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1.
Summary

In SA-3 #50, InterDigital proposed a study item (S3-080087) related to the suspected security threats on the interface between the UICC and the Terminal. For our analysis, we looked at a number of recent, related specifications that provide protection against eavesdropping on the UICC-Terminal interface, including the local key set up process as per TR 33.110. We also investigated the steps prior to establishing the secure local key, e.g. the AKA and GBA_U processes. 
Part of our analysis brought to surface the threat of malware which may be resident on the Terminal and we were asked to study TR 33.905, which addresses access control mechanisms on the Terminal. We have now completed that exercise and our conclusion is that certain sets of recommendations given in TR 33.905 address our concerns as regards to the threats by malware on the establishment of the secure channel. 
However, in our original study, we had included the study of the precursor steps - the AKA and GBA_U processes and we feel that these processes can still be compromised, revealing parameters such as the CK/IK keying material and the Ks_ext_NAF, under the situations following:
1. Initial provisioning of the terminal at the point of sale or provisioning when a local key (Ks_local) has not yet been established.

2. Expiration of the already established local key.

We therefore request SA3 to discuss these findings and recommend a way forward. At a general level, we recommend that if available and appropriate a temporary local secret be programmed into the UICC and Terminal at the Point of Sale (POS) or Point of Provisioning (PoP) and that this secret should be used to establish a temporary session key to secure the link between the UICC and Terminal under the above mentioned conditions. We also invite other interested parties to join in creating a CR for this item. 
2.
Threats and Attack Points on the AKA, GBA_U, and Security Association

As mentioned previously, the AKA and GBA_U processes are carried out prior to the procedures described by TR 33.110 to establish a secure channel between the UICC and Terminal. The AKA and GBA_U call flow sequences are presented in Figures 1 and 2 respectively. In pointing out the vulnerabilities of these processes it is assumed that the attacker has the ability to eavesdrop on the exchange of information over the UICC-ME/Terminal interface before the interface is secured with a legitimate and unexpired local key, Ks_local. The attacker also has the ability to compute all key derivation functions, and to execute the encryption and MAC algorithms, i.e., f8 and f9. In both figures information shown in red represents potential attack points where security can be compromised. 

The sessions keys CK and IK in the AKA call flow are of particular importance. As shown in Figure 1 these keys are transferred across the UICC-Terminal interface subsequent to the transmission of the security mode command to the UE from the network and before a shared local key securing the link is set up. Because the radio bearer ID, and cipher block length can be obtained either over the air or by other means, given their low entropy, the security of voice and data communication with respect to any 3GPP service is compromised once the session keys have been eavesdropped. The important user identity parameter IMSI can also be captured over the UICC-Terminal interface.
In the GBA_U process described in Figure 2, the vulnerability of numerous parameters can be seen. Unless there is already an existing Ks_local key set up between the UICC and Terminal such that it is being used to protect communication between the UICC and Terminal, any communication can be eavesdropped by a physical-probe attacker. The following sets of parameters transferred during the NAF bootstrapping process can be either eavesdropped or obtained by other less arduous means:

· RAND, AUTN*, RES, B-TID and Key Lifetime either over the air or through the UICC-Terminal interface 
· The parameters COUN-C(I), DIRECTION, BEARER, LENGTH, and/or FRESH are, as stated above,  ‘guessable’ due to low entropy or obtainable over the air whereby the attacker can compute KSB (Key Stream Block) for ciphering and MAC-I for integrity checking.
· IMPI, TMPI, RAND, AUTN*, Digest AKA, and B-TID and Key Lifetime either over the air or through the UICC-Terminal interface
· The Security Association process, parameters such IMPI, NAF_Id, B-TID and Ks_ext_NAF can be eavesdropped across UICC-Terminal interface; the Ks_ext_NAF is of particular concern because it is a supposedly secure key intended to be used to derive user, service and traffic keys that apply to 3GPP applications, particularly MBMS.
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Figure 1:  The Initial Authentication and Key Agreement Procedure (AKA): see TS 33.102
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Figure 2: GBA_U and Security Association
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