3GPP TSG-SA3 (Security)
S3-091048
Meeting SA3#55, 11-15 May 2009, Shanghai, China
revision of S3-090935
Source:
ZTE Corporation
Title:
pCR on solution of forking for “Otway-Rees” based protocol
Document for:
Discussion & Approval
Agenda Item:
IMS Media security TR 33.828
1. Introduction
Forking scenarios include two situations:

1. A call is forked to different terminals belonging to a single user.

2. A call is forked to different users within a group based on the user specific policy registered in advance.

Based on the requirement of forking, all terminating terminals should use unique keys, and only the terminal to which the call is finally established must get hold of the media encryption key, while other terminals must not be able to aware of the key.
The proposed way to generate the media keys in forking senarios is straightforward and only makes use of a key derivation function modifying a base key, which is generated by the KMS, with the help of a random value generated by each terminal on the terminating side.
This contribution proposes a solution for forking to “Otway-Rees” based key management protocol in TR 33.828.
2. pCR to TR33.828 <v1.2.0>
7.4.3.2
Forking

KMS can distribute different master keys to each forking end point, so the master keys used by the answering endpoint cannot be known by other forking end points. Thus the solution could support forking case. The detail is FFS.
Forking scenarios include two situations:

1. A call is forked to different terminals belonging to a single user.

2. A call is forked to different users within a group based on the user specific policy registered in advance.

In forking scenarios, all terminating terminals should use unique keys, and only the terminal to which the call is finally established must get hold of the media encryption key, while other terminals must not be able to aware of the key. The proposed way to generate the media keys in forking senarios is straightforward. It makes use of a key derivation function modifying a base key generated by the KMS with the help of a random value, which is generated by each terminal on the terminating side.
The following Figure 1 depictes the procedures for forking key generation. UE-B is assumed to be the terminal that finally answers the call, while UE-C is any other forked terminal.

[image: image1.emf]UE-A UE-B KMS

1b. Bootstrap Kb

1a. Bootstrap Ka

2b. INVITE

ID-A, ID-G,

Ea(Ra, ID-A, ID-G)

4b.Request

ID-A, ID-B,

 Ea(Ra, ID-A, ID-G),

Eb(Rb, ID-A, ID-B)

5. Check ID-A

，

Check whether

ID-B,ID-C mapping with ID-G.

Generate the master key K

6. Response

Ea(Ra,Rb,K),

Eb(K)

8. 200 OK

Ea(Ra,

Rb

,K)

10. Decrypt to get K

and Rb

，

derive

unique media key

Ka-b=KDF(K, Rb)

2a.Generate

random Ra

4a.Generate

random Rb

Secure Media

7. Decrypt to get K

，

derive unique media key

Ka-b=KDF(K, Rb)

IMS UE-C

3. INVITE

ID-A, ID-G,

Ea(Ra, ID-A, ID-G)

3. INVITE

ID-A, ID-G,

Ea(Ra, ID-A, ID-G)

4a.Generate

random Rc

4b.Request

ID-A, ID-C,

 Ea(Ra, ID-A, ID-G),

Ec(Rc, ID-A, ID-C)

6. Response

Ea(Ra,Rc,K),

Ec(K)

7. Decrypt to get K

，

derive unique media key

Ka-c=KDF(K, Rc)

9a. 200 OK

Ea(Ra,

Rb

,K)

9b. CANCEL

1c. Bootstrap Kc

Figure 1 Signaling diagram for parallel forking

Assuming that ID-G is a collective identity for all forked terminals UE-B and UE-C, and UE-B is the terminal, which finally ansers the call.

1a. UE-A bootstraps with KMS to establish a shared key Ka.

1b. UE-B bootstraps with KMS to establish a shared key Kb.
1c. UE-C bootstraps with KMS to establish a shared key Kc.

NOTE: Ka/Kb may be established through GBA mechanism where KMS is a NAF or through other methods.
2a. UE-A generates a random Ra.

2b. UE-A sends an INVITE message which includes the following parameters: plain identity of UE-A ID-A, plain identity of ID-G and Ea(Ra, ID-A, ID-G)(encrypted Ra, ID-A and ID-G with key Ka).
3. IMS network forwards INVITE message to corresponding UEs, i.e. UE-B and UE-C parallely or sequently based on the user specific forking policy. Note that in Figure 1, parallel forking is showed, as for sequent forking, only the step sequence is changed, but no main difference occurs.

