Page 1

3GPP TSG SA WG3 Security - S3#52
(
S3-080906
Sophia-Antipolis, France 23-27 June 2008

	CR-Form-v9.4

	CHANGE REQUEST

	

	(

	33.401
	CR
	0010
	(

rev
	1
	(

Current version:
	8.0.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	X
	Radio Access Network
	X
	Core Network
	X

	

	Title:
(

	KeNB forward security simplification

	
	

	Source to WG:
(

	NTT DOCOMO, Qualcomm, Nokia Corporation, Nokia Siemens Networks

	Source to TSG:
(

	S3

	
	

	Work item code:
(

	SAES
	
	Date: (

	27/06/2008

	
	
	
	
	

	Category:
(

	C
	
	Release: (

	Rel-8

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)

	
	

	Reason for change:
(

	The current key management solution for KeNB handling is too complex and also distinguishes the different handover types for the UE.

	
	

	Summary of change:
(

	This CR simplifies the procedure considerably and also makes the handover type invisible for the UE as requested by RAN2.

	
	

	Consequences if
(

not approved:
	Complexity remains and some problems remain unresolved.

	
	

	Clauses affected:
(

	Sections 7.2.8.1, 7.2.8.2, 7.2.8.3, 7.2.8.4, 7.2.3, A.2 – A.10.

	
	

	
	Y
	N
	
	

	Other specs
(

	x
	
	 Other core specifications
(

	36.331, 36.413

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	Other specs affected:

TS 36.331 (R2 RRC): including the NCC into the HO Command. Including the index increase indicator and NCC in the context to target eNBs. RRC Connection re-establishment message during RLF needs to indicate the NCC as in the HO Command.

TS 36.413 (R3 S1AP): sending the fresh NH and NCC in the path switch ack message to the target eNB.

================== START OF CHANGE 1 ==================
7.2.8
Key handling in handover

7.2.8.1
General

AS level (RRC, UP) algorithms can be changed during inter-eNB handovers, ECM-IDLE to ECM-CONNECTED state transitions, EMM-DEREGISTERED to EMM-REGISTERED/ECM-CONNECTED state transitions.
On initial context setup (e.g. attach, transition to ECM-CONNECTED, or intersystem handover to E-UTRAN), the MME shall derive key KeNB[0] from KASME and the current NAS uplink COUNT. The MME shall also calculate a next key KeNB[1] = KDF(KeNB[0], KASME). The MME shall communicate these two key values along with the corresponding indexes (0 and 1) to the Serving eNB. See figure 7.2.8.3-1.
RRC and UP keys are refreshed during eNB handovers. Source eNB creates KeNB* key from the current KeNB key if the index does not increase from the previous handover, or from the Next Hop (NH) parameter if the index increases from the previous handover (i.e. fresh NH). If the NH is used, the current KeNB is deleted. The target physical cell ID (PCI) of the target cell is bound to the KeNB* using the KDF as specified in Annex A. Target eNB creates new KeNB based on KeNB* and C-RNTI using the KDF as specified in Annex A if the index from the previous handover increases. Otherwise the target eNB uses the KeNB* as the new KeNB. UE and target eNB derive RRC and UP keys from the new KeNB.
The target eNB algorithm identifiers and key purpose identifiers are used in the AS level (RRC and UP) key derivations as input parameters with KeNB to the key derivation function KDF (see Annex A).

At an eNB handover with MME relocation, the KeNB is chained in the same way as if it was a regular intra-MME eNB handover. However, there is the possibility that the source MME and the target MME do not support the same set of NAS algorithms or have different priorities regarding the use of NAS algorithms. In this case, the target MME re-derives the NAS keys from KASME using the NAS algorithm identities as input to the NAS key derivation functions (see Annex A) and sends NAS SMC. All inputs, in particular the KASME, will be the same in the re-derivation except for the NAS algorithm identity.

It is essential that the NAS sequence numbers are not reset to the start values unless a new KASME is taken into use. This prevents that, in the case a UE moves back and forth between two MMEs the same NAS keys will be re-derived time and time again resulting in key stream re-use. Since KASME only changes when a new AKA has been run successfully, the NAS sequence numbers shall only be reset to the start value when there is a new AKA run. In case the target MME decides to use NAS algorithms different from the ones used by the source MME, a NAS SMC including KSIASME (new or current value depending on whether AKA was run or not) shall be sent from the MME to the UE.
 This NAS Key and algorithm handling also applies to other MME changes e.g. TAU with MME changes.

