Error! No text of specified style in document.
1
Error! No text of specified style in document.

pCR S3-090074

*** Start of change ***
6.1.4.4
Session and Forking Keys
6.1.4.4.1
Introduction

One issue with key management systems based on key management services from a central server may be load on the central server. One way to limit the load would be to allow derivation of several independent session keys from one ticket and in this way reduce the number of ticket requests received by the KMS. An efficient procedure to derive such session keys is presented below. Another issue is that when a call is forked to several terminating devices, all the terminating devices should use unique keys and not have access to the keys derived/used by other endpoints. A procedure to ensure that this requirement is fulfilled and which in general enforces that all endpoints receiving a given ticket will use different keys is also described.

We use the following notation:

KT_A

The master key in a ticket generated on request from A

KF_AB

Forking Key for user B, i.e. a key unique for user B based on KT_A
KS_AB

Session Key for use between user A and user B
KDF_S (K, Mod)
Key derivation function used to derive a session key from a key K and a modifier Mod

KDF_F (K, Mod)
Key derivation function used to derive a forking key from a key K and a modifier Mod

Mod_A

A random modifier generated by the initiating party.

Mod B

A random modifier used at the receiving end.

The methods and procedures described below are mainly aimed for systems using protected tickets. However, the principle behind the procedures for how keys should be generated in forking scenarios is also valid when unprotected tickets are used.

6.1.4.4.2
Session Keys

The proposed way to generate session keys is very simple and only makes use of a key derivation function modifying a base key with help of a random value, Mod_A, generated by the initiating party.

KS_AB = KDF_S (KF_AB, Mod_A)

or if no forking key generation is performed, then

KS_AB = KDF_S (KT_A, Mod_A)

The random value, Mod_A, is transported to the receiving end together with the ticket to allow the session key to be derived there. The key derivations at the receiving end could be performed by either the KMS or the terminal. If the key derivation is performed by the receiving terminal, then only one access from the terminal to the KMS is needed. If the key derivation is performed by the KMS, then the master key in the ticket (KT_A) would never be directly exposed to a network element or terminal. This would improve the security of this key, but of course the receiving terminal would have to call the KMS for every session. The preferred solution varies depending on the required security level.

6.1..4.4.3
Forking Keys
Ticket policies used will determine rules how and when secure connections can be established in forking scenarios. If the ticket indicates a specific user as recipient, then only that user can resolve the ticket and establish a secure call and thus forking will only work with terminals belonging to that user (see also 6.1.4.2). The other extreme is that the ticket recipient is indicated as "any user" and then there would be no restrictions in how forking may happen.
An
approach similar to the one used to generate session keys can be taken to generate different keys for the different endpoints in a forking scenario. For each endpoint, the master key in the ticket is modified by performing a key derivation function on the media master key and a modifying value, Mod_B.
KF_AB = KDF_F (KT_A, Mod_B)

A similar idea is presented in the SDES solution. To have strong assurance that the generated keys are unique per terminal, the key derivation function should be performed by the KMS.

It should be noted that even if a terminal isn't allowed to perform modifying key derivation by itself, the Mod_B parameter used in the modification can be reused for all tickets that the terminal receives during the lifetime of its current security association with the KMS, e.g if GBA is used to set up this security association then the Mod_B could be reused for the lifetime of the UE's GBA base key Ks. This would allow receiving terminals to return the modifying value before getting a response from the KMS and hence ensure that no extra delays are introduced.
6.1.4.4.4
Combined session and forking key generation

The combined procedures for session key and forking key generation are depicted in Figure XX below. Note that the figure does not indicate how security is implemented in the communication between the terminals and the KMS.

[image: image1]
Figure xx. Session and forking key signalling

6.1.4.5
Unprotected tickets
By using the MIKEY-NULL mode defined in [19], the ticket based solution described here allows a mode similar to SDES, i.e. keys and other set-up information are carried in plaintext in the ticket. This mode is called the unprotected ticket mode. The security properties of this mode are identical to those of SDES: It requires secure transport between all SIP proxies and exposes plaintext keys to all SIP proxies. It also relies on an external mechanism (such as IPSec or TLS) to protect signalling between the UE and the P-CSCF. This mode also provides similar efficiency to SDES, as the communicating terminals do not need to contact the KMS. However, interoperation with current or future terminals implementing SDES according to RFC 4568 will not be possible. This lack of interoperability can be accommodated, however, by a function at the network edge to translate an unprotected ticket setting up SRTP into SDES. Of course, none of the security services offered by a protected ticket will be available, but on the other hand it also cannot be expected that standard SDES equipment supports such services.

6.1.4.6
Ticket Replay Protection

An attacker of a TBS may try to replay a ticket and in this way be able to find an attack which would give him access to plaintext and/or modify protected media content. Thus a TBS must implement mechanisms rendering such attacks useless. The following mechanisms can be used to prevent replay of tickets:
1.
Ticket expiry time. Short life-time tickets can be used to limit the possibilities for replay but will itself not be sufficient to stop attacks. An attacker can e.g. replay a ticket against a device associated with the attacker himself and which has a fast response. Such a replay attack may help in retrieving the target media plaintext if the media protection key generated will be the same as that used for the target media.
2.
Tickets could have unique recipients. This would stop an attacker from using other devices than the intended receiver's device as a tool in the replay attack. Still additional means would be needed to stop replay, e.g. a replay counter or some similar mechanism.

