Error! No text of specified style in document.
1
Error! No text of specified style in document.

3GPP TSG SA WG3 Security — S3#51
S3-080330
14 - 18 April 2008

Vancouver, Canada

Source:
Ericsson

Title:
pCR: GPL TS 33224 v010 proposal
Document for:
Discussion and decision

Agenda Item:
6.6.5 TS on GBA Push
Introduction
This contribution provides a compact and very simple protocol for the Generic Push Layer. The protocol essentially wraps any given message in a container that can be integrity and confidentiality and replay protected. The protocol can be run in uni- or bi-directional mode. It is proposed that the pCR in the end of this contribution is endorsed by SA3 and is included in TS 33.224.
*** FIRST CHANGE ***
1
Scope

The present document specifies a generic push layer that makes use of the GBA Push Function as specified in TS 33.223 [2]. The GPL specification includes a message format, protection algorithms and processing model. GPL assumes that keys and other SA parameters have been preinstalled in the push NAF and the UE. GPL is a protection protocol that can be applied in a unidirectional fashion.

The rationale for GPL is that having each application specify its own security mechanisms would for obvious reasons lead to duplication of work, specifications and implementations. Using a generic secure push layer avoids these problems. A generic secure push layer may also relieve the applications using the service of having to be aware of inner working of the security layer's. As an analogy, TS 33.222 [4] can be mentioned, which provides a generic security layer for HTTP based applications.
There are two main approaches that can be taken when designing the security for the push messages, either each application that uses a push feature specifies its own security mechanisms based on the presence of the security association, or a generic security layer is introduced that provides security services to the applications, which then do not need to be aware of the inner workings of the security layer.

*** NEXT CHANGE ***
3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [2], TS 33.220 [1] and the following apply.
SN_h
The highest received sequence number received in an integrity protected GPL message used for replay protection.

SN_s
A counter used to generate sequence numbers for outgoing messages.
Editor's Note:
Further definitions to be filled in, if needed.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [2] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [2].
GBA
Generic Bootstrapping Architecture
GPI
GBA Push Information
GPL
Generic Push Layer
NAF
Network Application Function
KDF
Key Derivation Function
MAC
Message Authentication Code
SA
Security Association

SAID
Security Association Identifier
SN
Sequence Number
Editor's Note:
The above list is tentative and needs to be enhanced, if needed.
4
GBA Push layer Requirements

.

Editor’s Note: Further study on the potential implementations needs to be performed. In S3-070690 one potential implementation was presented and discussed.

4.1
Session concept

It is reasonable to expect that there will exist NAF based services that rely on some form of per terminal session concept , and which would benefit from pushing more than one message based on the same security association. An example could be a virus-signature update server. It is possible that the virus signatures are delivered in multiple pushed messages (for size limitation reasons of the underlying push transport mechanism), and it would then be inefficient to establish a new security association for each message. This requires that the generic secure push layer provides replay protection in addition to integrity protection (and possibly confidentiality protection). Figure 4.1-1 depicts the usage scenario, where a secure session with three push messages are delivered from the NAF to the UE after establishing the security association to protect them. Note that steps 1 and 2 in Figure 4.1-1 are out of scope for this specification. One way to achieve steps 1 and 2 is to use TS 33.223 [3].

[image: image6.png]Application

——

o

M
B

=

|
| :

! Transport mechanism
|

i

v

GPL Application message

GPL Application message

Figure 4.1-1: Example of a secure session
Even though it shall be possible to have a secure one-way channel from the push NAF to the terminal (for broadcast only terminals) a return channel may be present. An example of this is OMA's location based services, where a server requests location information from a terminal, which responds with its location information. This request/response exchange may be repeated every ten minutes. It is prudent to require that it shall be possible to secure also such a return channel. The security of the return channel can conveniently be based on the same security association as the one-way channel.
4.2
Requirements

The following requirements shall be posed for the generic secure push layer:

R1:
It shall perform encapsulation of generic application layer messages from the push NAF to the terminal.

