Error! No text of specified style in document.
6
Release 8

3GPP TSG SA WG3 Security - S3#51
(
S3-080846

Sophia-Antipolis, France 23-27 June 2008

	CR-Form-v9.4

	CHANGE REQUEST

	

	(

	33.401
	CR
	0010
	(

rev
	-
	(

Current version:
	8.0.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	X
	Radio Access Network
	X
	Core Network
	X

	

	Title:
(

	CR-33401: KeNB forward security solution

	
	

	Source to WG:
(

	NTT DOCOMO, Qualcomm, NEC Corporation

	Source to TSG:
(

	S3

	
	

	Work item code:
(

	SAES
	
	Date: (

	27/06/2008

	
	
	
	
	

	Category:
(

	C
	
	Release: (

	Rel-8

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)

	
	

	Reason for change:
(

	The current key management solution for KeNB handling is complex.

	
	

	Summary of change:
(

	This CR simplifies the procedure.

	
	

	Consequences if
(

not approved:
	Complexity remains.

	
	

	Clauses affected:
(

	Sections 7.2.8.1, 7.2.8.2, 7.2.8.3, 7.2.8.4, 7.2.3, A.2 – A.10.

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

7.2.8
Key handling in handover

7.2.8.1
General

AS level (RRC, UP) algorithms can be changed during inter-eNB handovers, ECM-IDLE to ECM-CONNECTED state transitions, EMM-DEREGISTERED to EMM-REGISTERED/ECM-CONNECTED state transitions.

RRC and UP keys are refreshed during handovers.
The target eNB algorithm identifiers and key purpose identifiers are used in the AS level key derivations as input parameters with KeNB to the key derivation function KDF (see Annex A).

At an eNB handover with MME relocation, the KeNB is chained in the same way as if it was a regular intra-MME eNB handover. However, there is the possibility that the source MME and the target MME do not support the same set of NAS algorithms or have different priorities regarding the use of NAS algorithms. In this case, the target MME re-derives the NAS keys from KASME using the NAS algorithm identities as input to the NAS key derivation functions (see Annex A) and sends NAS SMC. All inputs, in particular the KASME, will be the same in the re-derivation except for the NAS algorithm identity.

It is essential that the NAS sequence numbers are not reset to the start values unless a new KASME is taken into use. This prevents that, in the case a UE moves back and forth between two MMEs the same NAS keys will be re-derived time and time again resulting in key stream re-use. Since KASME only changes when a new AKA has been run successfully, the NAS sequence numbers shall only be reset to the start value when there is a new AKA run. In case the target MME decides to use NAS algorithms different from the ones used by the source MME, a NAS SMC including KSIASME (new or current value depending on whether AKA was run or not) shall be sent from the MME to the UE.

This NAS Key and algorithm handling also applies to other MME changes e.g. TAU with MME changes.

The procedures for key derivation for the different types of handovers are described in the sections 7.2.8.2-7.2.8.4 below.

NOTE:
It is per operator's policy how to configure selection of handover types. Depending on an operator's security requirements, the operator can decide whether to have one hop or two hop forward secure handovers for a particular eNB according to its security characteristics.

Description of the key handling:

On initial context setup, the MME shall derive the first key KeNB[0] from KASME and NAS_Count. The MME shall also calculate the next key KeNB[1] = Sx(KeNB[0]) = KDF(KeNB[0], KASME). The MME shall communicate these two key values to the Serving eNB.

Upon handover, the MME will compute further keys as needed with the same key derivation KeNB[i+1] = Sx(KeNB*[i]) = KDF(KeNB*[i], KASME) and send them to the appropriate eNB. In addition KeNB*[i] is derived using Sy(KeNB[i]) = KDF(KeNB[i], PCI). The derivation in this step is based on KeNB stored in the MME, not on KeNB received from the eNB.
At any point in time a serving eNB is always in possession of two keys: KeNB[i] for the current key index i, and KeNB[i+1] for the next key index i+1.

Communication between UE and Serving eNB will be encrypted and integrity protected using RRC and U-Plane keys derived from KeNB[i].

