UICC capability to support GPL can be indicated in GUSS (for GPL_U) and in the GBA push registration (for GPL_ME). A separate CR to this meeting (S3-091307) proposes to add GPL capabilities of the ME to GBA push registration. The update of GUSS with GPL capabilities of the UICC is assumed to be done in stage 3 specifications (i.e. TS 29.109).
· Key indication bit does not need to be extended as it can be used to indicate to which GPL client the GPL message is intended for.
· Use of Ks_ext_NAF is not needed in the context of GPL.
The PCR below proposes to implement these in TS 33.224.
4
pCR to TS 33.224

*** BEGIN CHANGES ***
3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [2], TS 33.220 [1] and the following apply.

GPL_ME
GPL client which is residing in the ME.
GPL_U
GPL client residing in the UICC.
SN_h
The highest received sequence number received in an integrity protected GPL message used for replay protection.

SN_s
A counter used to generate sequence numbers for outgoing messages.

Editor's Note:
Further definitions to be filled in, if needed.

*** NEXT CHANGES ***
4.1
Session concept

It is reasonable to expect that there will exist NAF based services that rely on some form of per terminal session concept, and which would benefit from pushing more than one message based on the same security association. An example could be a virus-signature update server. It is possible that the virus signatures are delivered in multiple pushed messages (for size limitation reasons of the underlying push transport mechanism), and it would then be inefficient to establish a new security association for each message.
This requires that the generic secure push layer provides replay protection in addition to integrity protection (and possibly confidentiality protection). Figure 4.1-1 depicts the usage scenario, where a secure session with three push messages are delivered from the NAF to the UE after establishing the security association to protect them. Note that steps 1 and 2 in Figure 4.1-1 are out of scope for this specification. One way to achieve steps 1 and 2 is to use TS 33.223 [3].

[image: image1.wmf]

Push message 3

UE

NAF

BSF

(1) Establishm

ent of Ks

(2) Establishment of Ks_(ext/int)_NAF

Security

Associa

tion with

keys derived from

Ks(_

ext/int)_NAF

Security

Association with

keys derived from

Ks(_ext/int)_NAF

Push message 2

Push message 1

Figure 4.1-1: Example of a secure session
If GPL was to provide a complete session concept including reliability of delivered messages using timeouts/acknowledges and re-transmissions, re-establishment of the sessions, re-ordering of messages etc., GPL would be unnecessarily complex and the size of the GPL messages would be too large for many applications (e.g., when the underlying transport is SMS). Therefore GPL shall only provide sufficient session state to ensure that the security of multiple GPL messages is not compromised. GPL shall hence provide the security services confidentiality, integrity protection and replay protection for a GPL session.

If a more complex session concept is required by the application, where the session concept includes services other than security services, then, e.g., WSP [10] could be applied on top of GPL, but this is out of scope for this specification.

Even though it shall be possible to have a secure one-way channel from the push NAF to the terminal (for broadcast only terminals) a return channel may be present. An example of this is OMA's location based services, where a server requests location information from a terminal, which responds with its location information. This request/response exchange may be repeated every ten minutes. It is prudent to require that it shall be possible to secure also such a return channel. The security of the return channel can conveniently be based on the same security association as the one-way channel.

*** NEXT CHANGE ***
4.x
GPL client types

To utilise GPL as described in this document the UE shall be equipped with a GPL client implementing the particular features of GBApush as specified in TS 33.223 [3].

The UE hosts the GPL client. The GPL client may reside in the ME (called GPL_ME) or in the UICC (called GPL_U) or both ME and UICC might host a GPL client independently of each other. When the GPL client to be used is in the ME, Ks_NAF shall be used as the shared master key between the UE and the NAF. When the GPL client to be used is located in the UICC, Ks_int_NAF shall be used as the shared master key between the UE and the NAF. Use of Ks_ext_NAF is deemed unnecessary due to requirements in TS 33.223 [3]. Therefore its use as shared master key for GPL is not allowed.
The NAF should somehow gain knowledge of UE’s capabilities to support GPL_ME and/or GPL_U. Otherwise the NAF cannot know if it can send GPL messages to the UE or which type of GPL messages the UE understands.

The capabilities of the ME to support GPL shall be indicated to the NAF during GBA-Push UE registration procedure which is specified in Annex B in TS 33.223 [3]. The capabilities of the UICC to support GPL_U should be indicated to the NAF within the USS.
*** NEXT CHANGE ***
5.5.1
Data Unit Transfer Format

A GPL message is laid out as shown in Figure 5.5.1-1. The GPL message encapsulates an application message in the GPL payload, and protects the message.

[image: image2.emf]GPL Payload

MAC

Padding

SAID

SAID length

Ver

SN (cont.)

0 1 2 3 4 5 6 7

SN

Cipher suite

Octet 1

Octet 2

Octet 3

GPL client

type

Reserved

Figure 5.5.1-1: Format of a GPL message
Each field is encoded in network byte order (i.e., big endian) and with the most significant bit being bit number zero. All fields are octet aligned. The fields of the message are the following.
Ver (4 bits): The version of the GPL protocol encoded as an integer. The version of any message conforming to this specification shall use the value 1, i.e., the first nibble of the message is 0x1.
GPL client type (1 bit): It indicates which type of GPL client and NAF-key shall be used. When GPL client type is equal to 1, it means that GPL_ME with Ks_NAF shall be used. When GPL client type is equal to 0, it means GPL_ME with Ks_int_NAF shall be used. Use of Ks_ext_NAF is not allowed according to TS 33.223 [3].
Reserved (3 bits): These bits are reserved for future versions of this specification. Implementations conforming to this specification shall set these bits to zero before transmitting a message, and the receiver of the message shall ignore these bits.

SN (16 bits): The sequence number used for synchronizing the encryption and providing replay-protection.