R2:
It shall allow sending multiple messages based on the same security association.
R3:
Integrity protection and confidentiality protection shall be possible to provide for the messages. Integrity protection is mandatory to apply, while confidentiality protection is optional to apply.
R4:
Detection of replayed messages within the same session shall be possible.

R5:
If uplink messages are present in the application protocol, it shall be possible to apply the same level of protection to these messages, based on keys derived from the Ks(_ext/int)_NAF.
5
GPL Processing

5.1
Processing Model
GPL is located between the transport mechanism (which could eg. be SMS, IP, IP/UDP) and the application.

When receiving a GPL protected message, the recipient transfers the message to the GPL. How the recipient knows that the message is a GPL message is up to each transport mechanism to define. It could be through, e.g., a special application ID that is tagged onto the message, in which case a GPL application ID needs to be defined.

After GPL processing is complete, the message is delivered to the transport layer again. This time around the GPL application ID and GPL related data is removed from the message, and what remains is a regular application data message (which is routed to the intended application using the transport layers normal dispatching mechanism). The processing model is depicted in Figure 5.1-1.

[image: image3.emf]Application

GPL inbound GPL outbound

Transport mechanism

GPL hdr APP hdrI

APP hdrO

APP body

APP body APP hdrI

GPL hdr APP hdrI APP body

APP body

APP body APP hdrI

APP body

APP body APP hdrI GPL hdr

APP hdrO GPL hdr APP hdrI APP body

APP hdrI

APP hdrO

GPL hdr

APP body

Outer application

header

Inner application

header

Application body

GPL header

Figure 5.1-1: The processing model for the generic push layer for GPL agnostic applications. Inbound processing to the right and outbound processing to the left.
Applications in a receiver where GPL is used for protection do not have to be aware of the GPL. In particular, any legacy application can use the GPL for protection without any modifications in the UE. One possibility is that the transport mechanism is configured to protect messages for the application, and in this case the application does not need to be aware of GPL as indicated in the figure. Another possibility is that, for an application which wishes to protect messages, it may be necessary to be aware of the GPL. The reason for this is that the application needs to inform the GPL about which security association to use for the message (i.e., the application calls the GPL module directly, and the GPL module may either pass the GPL encapsulated message to the transport mechanism, or return it to the application).
5.2
Session Start

A session is considered started in one peer when a GPL Security Association (SA) is configured. For the NAF, this means that the session is initiated as soon as it has received the GPI from the BSF and configured the NAF SA, see [3] corresponding to the GPL SA. For the UE, the session is considered started when it has received a GPI and configured its GPL SA.

In addition to the GPI, the GPL needs to get GPL policy information for the session, e.g., which encryption and integrity algorithms to use etc. The policy information can be decided by the application itself or by some other management entity. To avoid the problems involved in establishing a common policy between the sender and the receiver, the sender chooses the policy to use for the outbound messages and it is included in the GPL message.
In case of combined delivery, the GPI, GPL policy information and a GPL message is transmitted to the receiver simultaneously. The GPL session is also in this case considered as started when GPI and GPL policy is obtained and configured.
5.3
Session Termination

Sessions are not explicitly terminated, i.e., there is no specific message for closing a session. An SA life time is kept by each peer and when that time is reached, the session is over and the SA can be deleted.