7.2.8.2
X2-handover (inter eNB)

The proposed mechanism is described in Figure 7.2.8.2-1 and includes a Next-Hop-KeNB parameter from MME to the target eNB within the path switch acknowledgement message. Feeding both the serving eNB -related KeNB and the KASME to the Next-Hop-KeNB derivation function in the MME results in a cryptographically separate parameter for the target eNB compared to the parameter in the source eNB.

NOTE 1: Because the path switch message is transmitted after the radio link handover, it can only be used to provide keys for the next handover procedure and target eNB. Thus, forward security happens only after 2 hops because the source eNB knows the target eNB keys (the fresh key derivation parameter, Next-Hop-KeNB, for target eNB is provided by the source eNB). In other words, the forward security step comes after two hops, as the source eNB does not have a way to know the keys that the target eNB uses to prepare handover to its own target eNBs (the fresh key derivation parameter, Next-Hop-KeNB, comes from the MME to the target eNB in the path switch acknowledgement message).

[image: image1.emf]1. Measurement Reports

3. Handover Request

(KeNB*, PCI, i+1)

4. Handover Request Ack

6. Handover Command(i+1)

9.Handover Confirm

15. Release Resource

10. Path Switch(KeNB, PCI,

i+1)

UE

Source

eNB

Target

eNB

14. Path Switch Ack

(KeNB[i+2])

MME

Serving

GW

11. U-Plane Update Request

13. U-Plane Update

Response

2. KeNB* =

KDF(KeNB[i+1],

PCI)

5. KeNB = KeNB*

7. KeNB[i+1] =

KDF(KASME,

KeNB)

12. KeNB[i+2] =

KDF(KASME,

KeNB)

8. KeNB =

KDF(KeNB[i+1],

PCI)

Figure 7.2.8.2-1 Key refresh on intra-MME handover (X2 handover)

Below is the description of new protocol as depicted in Figure 7.2.8.2-1. Only the parts relevant to key handling are described.
Editor's Note: It is FFS whether synchronization procedure is needed for Next-Hop-KeNB. It is also for ffs whether other synchronization issues arise with the procedure and whether the Path Switch Ack message could create problems. This has to be verified with RAN2.

1. Measurement report

2. Source eNB derives KeNB * from KeNB[i+1] and physical cell id
3. Source eNB provides KeNB * for target eNB; it also sends the PCI and the counter i+1.
4. Handover request Ack

5. Target eNB sets KeNB to KeNB*.

6. Handover Command includes the counter i+1
7. UE derives KeNB[i+1] = KDF(KASME, KeNB)
8. UE derives KeNB = KDF(KeNB[i+1], PCI)
9. Handover confirm

10. Target eNB shall send Path switch message including KeNB, PCI and counter value (i+1).
11. U-Plane update request

12. MME derives KeNB[i+2] = KDF(KASME, KeNB).
13. U-Plane update response

14. MME sends Path Switch Acknowledgment including KeNB[i+2].
15. Release Resource message sent from Target eNB to Source eNB
KeNB is used to derive RRC and UP keys.
PCI is the physical cell ID of the target eNB.
7.2.8.3 S1-handover (inter MME)
7.2.8.3.1 Key refresh on inter-MME handover (S1 handover, Two-hop Forward Secure):

[image: image4.emf]1. Measurement Reports

2. KeNB* =

KDF(KeNB[i+1],

PCI)

3. Handover Required (K

eNB

*, PCI, i+1)

7. Handover Request(K

eNB

*, i+1, KeNB[i+2])

12. Handover Command

(i+1)

15. Handover Confirm

5. Forward Relocation Request

(KeNB*, PCI, i+1, K

ASME

)

UE

Source

eNB

Target

eNB

Source

MME

Target

MME

8. Handover Request Ack

10. Forward Relocation Response (i+1)

11. Handover Command(i+1)

16. Handover Notify

17. Forward Relocation Complete

18. Forward Relocation Complete Ack

9. KeNB =

KeNB*

14. KeNB =

KDF(KeNB[i+1],

PCI)

4. KeNB* =

KDF(KeNB[i+1],

PCI)

13. KeNB[i+1] =

KDF(KASME,

KeNB)

6. KeNB[i+2] =

KDF(KASME,

KeNB*)