The procedures for key derivations during handovers are described in the sections 7.2.8.3 below. The key management common to these handovers are described with key management handling blocks described in section 7.2.8.2.

NOTE:
It is per operator's policy how to configure selection of handover types. Depending on an operator's security requirements, the operator can decide whether to have S1 1-hop secure handovers for a particular eNB according to its security characteristics.
Editors Note: Some of the procedures in clauses 7.2.8.2 to 7.2.8.4 may have a complex handling; further CRs to simplify these procedures may be necessary.

7.2.8.2
Key management handling blocks

7.2.8.2.1
Next Hop (NH) handling blocks (Proc-NH0, Proc-NH1, and Proc-NH2)

Proc-NH0 – create initial NH value from KASME and fresh KeNB – run in UE and MME
	Proc-NH0:

NCC = 0; NH = KDF(KASME, KeNB), see S6 in Annex A.6
KeNB* = KeNB

Proc-NH1 – synchronize NH (NH*) – run in UE and MME
	Proc-NH1:

Temp-NCC = NCC; NH* = NH
In UE repeatedly update NH if NH needs to be updated (e.g. Temp-NCC < Received-NCC). UE shall try at least MIN-NH-UPDATE times before giving up with an error:
NH* = KDF(KASME, NH*), see S4 in Annex A.4
++Temp-NCC

The variable MIN-NH-UPDATE shall be at least 0x04. This means that the loop shall be run in the UE at least MIN-NH-UPDATE times before giving up with an error.

Proc-NH2 – update current NH
	Proc-NH2:

NH = NH*; NCC = Temp-NCC
Delete NH*; Delete Temp-NCC

7.2.8.2.2
KeNB key handling blocks (Proc-KeNB1 and Proc-KeNB2)
Proc-KeNB1 – create target eNB key (KeNB*) – run in UE, eNB, and MME
	Proc-KeNB1:
If index increases from previous HO:

KeNB = NH*
KeNB* = KDF(KeNB, PCI), see S5 in Annex A.5

Proc-KeNB2 – create new KeNB, RRC/UP keys, and delete temporary KeNB key – run in UE and eNB
	Proc-KeNB2:
If index increases from previous HO:

KeNB = KeNB*
If index does not increase from previous HO:

KeNB = KDF(KeNB*, target C-RNTI); See S6 in Annex A.6
Derive RRC and UP keys from KeNB; See S8 in Annex A.8
Delete KeNB*

7.2.8.3
KeNB and Next Hop (NH) parameter handling during initial NAS messages
Fig. 7.2.8.3-1 describes the NH parameter creation during initial attachment, intersystem mobility, and ECM-IDLE to ECM-CONNECTED state transition. Whenever a fresh KeNB is calculated from the KASME, the NH parameter is also calculated from the KASME and the fresh KeNB. The yellow key handling boxes are defined in section 7.2.8.2.

[image: image1.emf]UE

Serving

eNB

MME

2. S1-AP Initial Context Setup Reqeust (K

eNB

. NCC, NH)

1.NH01.NH0

3.KeNB23.KeNB2

Figure 7.2.8.3-1 Initialization of NH key derivation parameter and KeNB in UE and MME and transfer to eNB
1. Both UE and MME run Proc-NH0

2. MME provides KeNB, NCC, and NH in the AS security context for the serving. Serving eNB stores NCC and NH as NH* and KeNB as KeNB*.
3. Both UE and serving eNB run Proc-KeNB2
7.2.8.4

KeNB, Next Hop (NH), and NH Chaining Count (NCC) parameter handling during handovers
The mechanism is described in Figure 7.2.8.4-1 and includes a NH parameter from MME to the target eNB within the path switch acknowledgement message. Feeding KASME with the previous NH and incremented NCC to the NH KDF in the MME results in a cryptographically separate parameter for the target eNB compared to the parameter in the source eNB.