Editor's Note: It is FFS what the lifetime of the session shall be. It could, e.g., be the same as the lifetime for the Ks or the Ks_(ext/int)_NAF.
5.4
GPL Security Association
A GPL security association (GPL-SA) is the data kept by each peer required for processing of either inbound or outbound GPL messages. That is, in case there is a bi-directional communication link, each peer keeps two GPL-SAs, one for the inbound traffic, and one for the outbound traffic.
Each GPL-SA is associated with an identifier, the SAID, which is used to refer to a particular GPLSA. The SAID is a value that is unique per sender received pair in each direction. This means that the same SAID can refer to two different GPL-SAs if one of the GPL-SAs is inbound and the other is outbound. To ensure unique identification of a GPL-SA, the GPL module may have to identify an inbound GPL-SA by the pair (source address, SAID) and an outbound GPL-SA by the pair (destination address, SAID). The format of the source and destination addresses is transport mechanism dependent.
The GPL SA contains at least the following items:
Master key: A 256-bit key used as master key for the key derivations of integrity and encryption keys.
SN_h: The highest received sequence number received in an integrity protected GPL message used for replay protection. This state-variable is only used in an inbound GPL-SA.
SN_s: A counter used to generate sequence numbers for outgoing messages. The counter shall be increased for each message output. This state-variable is only used in an outbound GPL-SA.
Cipher suite: The cipher suite used for protection of messages. A cipher suite consists of one integrity protection algorithm, one encryption algorithm, and one key derivation algorithm. This variable is only used in outbound processing to set the cipher suite field in the GPL header.

Life-time of the GPL-SA: This is the expiry time of the GPL-SA in the same time format as used for the Ks-life time in GBA.
5.5
Message Format

5.5.1
Data Unit Transfer Format
A GPL message is laid out as shown in Figure 5.5.1-1. The GPL message encapsulates an application message in the GPL payload, and protects the message.
·
·
·
·
·
·
·
·

[image: image4.emf]GPL Payload

Ver Reserved

SN (cont.)

MAC

Padding

0 1 2 3 4 5 6 7

Octet 1

Octet 2

Octet 3

SN

SAID

Cipher suite

SAID length

Figure 5.5.1-1: Format of a GPL message
Each field is encoded in network byte order (i.e., big endian) and with the most significant bit being bit number zero. All fields are octet aligned. The fields of the message are the following.
Ver (4 bits): The version of the GPL protocol encoded as an integer. The version of any message conforming to this specification shall use the value 1, i.e., the first nibble of the message is 0x1.
Reserved (4 bits): These bits are reserved for future versions of this specification. Implementations conforming to this specification shall set these bits to zero before transmitting a message, and the receiver of the message shall ignore these bits.
SN (16 bits): The sequence number used for synchronizing the encryption and providing replay-protection.

Cipher suite (8 bits): The cipher suite used for protection of the message. The cipher suite consists of one integrity protection algorithm, one encryption algorithm, and one key derivation algorithm.
SAID length (8 bits): The length of the SAID in number of octets.
SAID (variable length): The identity of the GPL security association used for protection of the message.
MAC (variable length): The message authentication code providing integrity protection of the message. The length of this field is determined by the size of the output of the integrity protection algorithm used, but shall be a multiple of 8 bits.
GPL Payload (variable length): The actual application message that is protected. The length of the message shall be a multiple of 8 bits, and must be padded by the application unless this condition is met. Any such padding is up to the application and is out of scope for this specification.
Padding (variable length): Padding as required by the encryption transform. Exactly how the padding is generated, verified and removed is defined by each encryption transform. In case the encryption transform does not require padding, this field is not present.
5.6
Inbound processing
Before processing of any inbound GPL message, the GPL module initiates the GPL-SA. The initialization consists of the following steps:

1. Set the highest received sequence number SN_h equal to zero.
2. Set the master key equal to the master key received from the SA establishment procedure.
When a GPL message arrives at the receiver's GPL module, the following processing steps shall be taken:
1. Verify that the version field in the GPL header is equal to 1. If this is not the case the message shall be discarded and the processing shall stop.