Cipher suite (8 bits): The cipher suite used for protection of the message. The cipher suite consists of one integrity protection algorithm, one encryption algorithm, and one key derivation algorithm.

SAID length (8 bits): The length of the SAID in number of octets.
SAID (variable length): The identity of the GPL security association used for protection of the message.
MAC (variable length): The message authentication code providing integrity protection of the message. The length of this field is determined by the size of the output of the integrity protection algorithm used, but shall be a multiple of 8 bits.

GPL Payload (variable length): The actual application message that is protected. The length of the message shall be a multiple of 8 bits, and must be padded by the application unless this condition is met. Any such padding is up to the application and is out of scope for this specification.

Padding (variable length): Padding as required by the encryption transform. Exactly how the padding is generated, verified and removed is defined by each encryption transform. In case the encryption transform does not require padding, this field is not present.

*** NEXT CHANGE ***
Note: The changes in this clause are dependent on approval of the contribution on Combined delivery (S3-091308). The changes are thus proposed on top of changes proposed in S3-091308 for clause 5.6. Changes proposed in the present contribution are marked with user “GPL_U” and they are marked in yellow.
5.6
Inbound processing

5.6.1
Distinction of GPL messages destined to the ME or UICC

In case the GPL message is received in the ME, the following processing steps shall be taken:
-
If the GPL client type indication indicates that the GPL message is destined to the ME, the GPL module shall follow the steps in 5.6.2.
-
If the GPL client type indication indicates that the GPL message is destined to the UICC and GPI indication indicates that is this is a combined delivery, the ME shall process the GPI message as defined in TS 33.223 [3] before forwarding the GPL message to the UICC.
-
Otherwise, if the GPL client type indication indicates that the GPL message is destined to the UICC, the ME shall forward the GPL message to the UICC.
In case the GPL message is received in the UICC, the following processing steps shall be taken:

-
If the GPL client type indication indicates that the GPL message is destined to the UICC, the UICC shall process the GPL message as defined in clause 5.6.2. In case of combined delivery the UICC shall skip the GPI message processing.
-
If the GPL client type indication indicates that the GPL message is destined to the ME, appropriate error message is returned to the ME.
5.6.2
Processing steps
Before processing of any inbound GPL message, the GPL module initiates the GPL-SA. The initialization consists of the following steps:

1. Set the highest received sequence number SN_h equal to zero.

2. Set the master key equal to the master key received from the SA establishment procedure. In case of combined delivery, this step shall be performed after GPI message processing (step 3) below.
When a GPL message arrives at the receiver's GPL module, the following processing steps shall be taken:

1. Verify that the version field in the GPL header is equal to 1. If this is not the case the message shall be discarded and the processing shall stop.

2. Verify that the cipher-suite indicated in the GPL-message is supported. If this is not the case the message shall be discarded and the processing shall stop.

3. In case of GPI indication indicates combined delivery, process the GPI message as defined in TS 33.223 [3]. Otherwise, go to step 4.
NOTE x:
GBA-Push TS 33.223 [3] allows that GPI message is retransmitted several times including cases when it is sent every time a payload is pushed to the UE. To handle retransmissions efficiently TS 33.223 [3] defines a mechanism how the UE is able to only invoke a UICC application after checking that the GPI does not correspond to an already existing NAF SA.
NOTE y:
As defined in clause 5.6.1, GPI message processing is skipped in the UICC if a GPL message with combined delivery is received in the UICC.
4. Retrieve the GPL-SA which corresponds to the SAID in the GPL header. If no GPL-SA matching the SAID is found, the message shall be discarded and the processing shall stop.

5. Verify that the sequence number carried in the SN field has not yet been received. One way of accomplishing this is to verify that the sequence number in the SN field is larger than the currently highest received sequence number SN_h. If this is not the case, the message shall be discarded and the processing shall stop. When SN_h is equal to 0xffff, all messages with the given SAID shall be discarded and the processing shall stop. It is not mandatory to implement this particular replay mechanism (which is not robust against message reordering), but the receiver's GPL module shall verify that the sequence number in the SN field has not been received before in a valid message.

6. Compute a MAC using the integrity algorithm indicated by the cipher suite. The MAC is computed over the entire GPL-message, and during the computation, the MAC field shall be treated as containing all zeros. After MAC is computed, it shall be compared to the MAC carried in the MAC field. If the two MACs differ, the message shall be discarded and the processing shall stop.

7. Update the replay protection state. In case the mechanism described in step 3 is used, the state-variable SN_h is set equal to the SN read from the GPL header.

8. Decrypt the message using the decryption transform indicated by the cipher suite field and remove possible padding from the message.

9. Return the payload of the GPL message (i.e., what remains after removing the GPL header and possible padding) to the transport mechanism the message was received from.

If the processing is stopped by the GPL module before the full processing is complete an error indication may be returned from the GPL module.

*** END OF CHANGES ***

3GPP

SA WG3 TD

_1287228251.vsd
GPL Payload

MAC

Padding

SAID

SAID length

Ver

SN (cont.)

0

1

2

3

4

5

6

7

SN

Cipher suite

Octet 1

Octet 2

Octet 3

Key Indication ID

Reserved

_1307365690.vsd
GPL Payload

MAC

Padding

SAID

SAID length

Ver

SN (cont.)

0

1

2

3

4

5

6

7

SN

Cipher suite

Octet 1

Octet 2

Octet 3

GPL client type

Reserved

_1268674157.doc

Push message 1

Push message 2

Push message 3

Security Association with keys derived from Ks(_ext/int)_NAF

Security Association with keys derived from Ks(_ext/int)_NAF

(2) Establishment of Ks_(ext/int)_NAF

(1) Establishment of Ks

BSF

NAF

UE