NOTE 1: Because the path switch message is transmitted after the radio link handover, it can only be used to provide keying material for the next handover procedure and target eNB. Thus, key separation happens only after two hops because the source eNB knows the target eNB keys (the fresh key derivation parameter, NH, for target eNB is incorporated in the key derivations by the source eNB).

[image: image2.emf]1. Measurement Reports

3. Handover Request

(NCC, K

eNB

*, index increase

indicator)

4. Handover Request Ack

6. Handover Command

(NCC)

10. H

andover Confirm

18. Release Resource

12. Path Switch

UE

Source

eNB

Target

eNB

16. Path Switch Ack

(NCC, NH*)

MME

Serving

GW

13. U-Plane Update Request

15. U-Plane Update

Response

2. KeNB1

5. KeNB2

7. NH1

14. NH1

17. NH2

11. NH2

8. KeNB1

9. KeNB2

Figure 7.2.8.4-1 NH based key refresh with intra-MME handover
1. Measurement report

2. Source eNB runs Proc-KeNB1

3. Source eNB provides security context (NCC, index increase indicator, KeNB*, …) for target eNB. Source eNB knows whether the index increases or not and indicates that in the security context for the target eNB.
4. Handover request Ack

5. Target eNB runs Proc-KeNB2

6. Handover Command includes the NCC.

7. UE runs Proc-NH1 that updates the NH depending on UE’s current NCC value and the Received-NCC value in the HO Command
8. UE runs Proc-KeNB1

9. UE runs Proc-KeNB2

10. UE sends Handover Confirm to target eNB

11. UE runs Proc-NH2

12. Target eNB sends path switch to MME

13. MME sends U-Plane update request to S-GW

14. MME runs Proc-NH1 and may update NCC and NH*

15. S-GW sends U-Plane update response to MME

16. MME sends path switch acknowledgement and includes NCC and NH*. Target eNB updates the currently stored NCC and NH* with NCC and NH* from the path switch acknowledgement message.

17. MME runs Proc-NH2

18. Target eNB sends release resource message to source eNB

In Fig. 7.2.8.3-2 key derivations are described for handover procedure, where the NCC and NH parameters are the same as in previous handover. This can happen for X2 and S1 handovers (e.g., if the MME does not provide NCC and NH values to the eNB), but the figure only describes the intra-eNB handover.

[image: image3.emf]1. Measurement Reports

3. Handover Command (NCC)

8. Handover Confirm

UE

Serving

eNB

4. KeNB2

2. KeNB1

5. NH1

6. KeNB1

7. KeNB2

9. NH2

Figure 7.2.8.4-2 Key re-fresh with intra-eNB handover

1. Measurement report

2. Source (serving) eNB runs KeNB1

3. Handover Command includes the NCC.

4. Target (serving) eNB runs KeNB2

5. UE runs Proc-NH1 that updates the NH depending on UE’s current NCC value and the Received-NCC value in the HO Command
6. UE runs Proc-KeNB1

7. UE runs Proc-KeNB2

8. UE sends Handover confirmation for serving eNB

9. UE runs Proc-NH2

Similarly to procedure in Figure 7.2.8.4-1, the procedure in Fig. 7.2.8.4-3 describes key derivation steps for inter-MME handover procedure.

[image: image4.emf]1. Measurement Reports

2. KeNB1

3. Handover Required

({NCC, K

eNB

*, index increase indicator})

7. Handover Request ({...}, NCC[+1], NH*[+1])

12. Handover Command

(NCC)

16

. Handover Confirm

5. Forward Relocation Request

({...}, security context)

UE

Source

eNB

Target

eNB

Source

MME

Target

MME

8. Handover Request Ack

10. Forward Relocation Response

11. Handover Command

18. Handover Notify

19. Forward Relocation Complete

20. Forward Relocation Complete Ack

13. NH1

21.NH2

9. KeNB2

14. KeNB1

15. KeNB2

17. NH2

6.NH1

Figure 7.2.8.4-3: NH based key refresh with inter-MME handover with 2-hop security
1. Measurement report