2. Retrieve the GPL-SA which corresponds to the SAID in the GPL header. If no GPL-SA is found, the message shall be discarded and the processing shall stop.
3. Verify that the sequence number carried in the SN field has not yet been received. One way of accomplishing this is to verify that the sequence number in the SN field is larger than the currently highest received sequence number SN_h. If this is not the case, the message shall be discarded and the processing shall stop. When SN_h is equal to 0xffff, all messages with the given SAID shall be discarded and the processing shall stop. It is not mandatory to implement this particular replay mechanism (which is not robust against message reordering), but it is mandatory to verify that the sequence number in the SN field has not been received before in a valid message.
4. Compute a MAC using the integrity algorithm indicated by the cipher suite. The MAC is computed over the entire GPL-message, and during the computation, the MAC field shall be treated as containing all zeros. After MAC is computed, it shall be compared to the MAC carried in the MAC field. If the two MACs differ, the message shall be discarded and the processing shall stop.
5. Update the replay protection state. In case the mechanism described in step 3 is used, the state-variable SN_h is set equal to the SN read from the GPL header.
6. Decrypt the message using the decryption transform indicated by the cipher suite field and remove possible padding from the message.
7. Return the payload of the GPL message (i.e., what remains after removing the GPL header and possible padding) to the transport mechanism the message was received from.
5.7
Outbound processing

Before processing of any outbound GPL message, the GPL module initiates the GPL-SA. The initialization consists of the following steps:

1. Set the sequence number counter SN_s equal to one.
2. Set the master key equal to the master key received from the SA establishment procedure.

When an application message arrives at the sender's GPL module, the following processing steps shall be taken:
1. If SN_s is equal to 0xffff, the processing shall stop and an error indication shall be returned from the GPL module.
2. Fill in the version number 1 in the Ver field of the GPL header. Fill in the cipher suite value as defined by the GPL-SA in the GPL header. Copy the state-variable SN_s to the SN field of the GPL header. Fill in the SAID field of the GPL header with the SAID of the GPL-SA indicated by the caller of the GPL module.
3. Retrieve the GPL-SA which corresponds to the SAID as indicated by the caller of the GPL module. If no GPL-SA is found, the processing shall stop and an error indication shall be returned from the GPL module.
4. Encrypt the message using the encryption transform defined by the GPL-SA and if needed add padding to the message.

5. Set the MAC field of the GPL header to zero and compute a MAC using the integrity transform defined by the GPL-SA. Copy the resulting MAC to the MAC field of the GPL header.
6. Increase the state-variable SN_s by one.
7. Return the GPL protected message to the caller of the GPL module.
5.9
Interworking with GBA Push

5.9.1
Mapping of NAF-SA to GPL-SA
Since the NAF-SA is a super set of the GPL-SA, the mapping is trivial. The SA identifier of a NAF-SA is the RAND value, which is a 128-bit string which shall be indistinguishable from a random 128-bit string. It is sufficiently unlikely that two RAND values will collide, that there is no need to include any other parameter in the identity of a GPL-SA when derived from a NAF-SA.
Editor's NOTE: Further considerations are needed.
5.9.2
Combined delivery
Editor's NOTE: TBD
5.8
Cipher suites
The following cipher suites are defined for use with GPL:

Cipher suite 1:

ID: 0x01
Encryption algorithm: AES-128-CTR
Integrity protection algorithm: HMAC-SHA256-64
Key derivation function: As specified in TS 33.220 Annex B. The input to the KDF is the 256-bit master key and the string S1 defined by:

· FC = 0x01
· P0 = "gba-push-cs"

· L0 = length of the string "gba-push-cs" as a 16-bit integer, i.e., 0x00 0x0b.
· P1 = direction indicator
· L1 = length of direction indicator (i.e., 0x00 0x01)
· P2 = cipher suite ID