3.
Keys generated from received tickets can be randomly modified. The way that forking keys are generated is an example of how this can be performed. If the recipient of a ticket always submits it to the KMS to obtain a forking key, then this modification of the key will be random and not controllable by the attacker as a new forking key will be generated each time.

4.
Receivers could keep a record of received tickets for the ticket's remaining lifetime. This would not stop attacks where replay is initiated on another device.

The conclusion from the above is that having recipient unique tickets and a replay counter is one way of achieving replay protection. Another way is to have the receiving end modify the tickets master key in a random way before it is used for media protection. The latter method works even if the tickets don't specify a unique recipient.
*** Start of next change ***
6.1.5.1.5
Scalability, Cost and Performance

Obviously, the unprotected ticket version of TBS complies very well with these requirements, as it is a simple, straight forward approach without the need of additional network elements, expensive computations, multiple roundtrips etc.

TBS with a KMS offering use of protected tickets will require a KMS supporting all its users. Its size/performance grows proportional to the number of users. However, there is no technical challenge to implement a KMS supporting all IMS users of an operator as can be seen from specifications of and implementations of other nodes in cellular and IMS systems. The only issue might be cost, otherwise, the KMS functionality is simple and likely to have small and efficient implementation, it does not have to store any session state.
Note that TBS offers an opportunity to have some groups rely on protected tickets while other groups rely on unprotected tickets together with trust in the IMS signalling and infrastructure security. Other groups may want to implement the KMS as an external trust anchor independent of IMS. These options allow better operator control of the growth in demand on the KMS.
.

*** Start of next change ***
6.1.5.2.2
Forking/Retargeting

IETF-requirements

R-FORK-RETARGET: The media security key management protocol MUST securely support forking and retargeting when all endpoints are willing to use SRTP without causing the call setup to fail. This requirement means the endpoints that did not answer the call MUST NOT learn the SRTP keys (in either direction) used by the answering endpoint.

R-DISTINCT:
The media security key management protocol MUST be capable of creating distinct, independent cryptographic contexts for each endpoint in a forked session.

How TBS can create different keys in a forking scenario is explained in clause 6.1.4.4 If unprotected tickets are used the key modification can be performed by the receiving client in a corresponding way.

In TBS with protected tickets, a sender may authorize the receivers to receive the key from the KMS. For this, he can provide e.g. a list of authorized receivers. How tickets are bound to different receivers or groups of receivers is described in clause 6.1.4.2. The impacts on forking are described 6.1.4.4.3. The procedures for generating forking keys described in 6.1.4.4 resolve this problem.

R-HERFP:
The media security key management protocol MUST function securely even in the presence of HERFP behavior.

HERFP behaviour is that in a forked call, rejections of the INVITE sent by different endpoints may be terminated at the forking proxy and never reach the caller. A solution to fulfil this requirement can be accommodated by TBS by not allowing an answerer to send indications about key exchange failures in order to let the offerer "make another try".

Another IETF-requirement, mentioned under "media considerations", is also relevant with respect to forking, in case forking leads to a multiparty session:

R-ASSOC:
The media security key management protocol SHOULD include a mechanism for associating key management messages with both the signaling traffic that initiated the session and with protected media traffic. Allowing such an association also allows the SDP offerer to avoid performing CPU-consuming operations (e.g., Diffie-Hellman or public key operations) with attackers that have not seen the signaling messages.

With TBS, keys are exchanged in the signalling messages, so association of key management to signalling is clear. Association of key management to media can e.g. be achieved through the use of the optional MKI field in an SRTP packet. A suitable value for this field can be formed by e.g. a hash of a concatenation of the issuer key identifier (as described in 6.1.4.1) with the Mod_B value (described in 6.1.4.4). This value will be unique for each recipient and easily computed by both participants.

Editor's Note: It has to be clarified whether this is compatible with the standard use of SRTP.
Finally, the following IETF requirement refers to forking/retargeting:

R-BEST-SECURE:
Even when some end points of a forked or retargeted call are incapable of using SRTP, a solution MUST be described which allows the establishment of SRTP associations with SRTP-capable endpoints and / or RTP associations with non-SRTP-capable endpoints.

A simple solution to this is that the initiator offers two media streams, one protected and one unprotected. Allowing unencrypted media is of course always a security issue as the user has to be warned if media is not protected.
*** End of change ***

Secure media

Generate random Mod_A�

KS_AB = KDF_S(KF_AB, Mod_A)

KF_AB = KDF_F(KT_A, Mod_B)�KS_AB = KDF_S(KF_AB, Mod_A)

 Generate random Mod_B�KF_AB = KDF_F(KT_A, Mod_B)

 Mod_B

 KF_AB, Mod_B

 Ticket

INVITE(…, Ticket, Mod_A, …)

Ticket(…, KT_A, ...); KT_A

Ticket request

KMS

User B

User A

3GPP