2. Source eNB runs Proc-KeNB1

3. Source eNB sends Handover Required message including AS level security context (NCC, KeNB*, index increase indicator, …) for the source MME as in X2 handover. Source eNB knows whether the index increases or not and indicates that in the security context for the target eNB.
5. Source MME sends Forward Relocation Request message including the AS level security context from source eNB to the target MME. Source MME also sends the NH and NCC values from its memory to the target MME along with the NAS level security context.
6. Target MME updates NH by running Proc-NH1
7. Target MME sends Handover Request to Target eNB including the the AS level security context from the source eNB (KeNB*, NH, index increase indicator, …). MME includes fresh NH* and NCC into the Handover Request message. Target eNB updates the security context NCC and NH with fresh NH* and corresponding NCC in the Handover Request message if MME included them in addition to the security context from the source eNB (i.e. instead of using the parameters from source eNB the target eNB uses the parameters from the MME).

8. Target eNB sends Handover Request Ack for target MME

9. Target eNB runs Proc-KeNB2 based on the context received from the source eNB
10. Target MME sends Forward Relocation Response to source MME

11. Source MME sends Handover Command to source eNB including the NCC and NH* if updated
12. Source eNB sends Handover Command including the NCC from the Handover Command message from the MME if present, otherwise using the NCC that it has in the memory and that it sent to the target eNB within the transparent container.
13. UE runs Proc-NH1 that updates the NH depending on UE’s current NCC value and the Received-NCC value in the HO Command
14. UE runs Proc-KeNB1

15. UE runs Proc-KeNB2

16. UE sends Handover Confirm to target eNB

17. UE runs Proc-NH2

18. Target eNB sends Handover Notify for target MME

19. Target MME sends Forward Relocation Complete to source MME

20. Source MME sends Forward Relocation Complete Ack to target MME

21. Source MME runs Proc-NH2

[image: image5.emf]1. Measurement Reports

2. KeNB1

3. Handover Required

({NCC, K

eNB

*, index increase indicator})

7. Handover Request

({...}, NH*[+2], NCC[+2], NH[+3]*, NCC[+3])

12. Handover Command

(NCC[+2])

16. Handover Confirm

4. Forward Relocation Request

({...}, security context)

UE

Source

eNB

Target

eNB

Source

MME

Target

MME

8. Handover Request Ack

10. Forward Relocation Response

(NCC[+2])

11. Handover Command (NCC[+2])

18. Handover Notify

19. Forward Relocation Complete

20. Forward Relocation Complete Ack

13. NH1

5. NH1

21.NH2

9. KeNB2

14. KeNB1

15. KeNB2

17. NH2

6. NH1

Figure 7.2.8.4-4: NH based key refresh with inter-MME handover with 1-hop security
1. Measurement report

2. Source eNB runs Proc-KeNB1

3. Source eNB sends Handover Required message including AS level security context (NCC, KeNB*, index increase indicator, KeNB*, …) for the source MME as in X2 handover. Source eNB knows whether the index increases or not and indicates that in the security context for the target eNB.
4. Source MME sends Forward Relocation Request message including the AS level security context from source eNB to the target MME. Source MME also sends the NH and NCC values from its memory to the target MME along with the NAS level security context.
5.-6. Target MME runs Proc-NH1 twice (1-hop S1 handover security).
7. Target MME sends Handover Request to Target eNB including the the AS level security context from the source eNB (KeNB*, NCC, handover index increase indicator,…). MME includes two new fresh NH*s and NCCs into the Handover Request message. Target eNB updates the security context, NCC and NH with fresh NH* and corresponding NCC in the Handover Request message if MME included them in addition to the security context from the source eNB (i.e. instead of using the parameters from source eNB the target eNB uses the +2 parameters from the MME and stores the +3 parameters).

