SA WG3 Temporary Document

Page 1
-

3GPP TSG SA WG3 Security — S3#51
S3-080332
14-18 April 2008
Vancouver, Canada
Source:
InterDigital Communications
Title:
Follow-up on SA3 recommendation on a previous study item proposal (S3-080087)
Document for:
Discussion
Agenda Item:
6.10 Key Establishment
Work Item / Release:
Rel-7
1.
Summary

In SA-3 #50, InterDigital proposed a study item (S3-080087) related to the suspected security threats on the interface between the UICC and the Terminal. For our analysis, we looked at a number of recent, related specifications that provide protection against eavesdropping on the UICC-Terminal interface, including the local key set up process as per TR 33.110. We also investigated the steps prior to establishing the secure local key, e.g. the AKA and GBA_U processes.
Part of our analysis brought to surface the threat of malware which may be resident on the Terminal and we were asked to study TR 33.905, which addresses access control mechanisms on the Terminal. We have now completed that exercise and our conclusion is that certain sets of recommendations given in TR 33.905 address our concerns as regards to the threats by malware on the establishment of the secure channel.
However, in our original study, we had included the study of the precursor steps - the AKA and GBA_U processes and we feel that these processes can still be compromised, revealing parameters such as the CK/IK keying material and the Ks_ext_NAF, under the situations following:
1. Initial provisioning of the terminal at the point of sale or provisioning when a local key (Ks_local) has not yet been established.

2. Expiration of the already established local key.

We therefore request SA3 to discuss these findings and recommend a way forward. At a general level, we recommend that if available and appropriate a temporary local secret be programmed into the UICC and Terminal at the Point of Sale (POS) or Point of Provisioning (PoP) and that this secret should be used to establish a temporary session key to secure the link between the UICC and Terminal under the above mentioned conditions. We also invite other interested parties to join in creating a CR for this item.
2.
Threats and Attack Points on the AKA, GBA_U, and Security Association

As mentioned previously, the AKA and GBA_U processes are carried out prior to the procedures described by TR 33.110 to establish a secure channel between the UICC and Terminal. The AKA and GBA_U call flow sequences are presented in Figures 1 and 2 respectively. In pointing out the vulnerabilities of these processes it is assumed that the attacker has the ability to eavesdrop on the exchange of information over the UICC-ME/Terminal interface before the interface is secured with a legitimate and unexpired local key, Ks_local. The attacker also has the ability to compute all key derivation functions, and to execute the encryption and MAC algorithms, i.e., f8 and f9. In both figures information shown in red represents potential attack points where security can be compromised.

The sessions keys CK and IK in the AKA call flow are of particular importance. As shown in Figure 1 these keys are transferred across the UICC-Terminal interface subsequent to the transmission of the security mode command to the UE from the network and before a shared local key securing the link is set up. Because the radio bearer ID, and cipher block length can be obtained either over the air or by other means, given their low entropy, the security of voice and data communication with respect to any 3GPP service is compromised once the session keys have been eavesdropped. The important user identity parameter IMSI can also be captured over the UICC-Terminal interface.
In the GBA_U process described in Figure 2, the vulnerability of numerous parameters can be seen. Unless there is already an existing Ks_local key set up between the UICC and Terminal such that it is being used to protect communication between the UICC and Terminal, any communication can be eavesdropped by a physical-probe attacker. The following sets of parameters transferred during the NAF bootstrapping process can be either eavesdropped or obtained by other less arduous means:

· RAND, AUTN*, RES, B-TID and Key Lifetime either over the air or through the UICC-Terminal interface
· The parameters COUN-C(I), DIRECTION, BEARER, LENGTH, and/or FRESH are, as stated above, ‘guessable’ due to low entropy or obtainable over the air whereby the attacker can compute KSB (Key Stream Block) for ciphering and MAC-I for integrity checking.
· IMPI, TMPI, RAND, AUTN*, Digest AKA, and B-TID and Key Lifetime either over the air or through the UICC-Terminal interface
· The Security Association process, parameters such IMPI, NAF_Id, B-TID and Ks_ext_NAF can be eavesdropped across UICC-Terminal interface; the Ks_ext_NAF is of particular concern because it is a supposedly secure key intended to be used to derive user, service and traffic keys that apply to 3GPP applications, particularly MBMS.

[image: image1.emf]ME RNC VLR

HLR

RRC Connection Request

(IMSI, HFN)

RRC Connection Request (TMSI)

RRC connection setup complete:

(***START, security capabilty (UEA, IEA))

Initial L3 Message

CKSN

Decide AKA or No AKA?