4a. After receiving the INVITE message, each UE generates a random number, i.e. UE-B generates Rb, UE-C generates Rc.

4b. Each UE sends a request message to KMS. UE-B sends a request message including plain ID-A, ID-B, Ea(Ra, ID-A, ID-G) and Eb(Rb, ID-A, ID-B)(encrypted Rb, ID-A and ID-B with key Kb), and UE-C sends a request message including plain ID-A, ID-C, Ea(Ra, ID-A, ID-G) and Ec(Rc, ID-A, ID-C)(encrypted Rc, ID-A and ID-C with key Kc).

5.KMS uses the plain ID-A, plain ID-B and plain ID-C respectively to retrieve the shared key Ka, Kb and Kc, then use these keys respectively to get decrypted ID-A and ID-G from Ea(Ra, ID-A, ID-G), ID-A and ID-B from Eb(Rb, ID-A, ID-B) and ID-A and ID-C from Ec(Rc, ID-A, ID-C), and KMS compares the decrypted ID-A and ID-G with plain ID-A, ID-B and plain ID-A, ID-C to ensure that they have the same ID-A, and ID-B, ID-C machtes the ID-G. Then KMS generates the master key K. Note that, for the same originating UE, KMS will generate only one master key for all recepting UEs.
Editor’s note: More information is needed to clarify how different messages towards the KMS are correlated.
6. For UE-B, the KMS encrypts random number Ra, Rb and the master key K using Ka to get Ea(Ra, Rb, K), and encrypts the master key K using Kb to get Eb(K). For UE-C, the KMS encrypts random number Ra, Rc and the master key K using Ka to get Ea(Ra, Rc, K), and encrypts the master key K using Kc to get Ec(K).Then KMS sends the Ea(Ra, Rb, K) and Eb(K) to UE-B, and sends Ea(Ra, Rc, K) and Ec(K) to the UE-C in the response messages.

7. UE-B and UE-C get K by respectively decrypting Eb(K) using Kb and decrypting Ec(K) using Kc then derive the unique media key by performing a key derivation function on the master key K and the random number that is generated by each terminal, i.e. for UE-B, Ka-b= KDF(K, Rb) is derived and for UE-C Ka-c=KDF(K,Rc) is derived uniquely.
8. UE-B sends the 200OK response message which includes the Ea(Ra, Rb, K) to IMS network.

9a. IMS network forwards the 200OK response message to UE-A.

9b. As the call is established between UE-A and UE-B, IMS network sends CANCEL message to other terminals, i.e. UE-C in Figure 1.

10. UE-A gets K and Rb by decrypting Ea(Ra, Rb, K) using Ka, it then derives the meida key using KDF from the master key K and the random number Rb, i.e. Ka-b=KDF(K,Rb).

Now UE-A and UE-B share the same unique media key Ka-b that is used further to protect the media between them.
_1302932412.vsd
�

�

�

�

�

UE-A

序列�

UE-B

KMS

1b. Bootstrap Kb

1a. Bootstrap Ka

2b. INVITE

ID-A, ID-G,
Ea(Ra, ID-A, ID-G)

4b.Request

ID-A, ID-B,
 Ea(Ra, ID-A, ID-G),
Eb(Rb, ID-A, ID-B)

5. Check ID-A，Check whether ID-B,ID-C mapping with ID-G. Generate the master key K

6. Response

Ea(Ra,Rb,K),
Eb(K)

8. 200 OK

Ea(Ra,Rb,K)

Secure Media

2a.Generate random Ra

4a.Generate random Rb

7. Decrypt to get K，derive unique media key
Ka-b=KDF(K, Rb)

10. Decrypt to get K and Rb，derive unique media key Ka-b=KDF(K, Rb)

IMS

UE-C

3. INVITE

ID-A, ID-G,
Ea(Ra, ID-A, ID-G)

3. INVITE

ID-A, ID-G,
Ea(Ra, ID-A, ID-G)

4a.Generate random Rc

4b.Request

ID-A, ID-C,
 Ea(Ra, ID-A, ID-G),
Ec(Rc, ID-A, ID-C)

6. Response

Ea(Ra,Rc,K),
Ec(K)

7. Decrypt to get K，derive unique media key
Ka-c=KDF(K, Rc)

9a. 200 OK

Ea(Ra,Rb,K)

9b. CANCEL

1c. Bootstrap Kc