8. Target eNB sends Handover Request Ack for target MME

9. Target eNB runs Proc-KeNB2

10. Target MME sends Forward Relocation Response to source MME

11. Source MME sends Handover Command to source eNB including the NCC and NH* if updated
12. Source eNB sends Handover Command including the NCC from the Handover Command message from the MME if present, otherwise using the NCC that it has in the memory and that it sent to the target eNB within the transparent container.
13. UE runs Proc-NH1 that updates the NH depending on UE’s current NCC value and the Received-NCC value in the HO Command
14. UE runs Proc-KeNB1

15. UE runs Proc-KeNB2

16. UE sends Handover Confirm to target eNB

17. UE runs Proc-NH2

18. Target eNB sends Handover Notify for target MME

19. Target MME sends Forward Relocation Complete to source MME

20. Source MME sends Forward Relocation Complete Ack to target MME

21. Source MME runs Proc-NH2

7.2.9
Key-change-on-the fly

7.2.9.1
General

AS Key change on-the-fly is accomplished using a procedure based on intra-cell handover. The following AS key changes on-the-fly shall be possible: local KeNB refresh (performed when UP or RRC COUNTs are about to wrap around), KeNB re-keying performed after an AKA run.

Editor's Note: It is FFS whether there is a need for change of AS keys derived from KASME but with a different freshness parameter.

================== END OF CHANGE 1 ====================
================== START OF CHANGE 2 ==================
7.2.3
E-UTRAN key lifetimes

All E-UTRAN keys are derived based on a KASME. The key hierarchy does not allow, as is, explicit key updates, but fresh RRC and UP keys are derived based on a fresh KeNB, which is bound to certain dynamic parameters (like PCI) and fresh key derivation parameter(s) in state transitions (like NAS uplink COUNT). This results as fresh RRC and UP keys in the eNB between inter-eNB handovers and state transitions (see subclauses 7.2.6 to 7.2.8). The KeNB shall be deleted in the eNB while UE is in ECM-IDLE mode.

If RRC keys are corrupted (e.g. RRC level deciphering and or integrity protection check fails repeatedly on the receiver side beyond some retransmission threshold, keys are missing in UE/eNB contained bit errors, etc.) UE will have to restart radio level attachment procedure (e.g. similar radio level procedure to idle-to-active mode transition or initial attachment).

In case KASME is invalid, a KSIASME with value "111" shall be sent to the network, which then can initiate (re‑)authentication procedure to get a new KASME based on a successful AKA authentication.

7.2.4
Security mode command procedure and algorithm negotiation

7.2.4.1
Requirements for algorithm selection

================== END OF CHANGE 2 ==================
================== START OF CHANGE 3 ==================
Annex A (normative):
Key derivation functions

A.1
KDF interface and input parameter construction

The input parameters and their lengths shall be concatenated into a string S as follows:

1.
The length of each input parameter in octets shall be encoded into two-octet string:

a)
express the number of octets in input parameter Pi as a number k in the range [0, 65535];
b)
Li is then a two-octet representation of the number k, with the most significant bit of the first octet of Li equal to the most significant bit of k, and the least significant bit of the second octet of Li equal to the least significant bit of k.
EXAMPLE:
If Pi contains 258 octets then Li will be the two-octet string 0x01 0x02.

2.
String S shall be constructed from n input parameters as follows:

S = FC || P0 || L0 || P1 || L1 || P2 || L2 || P3 || L3 ||... || Pn || Ln

where:
FC is single octet used to distinguish between different instances of the algorithm,

P0 ... Pn are the n input parameters, and

L0 ... Ln are the two-octet representations of the corresponding input parameters.

3.
The final output, i.e. the derived key is equal to the KDF computed on the string S using the key Key. The present document defines the following KDF:

derived key = HMAC-SHA-256 (Key, S),

as specified in [10] and [11], which has the KDF identity 1.

All key derivations shall be performed using the negotiated key derivation function (KDF). This clause specifies the set of input strings, Si, to the KDF (which are input together with the relevant key). For each of the distinct usages of the KDF, the input parameters Si are specified below.

If another KDF is negotiated between the UE and the MME, the interface to that KDF shall be the same, i.e., the input to that KDF shall be the relevant 256-bit key and a string S, which shall have the same formats as described in this annex, and the output shall be a 256-bit long key. It shall be possible to negotiate at most 4 KDFs.

NOTE:
The value 0x01 for parameter FC is used by TS 33.220 [8], so the numbering starts at 0x02 in the present document to ensure that no input collisions will accidentally occur.

A.2
KASME derivation function (S2)

When deriving a KASME from Ks and serving network ID when producing authentication vectors, the following parameters shall be used to form the input S to the KDF.