Figure 7.2.8.3-1: Key refresh on inter-MME handover (S1 handover, Two-hop Forward Secure)

Description of new protocol as depicted in Figure 7.2.8.3-1. As in the previous section, only the parts relevant to key handling are described:

1. Measurement report

2. Source eNB derives KeNB* = KDF(KeNB[i+1], PCI)
3. Source eNB sends a handover required message to source MME and includes KeNB*, PCI and the counter value, i+1 in the message.
4. Source MME optionally derives KeNB using the PCI value and verifies the KeNB*.
5. Source MME sends a Forward Relocation Request to the Target MME and includes KeNB*, PCI, the counter value, i+1 and the KASME .
6. The Target MME computes KeNB[i+2] =KDF(KASME, KeNB*).
7. Target MME sends a Handover Request message to the Target eNB, including the KeNB*, the counter value i+1, and KeNB[i+2].
8. Target eNB sends Handover Request Ack to the Target MME.
9. Target eNB sets KeNB to KeNB*.

10. Forward relocation response; this message includes the current counter value, i+1.
11. Source MME sends Handover command to Source eNB including the counter value, i+1.
12. Source eNB sends Handover Command including the counter value, i+1, to the UE.

13. The UE derives KeNB[i+1] = KDF(KASME, KeNB)

14. The UE then derives KeNB = KDF(KeNB[i+1], PCI)
15. Handover Confirm

16. Handover Notify

17. Forward Relocation Complete

18. Forward Relocation Complete Ack.

UE and Target eNB derive RRC and UP keys from KeNB

7.2.8.3.2. Key refresh on inter-MME handover (S1 handover, One-hop Forward Secure):

[image: image5.emf]1. Measurement Reports

2. KeNB* =

KDF(KeNB[i+1],

PCI)

3. Handover Required (K

eNB

*, PCI, i+1)

9. Handover Request(KeNB*, i+2, KeNB[i+3])

14. Handover Command

(i+2)

19. Handover Confirm

5. Forward Relocation Request

(KeNB*, PCI, i+1, K

ASME

)

UE

Source

eNB

Target

eNB

Source

MME

Target

MME

10. Handover Request Ack

12. Forward Relocation Response (i+2)

13. Handover Command(i+2)

20. Handover Notify

21. Forward Relocation Complete

22. Forward Relocation Complete Ack

11. KeNB =

KeNB*

16. KeNB* =

KDF(KeNB[i+1],

PCI)

4. KeNB* =

KDF(KeNB[i+1],

PCI)

15. KeNB[i+1] =

KDF(KASME,

KeNB)

6. KeNB[i+2] =

KDF(KASME,

KeNB*)

7. KeNB* = KDF(

KeNB[i+2], PCI)

8. KeNB[i+3] =

KDF(KASME,

KeNB*)

17. KeNB[i+2] =

KDF(KASME,

KeNB*)

18. KeNB =

KDF(KeNB[i+2],

PCI)

 Figure 7.2.8.3-2: Key refresh on inter-MME handover (S1 handover, One-hop Forward Secure)

1. Measurement report

2. Source eNB derives KeNB* = KDF(KeNB[i+1], PCI)
3. Source eNB sends a handover required message to source MME and includes KeNB*, PCI and the counter value, i+1 in the message.
4. Source MME optionally derives KeNB using the PCI value and verifies the KeNB*.
5. Source MME sends a Forward Relocation Request to the Target MME and includes KeNB*, PCI, the counter value, i+1 and the KASME .
6. The Target MME computes KeNB[i+2] =KDF(KASME, KeNB*).
7. The Target MME then computes KeNB* = KDF(KeNB[i+2], PCI)

8. Next, the Target MME computes KeNB[i+3] = KDF(KASME, KeNB*)
9. Target MME sends a Handover Request message to the Target eNB, including the KeNB*, the counter value i+1, and KeNB[i+3].
10. Target eNB sends Handover Request Ack to the Target MME.
11. Target eNB sets KeNB to KeNB*.

12. Forward relocation response; this message includes the current counter value, i+2.
13. Source MME sends Handover command to Source eNB including the counter value, i+2.
14. Source eNB sends Handover Command including the counter value, i+2, to the UE.

