SA WG3 Temporary Document

Page 1
-

3GPP TSG SA WG3 Security — S3#51
S3-080305

14 - 18 April 2008

Vancouver, Canada

Source:
Nokia, Nokia Siemens Networks

Title:
GBA Push Flow for GBA_U cards without GPI enhancements.

Document for:
Discussion and Decision

Agenda Item:
GBA Push

Work Item / Release:
Rel-8

1. Introduction

This contribution details how the disposable-Ks model can be implemented with GBA_U. In a companion contribution a list of independent open issues can be found which also impact the complexity of the design (S3-080306).

2. GBA Push with GBA_U

The sequence flow below describes GBA_U based GBA Push with "pseudo" disposable-Ks model where the GBA Push aware application is in the ME. The main property is that the BSF and the GBA functionality in the ME decline to use a Ks created using GBA Push for "normal GBA" key derivations.

[image: image1.emf]appl1

GBA_U pNAFnNAFBSF

appl2

GBA module

uicc

me

18. New normal bootstrapping as Ks from GBA Push run cannot be u sed. Involved modules GBA_U, GBA module and BSF

1. NAF request GPI, etc from BSF

2. GPI, etc from BSF

3. GPI, etc sent to ME (appl2)

4. GPI, etc sent to GBA module

5. AUTN*, RAND

7. RES

6. Ks derived

9. Generate Ks_ext_BSF(normal NAF derivation procedure used: NAF_ID = BSF_ID)

10. Ks_int/ext_BSFcreated

11. Ks_ext_BSF

12. Ks_ext_BSFused decrypt any encrypted parameters (NAF_ID, etc)

8. Write B-TID, key lifetime

13. Generate Ks_int/ext_NAF

14. Ks_ext_NAF

16. Ks_ext_NAF

15. Ks invalidated

17. Request key for NAF_ID

19. Ks_ext_NAF

20. Use Ks_ext_NAFwith nNAF

appl1

GBA_U pNAFnNAFBSF

appl2

GBA module

uicc

me

18. New normal bootstrapping as Ks from GBA Push run cannot be u sed. Involved modules GBA_U, GBA module and BSF

1. NAF request GPI, etc from BSF

2. GPI, etc from BSF

3. GPI, etc sent to ME (appl2)

4. GPI, etc sent to GBA module

5. AUTN*, RAND

7. RES

6. Ks derived

9. Generate Ks_ext_BSF(normal NAF derivation procedure used: NAF_ID = BSF_ID)

10. Ks_int/ext_BSFcreated

11. Ks_ext_BSF

12. Ks_ext_BSFused decrypt any encrypted parameters (NAF_ID, etc)

8. Write B-TID, key lifetime

13. Generate Ks_int/ext_NAF

14. Ks_ext_NAF

16. Ks_ext_NAF

15. Ks invalidated

17. Request key for NAF_ID

19. Ks_ext_NAF

20. Use Ks_ext_NAFwith nNAF

Figure 1: GBA push flow with GBA_U card.
1.
A Push NAF (pNAF) requests the GPI and other relevant parameters from the BSF.

2.
The BSF generates the GPI for the pNAF and sends it along with the generated application specific keys to the pNAF. The related Ks is invalidated by the BSF after returning the GPI along with other possible parameters to the pNAF.

If the BSF had an existing Ks (prior to the GPI request) for the particular subscriber, this Ks is invalidated as when the GPI and the embedded AUTN and RAND are sent to the GBA_U, as the existing Ks will be invalidated (i.e. overwritten) onboard the UICC as well when the GPI information is processed in the UE. Thus, after returning the GPI to the pNAF, the BSF does not contain a valid Ks for the subscriber.

3.
The pNAF constructs a message for the ME using the application specific keys, and sends the GPI, and the message to the ME. The pNAF may also send the message using the application specific keys later than the GPI

4.
An application (appl2) receives the pushed message from the pNAF. It extracts the GPI and other relevant parameters from the message, and sends them to a GBA module of the ME. The GBA module support GBA Push, and thus it is able to process the GPI accordingly.

5-8.
The GBA module communicates with GBA aware USIM (GBA_U) and performs the Bootstrapping procedure as specified in TS 33.220, clause G.1.