· User Enters new SN

· CK/IK has reached

threshold

· SN decides

Decide for allowed

UEA’s, UIA’s

Security Mode Command

UIA’s, IK, UEA’s, CK

· Generate FRESH

· Select UEA, UIA

· Start of Integrity

Check

· Compute MAC

Security Mode Command

UIA, UEA, FRESH, MAC

Authentication Data Request

Quintets

(CK, IK, RAND, XRES, AUTN)

RAND || AUTN

· Generate RAND

· Generate SQN

· Compute CK, IK,

XRES, MAC, AK

· AUTN = SQN (EX-

OR) AK ||AMF ||MAC

· Split AUTN

· ***Verify MAC

· Compute AK

· ***Compute SQN,

and verify if its in

correct range

· Compute CK, IK,

RES

RES

***RES = XRES?

· Control of UE security

· Verify Integrity

· Start of Integrity

(algorithm uses IK,

COUNT-I, FRESH)

Security Mode Complete

MAC

Compute and Verify MAC

Security Mode Complete

UIA, UEA

START OF CIPHERING (engine uses LENGTH, BEARER, CK, COUNT-C)

Is START up-to date OR

less than THRESHOLD?

ME triggers new Authentication

USIM

Information originating

in the USIM is

transmitted to the

network via the ME

START value

sent to ME

Transfer of

IK& CK to ME

Transfer of

 updated

START value

Radio bearer signaling setup:

BEARER(ID) & cipher block LENGTH

Extended Call Flow to Account for Transfer of f8 inputs Across USIM/ME & MS/UTRAN Ifs: based on TS 33.102

(AKA TS 33.102)

Figure 1: The Initial Authentication and Key Agreement Procedure (AKA): see TS 33.102

[image: image2.emf]HTTP 401 Unauthorized

WWW – Authenticate:

Digest message

(RAND, AUTN*)

RES

Fetch (from HLR/HSS)

AV= RAND || XRES || CK

|| IK || AUTN and User

Profile, with AUTN = SQN

MS

xor [AK] || AMF || MAC

Also computes MAC*

(=MAC xor Trunc(SHA-

1(IK))

HTTP 401 Unauthorized

WWW Authenticate: Digest

message (RAND, AUTN*)

Compute

RES, CK, IK

Store

Ks = CK || IK

B-TID, Key Lifetime

HTTP request (with IMPI or

TMPI in User Name field)

HTTP 200 OK

(B-TID, Key Lifetime)

Application Request

(B-TID, msg)

Msg: app-specific data set

·Ks_ext_NAF=KDF(Ks,”gba-me”

,RAND, IMPI, NAF_Id)

·Ks_int_NAF=KDF(Ks,”gba-u

,RAND,IMPI,NAF_Id)

Ks_int_NAF (if applicable),

Ks_ext_NAF (default)

Derive

G

B

A

_

U

(

T

S

3

3

.

2

2

0

)

AUTN* = SQN

MS

xor AK ||

AMF || MAC*

Also stores XRES, CK &

IK

Runs AKA algorithm:

computes IK and XMAC.

Verifies AUTN. Also CK

and RES computed.

Obtain Ks = CK || IK

HTTP request

(Digest AKA response

calculated from RES)

Authenticates UE by

comparing RES and XRES

Ks = CK || IK

S

e

c

u

r

i

t

y

A

s

s

o

c

i

a

t

i

o

n

(

T

S

3

3

.

2

2

0

)

Authentication Request

(B-TID, NAF_Id)

Authentication Answer (Ks_ext/

int_NAF, Profile, boostrap. time, key

lifetime)

Prof: app-specific part of user

profile

NAF stores Ks_ext/

int_NAF, Prof, bootstrap

time, and key lifetime

Authentication Answer,

incidating NAF now has

gotten the Ks_ext/int/NAF

Has

Ks_int_NAF,

Ks_ext_NAF, NAF_Id,

IMPI,B-TID

Negotiate with NAF on

which key(s) Ks_ext_NAF,

Ks_int_NAF, or both) to

use. Also, request B-TID

from the UICC and request

UICC to derive Ks_ext/

int_NAF

Request derivation of

Ks_ext/int_NAF

(NAF-Id, IMPI)

Stores

Ks_int_NAF (if applicable)

Ks_ext_NAF

Stores

Ks_ext_NAF

Derives

Ks_ext_NAF, B-

Tid

Has

Ks_ext_NAF,

NAF_Id, IMPI, & B-TID

6. Can now use Ks_ext/

int_NAF for Ua protection

Can now use Ks_ext/

int_NAF for Ua protection

Ks_int_NAF (if applicable),

Ks_ext_NAF (default)

Negotiate with Terminal

NAF BSF

Creates Ks=CK||IK and a B-

TID

= base64encode

(RAND)@BSF_servers_

domain_name

Terminal

UICC

Figure 2: GBA_U and Security Association

3GPP

SA WG3 TD

_1268575832.vsd
ME

RNC

VLR

HLR

RRC Connection Request (IMSI, HFN)