15. The UE derives KeNB[i+1] = KDF(KASME, KeNB)

16. The UE then derives KeNB* = KDF(KeNB[i+1], PCI)
17. The UE derives KeNB[i+2] = KDF(KASME, KeNB*)

18. The UE then derives KeNB = KDF(KeNB[i+2], PCI)
19. Handover Confirm

20. Handover Notify

21. Forward Relocation Complete

22. Forward Relocation Complete Ack.

UE and Target eNB derive RRC and UP keys from KeNB
7.2.8.4
Key refresh on intra-eNB handover

[image: image7.emf]1. Measurement Reports

3. Handover Command(i)

6. Handover Confirm

UE

Serving

eNB

2. KeNB* =

KDF(KeNB, PCI)

4. KeNB* =

KDF(KeNB, PCI)

5. KeNB =

KeNB*

7. KeNB =

KeNB*

Figure 7.2.8.4-1 Key re-fresh in intra-eNB handover

1. Measurement report

2. Serving eNB derives KeNB* from KeNB and physical cell id.

3. Handover Command includes the counter value i
4. The UE recognizes the counter value to be the same as the one it holds and therefore does not need to derive KeNB[i]. It derives KeNB* = KDF(KeNB, PCI).

5. UE then sets KeNB = KeNB*.

6.
 Handover confirmation
7. Serving eNB sets KeNB = KeNB*.

UE and Target eNB derive RRC and UP keys from KeNB

Annex A (normative):
Key derivation functions

A.1
KDF interface and input parameter construction

The input parameters and their lengths shall be concatenated into a string S as follows:

1.
The length of each input parameter in octets shall be encoded into two-octet string:

a)
express the number of octets in input parameter Pi as a number k in the range [0, 65535];
b)
Li is then a two-octet representation of the number k, with the most significant bit of the first octet of Li equal to the most significant bit of k, and the least significant bit of the second octet of Li equal to the least significant bit of k.
EXAMPLE:
If Pi contains 258 octets then Li will be the two-octet string 0x01 0x02.

2.
String S shall be constructed from n input parameters as follows:

S = FC || P0 || L0 || P1 || L1 || P2 || L2 || P3 || L3 ||... || Pn || Ln

where:
FC is single octet used to distinguish between different instances of the algorithm,

P0 ... Pn are the n input parameters, and

L0 ... Ln are the two-octet representations of the corresponding input parameters.

3.
The final output, i.e. the derived key is equal to the KDF computed on the string S using the key Key. The present document defines the following KDF:

derived key = HMAC-SHA-256 (Key, S),

as specified in [10] and [11], which has the KDF identity 1.

All key derivations shall be performed using the negotiated key derivation function (KDF). This clause specifies the set of input strings, Si, to the KDF (which are input together with the relevant key). For each of the distinct usages of the KDF, the input parameters Si are specified below.

If another KDF is negotiated between the UE and the MME, the interface to that KDF shall be the same, i.e., the input to that KDF shall be the relevant 256-bit key and a string S, which shall have the same formats as described in this annex, and the output shall be a 256-bit long key. It shall be possible to negotiate at most 4 KDFs.

NOTE:
The value 0x01 for parameter FC is used by TS 33.220 [8], so the numbering starts at 0x02 in the present document to ensure that no input collisions will accidentally occur.

A.2
KASME derivation function (S1)

When deriving a KASME from Ks and serving network ID when producing authentication vectors, the following parameters shall be used to form the input S to the KDF.

-
FC = 0x02,

-
P0 = serving network ID,

-
L0 = length of serving network ID (i.e. 0x00 0x03),

Editor's NOTE 1: It is FFS if more input parameters are required to counter the threat identified by ETSI/SAGE in the LS to SA3 received in SA3#28 (S3-030219).

In case the serving network is E-UTRAN, the network ID shall be a PLMN ID. The PLMN ID consists of MCC and MNC, and shall be encoded as an octet string according to Figure A.2-1.
	8
	7
	6
	5
	4
	3
	2
	1
	

	MCC digit 2
	MCC digit 1
	octet 1

	MNC digit 3
	MCC digit 3
	octet 2

	MNC digit 2
	MNC digit 1
	octet 3

Figure A.2-1 Encoding of PLMN ID as an octet string

The coding of the digits of MCC and MNC shall be done according to TS 24.301 [9].