-
FC = 0x02,

-
P0 = serving network ID,

-
L0 = length of serving network ID (i.e. 0x00 0x03),

Editor's NOTE 1: It is FFS if more input parameters are required to counter the threat identified by ETSI/SAGE in the LS to SA3 received in SA3#28 (S3-030219).
NOTE: The string S indexes start from 2 to align with the FC and Appendix section values.

In case the serving network is E-UTRAN, the network ID shall be a PLMN ID. The PLMN ID consists of MCC and MNC, and shall be encoded as an octet string according to Figure A.2-1

	8
	7
	6
	5
	4
	3
	2
	1
	

	MCC digit 2
	MCC digit 1
	octet 1

	MNC digit 3
	MCC digit 3
	octet 2

	MNC digit 2
	MNC digit 1
	octet 3

Figure A.2-1 Encoding of PLMN ID as an octet string

The coding of the digits of MCC and MNC shall be done according to TS 24.301 [9].

Editor's NOTE 2: The coding is not yet specified in TS 24.301, but it is expected that the coding specified in TS 24.008 will be used also in TS 24.301.
The input key shall be the 256-bit Ks key.

A.3
KeNB derivation function used at ECM-IDLE to ECM‑CONNECTED transition and key change on‑the-fly (S3)

When deriving a KeNB from KASME and the NAS COUNT in the UE and the MME the following parameters shall be used to form the input S to the KDF.

-
FC = 0x03,

-
P0 = Uplink NAS COUNT,

-
L0 = length of uplink NAS COUNT (i.e. 0x00 0x04)

Editor's NOTE: The length of NAS COUNT is pending verification from CT1.

The input key shall be the 256-bit KASME.

A.4
NH* derivation function (S4)

When deriving a NH* from KASME the following parameters shall be used to form the input S to the KDF.

-
FC = 0x04
-
P0 = NH
-
L0 = length of NH (i.e. 0x00 0x10)
The input key shall be the 256-bit KASME.
A.5
KeNB* derivation function (S5)

When deriving a KeNB* from current KeNB or from fresh NH and the target physical cell ID in the UE and the source eNB for handover purposes the following parameters shall be used to form the input S to the KDF.

-
FC = 0x05
-
P0 = PCI (target physical cell id)
-
L0 = length of PCI (i.e. 0x00 0x02)

The input key shall be the 256-bit NH when the index in the handover increases, otherwise the current 256-bit KeNB..

.

A.6
New KeNB derivation function used at handover when index increases from the previous handover (S6)

When deriving a KeNB from a KeNB* and target cell C-RNTI in the UE and the target eNB when the key index does not increase from the previous handover, the following parameters, S, shall be used. KeNB is the new KeNB derived from KeNB* during handover.

-
FC = 0x06,

-
P0 = C-RNTI,

-
L0 = length of C-RNTI (i.e. 0x00 0x02)

The input key shall be the 256-bit KeNB*
A.8
Algorithm key derivation functions (S8)

When deriving keys for NAS integrity and NAS encryption algorithms from KASME and algorithm types and algorithm IDs, and keys for RRC integrity and RRC/UP encryption algorithms from KeNB, in the UE, MME and eNB the following parameters shall be used to form the string S.

-
FC = 0x08
-
P0 = algorithm type distinguisher
-
L0 = length of algorithm type distinguisher (i.e. 0x00 0x01)

-
P1 = algorithm identity
-
L1 = length of algorithm identity (i.e. 0x00 0x01)

The algorithm type distinguisher shall be NAS-enc-alg for NAS encryption algorithms and NAS-int-alg for NAS integrity protection algorithms. The algorithm type distinguisher shall be RRC-enc-alg for RRC encryption algorithms, RRC-int-alg for RRC integrity protection algorithms and UP-enc-alg for UP encryption algorithms (see table A.6-1). The values 0x06 to 0xf0 are reserved for future use, and the values 0xf1 to 0xff are reserved for private use.
Table A.8-1: Algorithm type distinguishers

	Algorithm distinguisher
	Value

	NAS-enc-alg
	0x01

	NAS-int-alg
	0x02

	RRC-enc-alg
	0x03

	RRC-int-alg
	0x04

	UP-enc-alg
	0x05

The algorithm identity (as specified in clause 5) shall be put in the four least significant bits of the octet. The two least significant bits of the four most significant bits are reserved for future use, and the two most significant bits of the most significant nibble are reserved for private use. The entire four most significant bits shall be set to all zeros.