· L2 = length of cipher suite ID (i.e., 0x00 0x01)
The encryption key is the 128 most significant bits of the KDF output, and the integrity key is the 128 least significant bits of the KDF output.
In case of bi-directional usage of GPL there is a need for two pairs of GPL-SAs, one for each direction. This indicator shall be set accordingly for the pair. For example, when GPL is used together with GBA Push as of TS 33.223 [3], the indicator shall be 0x00 for the GPL-SA protecting messages from the NAF to the UE and 0x01 for messages sent from the UE to the NAF (if such an SA is required by the application).
Cipher suite 2:
ID: 0x02
Encryption algorithm: AES-128-CTR
Integrity protection algorithm: HMAC-SHA256-32
Key derivation function: Same as for cipher suite 1.
Editor's Note: References to the algorithms are needed.
Annex A (informative):
Use cases

A.1
Generic Push Layer - use case for terminals without a return channel

This clause describes a use case, how an application could make use of GBA Push.

The goal of the application is to be able to securely push a message from an application server (implemented in a push NAF) to a terminal. For example, the push NAF pushes a message to a UE, including the latest virus-signatures. This is a case which can be of interest for terminals without a return channel, e.g., pure broadcast terminals.

This functionality can be separated into two distinct phases: establishment of the security association between the push NAF and the terminal, and the protection of the message. The security association contains keys derived from the Ks_(ext/int)_NAF. The two phases are depicted in Figure A-1, where phase 1 includes steps (1) and (2), and phase 2 includes step (3). The security associations are established between the push NAF and the UE as a result of phase 1.

The establishment of the security association boils down to establishment of the Ks, followed by establishment of the Ks_(ext/int)_NAF. Depending on the Ks model this may be done in one procedure, but this is out of scope for this use case.

When it comes to the protection of the actual message that is to be pushed there are two options, either the push is a one-time occurrence, or the concept of a session can be introduced. A session would here mean that a secure one-way communication channel is established between the push NAF and the terminal. The first phase is out of scope for this specification, which only deals with the second phase.

[image: image5.wmf]

UE

NAF

BSF

(1) Es

tablishment of Ks

(2) Establishment of Ks_(ext/int)_NAF

Security

Association with

keys derived from

Ks_(ext/int)_NAF

Security

Association with

keys derived from

Ks_(ext/int)_NAF

(3) Secure push of application message

based on the SAs above.

Figure A-1: The two phases involved in securely pushing a message to a UE from an application server

*** END OF CHANGES ***
3GPP

[image: image1.wmf]

Push message 3

UE

NAF

BSF

(1) Establishm

ent of Ks

(2) Establishment of Ks_(ext/int)_NAF

Security

Associa

tion with

keys derived from

Ks(_

ext/int)_NAF

Security

Association with

keys derived from

Ks(_ext/int)_NAF

Push message 2

Push message 1

_1268674157.doc

Push message 1

Push message 2

Push message 3

Security Association with keys derived from Ks(_ext/int)_NAF

Security Association with keys derived from Ks(_ext/int)_NAF

(2) Establishment of Ks_(ext/int)_NAF

(1) Establishment of Ks

BSF

NAF

UE

_1268813157.vsd
GPL Payload

Ver

Reserved

SN (cont.)

MAC

Padding

0

1

2

3

4

5

6

7

Octet 1

Octet 2

Octet 3

SN

SAID

Cipher suite

SAID length

_1268661426.vsd
Application

GPL inbound

GPL outbound

Transport mechanism

GPL hdr

APP hdrI

APP hdrO

APP body

APP hdrI

APP body

GPL hdr

APP hdrI

APP body

APP body

APP body

APP hdrI

APP body

APP body

APP hdrI

GPL hdr

APP hdrO

GPL hdr

APP hdrI

APP body

APP hdrI

APP hdrO

GPL hdr

APP body

Outer application header

Inner application header

Application body

GPL header

_1241447762.doc

Security Association with keys derived from Ks_(ext/int)_NAF

(3) Secure push of application message based on the SAs above.

Security Association with keys derived from Ks_(ext/int)_NAF

(2) Establishment of Ks_(ext/int)_NAF

(1) Establishment of Ks

BSF

NAF

UE