Editor's NOTE 2: The coding is not yet specified in TS 24.301, but it is expected that the coding specified in TS 24.008 will be used also in TS 24.301.

The input key shall be the 256-bit Ks key.

A.3
KeNB derivation function used at ECM-IDLE to ECM‑CONNECTED transition and key change on‑the-fly (S2)

When deriving a KeNB from KASME and the NAS COUNT in the UE and the MME the following parameters shall be used to form the input S to the KDF.

-
FC = 0x03,

-
P0 = Uplink NAS COUNT,

-
L0 = length of uplink NAS COUNT (i.e. 0x00 0x04)

Editor's NOTE: The length of NAS COUNT is pending verification from CT1.

The input key shall be the 256-bit KASME.

A.x
KeNB derivation function (Sx)

When deriving a KeNB from KASME the following parameters shall be used to form the input S to the KDF.
KeNB[Ki+1] = Sx(KeNB*[Ki]) = KDF(KeNB*[Ki], KASME)

-
FC = 0x04
-
P0 = KASME

-
L0 = 0xFF

The input key shall be the 256-bit KeNB , KeNB*.

A.y
KeNB* derivation function (Sy)

When deriving a KeNB* from KeNB and physical cell ID in the UE and the source eNB for handover purposes the following parameters shall be used to form the input S to the KDF.

-
FC = 0x05
-
P0 = physical cell ID
-
L0 = length of physical cell ID (i.e. 0x00 0x02)

Editor's NOTE: If physical cell ID or another cell-ID is to be used is pending verification from RAN2.

The input key shall be the 256-bit KeNB.

A.6

A.7
MME handover key derivation function (S6)

When deriving a KeNB*+ from KASME MME handover key is needed. The following parameters shall be used to form the input S to the KDF for the MME handover key.

-
FC = 0x07
The input key shall be the 256-bit KASME.

A.10
Algorithm key derivation functions (S9)

When deriving keys for NAS integrity and NAS encryption algorithms from KASME and algorithm types and algorithm IDs, and keys for RRC integrity and RRC/UP encryption algorithms from KeNB, in the UE, MME and eNB the following parameters shall be used to form the string S.

-
FC = 0x10
-
P0 = algorithm type distinguisher
-
L0 = length of algorithm type distinguisher (i.e. 0x00 0x01)

-
P1 = algorithm identity
-
L1 = length of algorithm identity (i.e. 0x00 0x01)

The algorithm type distinguisher shall be NAS-enc-alg for NAS encryption algorithms and NAS-int-alg for NAS integrity protection algorithms. The algorithm type distinguisher shall be RRC-enc-alg for RRC encryption algorithms, RRC-int-alg for RRC integrity protection algorithms and UP-enc-alg for UP encryption algorithms (see table A.6-1). The values 0x06 to 0xf0 are reserved for future use, and the values 0xf1 to 0xff are reserved for private use.
Table A.6-1: Algorithm type distinguishers

	Algorithm distinguisher
	Value

	NAS-enc-alg
	0x01

	NAS-int-alg
	0x02

	RRC-enc-alg
	0x03

	RRC-int-alg
	0x04

	UP-enc-alg
	0x05

The algorithm identity (as specified in clause 5) shall be put in the four least significant bits of the octet. The two least significant bits of the four most significant bits are reserved for future use, and the two most significant bits of the most significant nibble are reserved for private use. The entire four most significant bits shall be set to all zeros.

For NAS algorithm key derivations, the input key shall be the 256-bit KASME, and for UP and RRC algorithm key derivations, the input key shall be the 256-bit KeNB.

A.11
KASME from and to CK, IK derivation (S10)

This input string is used when there is a need to derive a KASME from CK/IK and vice versa during mapping of security contexts between E-UTRAN and GERAN/UTRAN. KASME is a 256-bit entity, and so is the concatenation of CK and IK (which are 128 bits each). Therefore, the derivation function mapping 256 bits to 256 bits can be applied in both directions (using a constant in the input S to separate the directions from each other). The following input parameters shall be used.