For NAS algorithm key derivations, the input key shall be the 256-bit KASME, and for UP and RRC algorithm key derivations, the input key shall be the 256-bit KeNB.

A.9
KASME from and to CK, IK derivation (S9)

This input string is used when there is a need to derive a KASME from CK/IK and vice versa during mapping of security contexts between E-UTRAN and GERAN/UTRAN. KASME is a 256-bit entity, and so is the concatenation of CK and IK (which are 128 bits each). Therefore, the derivation function mapping 256 bits to 256 bits can be applied in both directions (using a constant in the input S to separate the directions from each other). The following input parameters shall be used.

-
FC = 0x09
-
P0 = key output type
-
L0 = length of key output type (i.e. 0x00 0x01)

Editor's NOTE: It is FFS if more input parameters are required to counter the threat identified by ETSI/SAGE in the LS to SA3 received in SA3#28 (S3-030219).
If the KDF is used to derive a KASME from the concatenation CK || IK, then the key output type shall be 0x00. If the KDF is used to derive CK || IK from a KASME, then the key output type shall be 0x01.

A.10
NAS-token derivation for inter-RAT mobility (S10)

The NAS-token used to ensure that a RAU is originating from the correct UE during IDLE mode mobility from E-UTRAN to UTRAN and GERAN, shall use the following input parameters.

-
FC = 0x10
-
P0 = Downlink NAS COUNT
-
L0 = length of downlink NAS COUNT (i.e. 0x00 0x04)

The input key shall be the 256-bit KASME.

================== END OF CHANGE 3 ==================
�PAGE \# "'Page: '#'�'" �� �HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip"�Document numbers� are allocated by the Working Group Secretary. Use the format of document number specified by the �HYPERLINK "http://www.3gpp.org/About/WP.htm"�3GPP Working Procedures�.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to �HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm"� �HYPERLINK "http://www.3gpp.org/specs/specs.htm"�http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See ��HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm"�http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"�21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1275139000.vsd
Text

UE

Serving eNB

MME

2. S1-AP Initial Context Setup Reqeust (KeNB. NCC, NH)

1. NH0

1. NH0

3. KeNB2

3. KeNB2

_1276059583.vsd
Text

18. Handover Notify

19. Forward Relocation Complete

20. Forward Relocation Complete Ack

9. KeNB2

UE

Target eNB

21. NH2

14. KeNB1

7. Handover Request ({...}, NCC[+1], NH*[+1])

16. Handover Confirm

15. KeNB2

5. Forward Relocation Request
({...}, security context)

1. Measurement Reports

2. KeNB1

3. Handover Required
({NCC, KeNB*, index increase indicator})

12. Handover Command  (NCC)

17. NH2

Source eNB

Source MME

Target MME

8. Handover Request Ack

10. Forward Relocation Response

11. Handover Command

13. NH1

6. NH1

_1276090796.vsd
Text

18. Handover Notify

19. Forward Relocation Complete

20. Forward Relocation Complete Ack

9. KeNB2

UE

Target eNB

21. NH2

14. KeNB1

7. Handover Request
({...}, NH*[+2], NCC[+2], NH[+3]*, NCC[+3])

16. Handover Confirm

15. KeNB2

4. Forward Relocation Request
({...}, security context)

1. Measurement Reports

2. KeNB1

3. Handover Required
({NCC, KeNB*, index increase indicator})

12. Handover Command  (NCC[+2])

17. NH2

Source eNB

Source MME

Target MME

8. Handover Request Ack

10. Forward Relocation Response
(NCC[+2])

11. Handover Command (NCC[+2])

13. NH1

5. NH1

6. NH1

_1276058110.vsd
Text

14. NH1

17. NH2

11. NH2

8. KeNB1

UE

9. KeNB2

Target eNB

4. Handover Request Ack

10. Handover Confirm

18. Release Resource

12. Path Switch

1. Measurement Reports

2. KeNB1

3. Handover Request
(NCC, KeNB*, index increase indicator)

6. Handover Command (NCC)

5. KeNB2

7. NH1

Source eNB

MME

16. Path Switch Ack
(NCC, NH*)

Serving GW

13. U-Plane Update Request

15. U-Plane Update Response

_1275138996.vsd
Text

12a. KeNB* = KDF(Next-Hop-KeNB, "eNodeB handover"||physical cell Id)
12b. Next-Hop-KeNB* = KDF(KASME || KeNB*, "NH String")
12c. MME updates Next-Hop-KeNB with Next-Hop-KeNB*