RRC Connection Request (TMSI)

Radio bearer signaling setup:
BEARER (ID) & cipher block LENGTH

RRC connection setup complete:
(***START, security capabilty (UEA, IEA))

Extended Call Flow to Account for Transfer of f8 inputs Across USIM/ME & MS/UTRAN Ifs: based on TS 33.102

Initial L3 Message
CKSN

Decide AKA or No AKA?
User Enters new SN
CK/IK has reached threshold
SN decides

RAND || AUTN

Generate RAND
Generate SQN
Compute CK, IK, XRES, MAC, AK
AUTN = SQN (EX-OR) AK ||AMF ||MAC

Decide for allowed UEA’s, UIA’s

Security Mode Command
UIA’s, IK, UEA’s, CK

Generate FRESH
Select UEA, UIA
Start of Integrity Check
Compute MAC

Security Mode Command
UIA, UEA, FRESH, MAC

Authentication Data Request

Quintets
(CK, IK, RAND, XRES, AUTN)

Split AUTN
***Verify MAC
Compute AK
***Compute SQN, and verify if its in correct range
Compute CK, IK, RES

RES

***RES = XRES?

Control of UE security
Verify Integrity
Start of Integrity (algorithm uses IK, COUNT-I, FRESH)

Security Mode Complete
MAC

Compute and Verify MAC

Security Mode Complete
UIA, UEA

START OF CIPHERING (engine uses LENGTH, BEARER, CK, COUNT-C)

Is START up-to date OR less than THRESHOLD?

ME triggers new Authentication

USIM

Information originating in the USIM is transmitted to the network via the ME

START value
sent to ME

Transfer of
IK & CK to ME

Transfer of
 updated
START value

(AKA TS 33.102)

_1268568680.vsd
UICC

Authentication Request
(B-TID, NAF_Id)

Authentication Answer (Ks_ext/int_NAF, Profile, boostrap. time, key lifetime)
Prof: app-specific part of user profile

NAF stores Ks_ext/int_NAF, Prof, bootstrap time, and key lifetime

Authentication Answer, incidating NAF now has gotten the Ks_ext/int/NAF

Has
Ks_int_NAF,
Ks_ext_NAF, NAF_Id,
IMPI,B-TID

Has
Ks_ext_NAF,
NAF_Id, IMPI, & B-TID

Negotiate with NAF on which key(s) Ks_ext_NAF, Ks_int_NAF, or both) to use. Also, request B-TID from the UICC and request UICC to derive Ks_ext/int_NAF

Request derivation of Ks_ext/int_NAF
(NAF-Id, IMPI)

Stores
Ks_int_NAF (if applicable)
Ks_ext_NAF

Stores
Ks_ext_NAF

Derives

HTTP 401 Unauthorized WWW – Authenticate: Digest message
(RAND, AUTN*)

Ks_ext_NAF, B-Tid

RES

6. Can now use Ks_ext/ int_NAF for Ua protection

Application Request
(B-TID, msg)
Msg: app-specific data set

Ks_ext_NAF=KDF(Ks,”gba-me” ,RAND, IMPI, NAF_Id)
Ks_int_NAF=KDF(Ks,”gba-u ,RAND,IMPI,NAF_Id)

Can now use Ks_ext/ int_NAF for Ua protection

Ks_int_NAF (if applicable),
Ks_ext_NAF (default)

BSF

Creates Ks=CK||IK and a B-TID = base64encode (RAND)@BSF_servers_domain_name

Security Association (TS 33.220)

Ks_int_NAF (if applicable),
Ks_ext_NAF (default)

Derive

Terminal

Fetch (from HLR/HSS)
AV = RAND || XRES || CK || IK || AUTN and User Profile, with AUTN = SQNMS xor [AK] || AMF || MAC
Also computes MAC*
(=MAC xor Trunc(SHA-1(IK))

 GBA_U (TS33.220)

AUTN* = SQNMS xor AK || AMF || MAC*
Also stores XRES, CK & IK

Runs AKA algorithm: computes IK and XMAC.
Verifies AUTN. Also CK and RES computed.
Obtain Ks = CK || IK

HTTP request
(Digest AKA response calculated from RES)

Authenticates UE by comparing RES and XRES

Ks = CK || IK

HTTP 401 Unauthorized WWW Authenticate: Digest message (RAND, AUTN*)

Compute
RES, CK, IK

Store
Ks = CK || IK

B-TID, Key Lifetime

HTTP request (with IMPI or TMPI in User Name field)

HTTP 200 OK
(B-TID, Key Lifetime)

NAF

Negotiate with Terminal