-
FC = 0x11
-
P0 = key output type
-
L0 = length of key output type (i.e. 0x00 0x01)

Editor's NOTE: It is FFS if more input parameters are required to counter the threat identified by ETSI/SAGE in the LS to SA3 received in SA3#28 (S3-030219).

If the KDF is used to derive a KASME from the concatenation CK || IK, then the key output type shall be 0x00. If the KDF is used to derive CK || IK from a KASME, then the key output type shall be 0x01.

A.12
NAS token derivation for inter-RAT mobility (S11)

The NAS token used to ensure that a RAU is originating from the correct UE during IDLE mode mobility from E-UTRAN to UTRAN and GERAN, shall use the following input parameters.

-
FC = 0x12
-
P0 = Downlink NAS COUNT
-
L0 = length of downlink NAS COUNT (i.e. 0x00 0x04)

Editor's NOTE: The length of NAS COUNT is pending verification from CT1.

The input key shall be the 256-bit KASME.

�PAGE \# "'Page: '#'�'" �� �HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip"�Document numbers� are allocated by the Working Group Secretary. Use the format of document number specified by the �HYPERLINK "http://www.3gpp.org/About/WP.htm"�3GPP Working Procedures�.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to �HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm"� �HYPERLINK "http://www.3gpp.org/specs/specs.htm"�http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See ��HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm"�http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"�21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

3GPP

_1269893763.vsd
Text

15. Handover Notify

16. Forward Relocation Complete

17. Forward Relocation Complete Ack

8a. Store Next-Hop-KeNB*
8b. KeNB** = KDF(KeNB*+, C-RNTI)
8c. Derive RRC and UP keys from KeNB**

UE

Target eNB

12a. KeNB* = KDF(Next-Hop-KeNB, "eNodeB handover" || physical cell-Id)
12b. KeNB*+ = KDF(KDF(KASME, “Handover String”), KeNB*))
12c. KeNB** = KDF(KeNB*+, C-RNTI)
12d. Next-Hop-KeNB* = KDF(KASME || KeNB*+, "NH String")
13. Derive RRC and UP keys.

6. Handover Request (KeNB*+, Next-Hop-KeNB*,HO type indicator)

14. Handover Confirm

4. Forward Relocation Request (KeNB*, KASME,…)

1. Measurement Reports

2. HO decision;
KeNB* = KDF(Next-Hop-KeNB, "eNodeB handover"|| physical cell Id)

3. Handover Required
(KeNB*)

11. Handover Command  (HO type indicator)

Source eNB

Source MME

Target MME

7. Handover Request Ack (HO type indicator)

9. Forward Relocation Response  (HO type indicator)

10. Handover Command (HO type indicator)

5a. KeNB*+ = KDF(KDF(KASME ||"Handover String") || KeNB*))
5b. Next-Hop-KeNB* = KDF(KASME || KeNB*+, "NH String”)