UE

Target eNB

7a. KeNB* = KDF(Next-Hop-KeNB, "eNodeB handover"||physical cell-Id)
7b. Next-Hop-KeNB* = KDF(KASME || KeNB*, "NH String")
7c. KeNB** = KDF(KeNB*, C-RNTI)
8. Derive RRC and UP keys

15. Store Next-Hop-KeNB* as Next-Hop-KeNB

4. Handover Request Ack

9. Handover Confirm

16. Release Resource

10. Path Switch (physical cell id)

1. Measurement Reports

2. HO decision;
KeNB* = KDF(Next-Hop-KeNB, "eNodeB handover"|| physical cell Id)

3. Handover Request
(KeNB*)

6. Handover Command (HO type indicator)

Source eNB

MME

14. Path Switch Ack
(Next-Hop-KeNB*)

Serving GW

11. U-Plane Update Request

13. U-Plane Update Response

0b. S1-AP Initial Context Setup Reqeust (KeNB. Next-Hop-KeNB)

0c. Next-Hop-KeNB = KDF(KASME || KeNB, "NH String")

0a. Next-Hop-KeNB = KDF(KASME || KeNB, "NH String")

5a. KeNB** = KDF(KeNB*, C-RNTI)
5b. Derive RRC and UP keys from KeNB**

_1275138998.vsd
Text

UE

Serving eNB

8. Handover Confirm

1. Measurement Reports

3. Handover Command (NCC)

4. KeNB2

5. NH1

2. KeNB1

6. KeNB1

7. KeNB2

9. NH2

_1275138995.vsd
Text

15. Handover Notify

16. Forward Relocation Complete

17. Forward Relocation Complete Ack

8a. Store Next-Hop-KeNB*
8b. KeNB** = KDF(KeNB*+, C-RNTI)
8c. Derive RRC and UP keys from KeNB**

UE

Target eNB

12a. KeNB* = KDF(Next-Hop-KeNB, "eNodeB handover" || physical cell-Id)
12b. KeNB*+ = KDF(KDF(KASME, “Handover String”), KeNB*))
12c. KeNB** = KDF(KeNB*+, C-RNTI)
12d. Next-Hop-KeNB* = KDF(KASME || KeNB*+, "NH String")
13. Derive RRC and UP keys.

6. Handover Request (KeNB*+, Next-Hop-KeNB*,HO type indicator)

14. Handover Confirm

4. Forward Relocation Request (KeNB*, KASME,…)

1. Measurement Reports

2. HO decision;
KeNB* = KDF(Next-Hop-KeNB, "eNodeB handover"|| physical cell Id)

3. Handover Required
(KeNB*)

11. Handover Command  (HO type indicator)

Source eNB

Source MME

Target MME

7. Handover Request Ack (HO type indicator)

9. Forward Relocation Response  (HO type indicator)

10. Handover Command (HO type indicator)

5a. KeNB*+ = KDF(KDF(KASME ||"Handover String") || KeNB*))
5b. Next-Hop-KeNB* = KDF(KASME || KeNB*+, "NH String”)

_1275138994.vsd
Text

UE

Target eNB

5a. KeNB*** = KDF(KeNB, physical cell-Id)
5b. KeNB** = KDF(KeNB***, C-RNTI)
6. Derive RRC and UP keys

7. Handover Confirm

1. Measurement Reports

2. HO decision;
KeNB*** = KDF(KeNB, physical cell Id)

3. Handover Command (HO type indicator)

4. KeNB** = KDF(KeNB***, C-RNTI)
Derive RRC and UP keys from KeNB**