_1275893476.vsd
Text

20. Handover Notify

21. Forward Relocation Complete

22. Forward Relocation Complete Ack

11. KeNB = KeNB*

UE

Target eNB

16. KeNB* = KDF(KeNB[i+1], PCI)

9. Handover Request (KeNB*, i+2, KeNB[i+3])

19. Handover Confirm

5. Forward Relocation Request
(KeNB*, PCI, i+1, KASME)

1. Measurement Reports

2. KeNB* = KDF(KeNB[i+1], PCI)

3. Handover Required (KeNB*, PCI, i+1)

14. Handover Command  (i+2)

Source eNB

Source MME

Target MME

10. Handover Request Ack

12. Forward Relocation Response (i+2)

13. Handover Command (i+2)

4. KeNB* = KDF(KeNB[i+1], PCI)

15. KeNB[i+1] = KDF(KASME, KeNB)

6. KeNB[i+2] = KDF(KASME, KeNB*)

7. KeNB* = KDF(KeNB[i+2], PCI)

8. KeNB[i+3] = KDF(KASME, KeNB*)

17. KeNB[i+2] = KDF(KASME, KeNB*)

18. KeNB = KDF(KeNB[i+2], PCI)

_1275893618.vsd
Text

16. Handover Notify

17. Forward Relocation Complete

18. Forward Relocation Complete Ack

9. KeNB = KeNB*

UE

Target eNB

14. KeNB = KDF(KeNB[i+1], PCI)

7. Handover Request (KeNB*, i+1, KeNB[i+2])

15. Handover Confirm

5. Forward Relocation Request
(KeNB*, PCI, i+1, KASME)

1. Measurement Reports

2. KeNB* = KDF(KeNB[i+1], PCI)

3. Handover Required (KeNB*, PCI, i+1)

12. Handover Command  (i+1)

Source eNB

Source MME

Target MME

8. Handover Request Ack

10. Forward Relocation Response (i+1)

11. Handover Command (i+1)

4. KeNB* = KDF(KeNB[i+1], PCI)

13. KeNB[i+1] = KDF(KASME, KeNB)

6. KeNB[i+2] = KDF(KASME, KeNB*)

_1275806844.vsd
Text

12. KeNB[i+2] = KDF(KASME, KeNB)

UE

Target eNB

4. Handover Request Ack

9.Handover Confirm

15. Release Resource

10. Path Switch (KeNB, PCI, i+1)

1. Measurement Reports

2. KeNB* = KDF(KeNB[i+1], PCI)

3. Handover Request
(KeNB*, PCI, i+1)

6. Handover Command (i+1)

5. KeNB = KeNB*

7. KeNB[i+1] = KDF(KASME, KeNB)

Source eNB

MME

14. Path Switch Ack (KeNB[i+2])

Serving GW

11. U-Plane Update Request

13. U-Plane Update Response

8. KeNB = KDF(KeNB[i+1], PCI)

_1275810024.vsd
Text

UE

Serving eNB

6. Handover Confirm

1. Measurement Reports

3. Handover Command (i)

2. KeNB* = KDF(KeNB, PCI)

4. KeNB* = KDF(KeNB, PCI)

5. KeNB = KeNB*

7. KeNB = KeNB*

_1269879491.vsd
Text

12a. KeNB* = KDF(Next-Hop-KeNB, "eNodeB handover"||physical cell Id)
12b. Next-Hop-KeNB* = KDF(KASME || KeNB*, "NH String")
12c. MME updates Next-Hop-KeNB with Next-Hop-KeNB*

UE

Target eNB

7a. KeNB* = KDF(Next-Hop-KeNB, "eNodeB handover"||physical cell-Id)
7b. Next-Hop-KeNB* = KDF(KASME || KeNB*, "NH String")
7c. KeNB** = KDF(KeNB*, C-RNTI)
8. Derive RRC and UP keys

15. Store Next-Hop-KeNB* as Next-Hop-KeNB

4. Handover Request Ack

9. Handover Confirm

16. Release Resource

10. Path Switch (physical cell id)

1. Measurement Reports

2. HO decision;
KeNB* = KDF(Next-Hop-KeNB, "eNodeB handover"|| physical cell Id)

3. Handover Request
(KeNB*)

6. Handover Command (HO type indicator)

Source eNB

MME

14. Path Switch Ack
(Next-Hop-KeNB*)

Serving GW

11. U-Plane Update Request

13. U-Plane Update Response

0b. S1-AP Initial Context Setup Reqeust (KeNB. Next-Hop-KeNB)

0c. Next-Hop-KeNB = KDF(KASME || KeNB, "NH String")

0a. Next-Hop-KeNB = KDF(KASME || KeNB, "NH String")

5a. KeNB** = KDF(KeNB*, C-RNTI)
5b. Derive RRC and UP keys from KeNB**

_1269885568.vsd
Text

UE

Target eNB

5a. KeNB*** = KDF(KeNB, physical cell-Id)
5b. KeNB** = KDF(KeNB***, C-RNTI)
6. Derive RRC and UP keys

7. Handover Confirm

1. Measurement Reports

2. HO decision;
KeNB*** = KDF(KeNB, physical cell Id)

3. Handover Command (HO type indicator)

4. KeNB** = KDF(KeNB***, C-RNTI)
Derive RRC and UP keys from KeNB**