After this these steps, the GBA aware USIM contains the Ks, the B-TID, and the RAND for subsequent key derivations for GBA Push specific application keys. Also it is worth to note that the GBA NAF List file in the USIM still contains the existing application specific keys derived using the previous Ks, i.e., existing application both on the UICC and on the ME can continue using the existing application specific keys until the lifetime expires.

9-11.
If necessary, i.e., if some parameters have been encrypted with the Ks_ext_BSF, the GBA module communicates with the USIM to create the Ks_ext_BSF. The NAF Derivation procedure is used as specified in TS 33.220, clause G.2. NAF_ID in this consists of BSF address and the specific Ua security protocol identifier identifying GBA Push.

12.
If necessary, GBA module decrypts any parameters that are encrypted in the GPI using Ks_ext_BSF.

13-14.
GBA Module uses the NAF Derivation procedure towards the UICC to generate Ks_int_NAF and Ks_ext_NAF.

15.
As this was GBA Push procedure, the GBA module (in the ME) invalidates the generated Ks (that is onboard UICC) by disallowing its further usage. This is enforced by GBA module by disallowing any further executions of the NAF Derivation procedure. In practise this means that any subsequent requests incoming from applications in the ME will cause the GBA module to do a normal bootstrapping procedure over Ub reference point (as depicted in steps 17-20).

16.
Ks_ext_NAF is given to the appl2 so it can process the message received in step 3 from the pNAF.

17-20.
Normal bootstrapping scenario depicted here as an example. As the Ks was invalidated in step 15 above, the GBA Module will perform normal bootstrapping procedure as specified in TS 33.220.

In principle, the above sequence flow demonstrates that it is possible to mimic the disposable-Ks model in reasonable degree with GBA aware UICCs (GBA_U). Compared to GBA Push aware UICC (GBA_P), there are only two issues:

(1) If there was a Ks (established as specified in TS 33.220) in the UICC and in the BSF before the GBA Push operation was done this would have been overwritten. This is why a new bootstrapping run above (step 18) have to be performed anyway.

(2) Only Ks_ext_BSF can be used to encrypt the NAF_ID for example, but what would be the need to use Ks_int_BSF and keep the NAF_ID secret from the ME as well?

The effects are comparable with the race condition between UE-initiated Bootstrapping and GBA push bootstrapping i.e. more AKA runs would be needed under these conditions.

If the GBA Push messages are targeted for the ME anyhow, then the above flow could also be modified to perform ME based bootstrapping to the GBA Push capable module under the disposable-Ks model.

If the GBA Push messages are targeted for the UICC, then the above bootstrapping has ensured that a Ks_int_NAF key is available on the UICC. The GBA-push messages need then be sent to the UICC, via an interface which is outside the scope of TS 33.223.

3.
Proposal

This contribution proposed a solution that allows to use a GBA_U card for GBA-push without the requirement to introduce changes on the ME-UICC interfaces for GPI-processing.
4. Pseudo CR to TS 33.223, clauses 4 and 5

The pseudo-CR below shows the needed changes as outlined in this contribution, but does not address the other issues that were discussed in the accompanying contribution (S3-080306) like GPI confidentiality protection made mandatory, public ID to IMPI/IMSI mapping, etc. The pseudo-CR is based on (clean) version that was sent to SA3 mailing list on Saturday, March 15, 2008.

'===== BEGIN CHANGE ==

4
GBA Push Architecture

Editors NOTE:
It is also ffs if all GBA capable Rel-8 MEs shall support such functionality.
4.1
Introduction

GBA-push is a mechanism to bootstrap the security between a NAF and a UE, without forcing the UE to contact the BSF to initiate the bootstrapping. GBA-Push is closely related to and builds upon GBA as specified in TS 33.220. In an accompanying specification, TS 33.gpl, a message format for secure Push-messages, the Generic Push Layer, is defined.
4.1.1
GBA-Push system overview

The system overview in this clause gives a high level description of the general ideas behind the GBA-Push system solution and the features it offers.

The generic use case considered is that first a NAF initiates establishment of a shared Security Association (SA) between itself and a UE. This is done by the NAF pushing all the information, the so called GBA-PUSH-INFO (GPI), needed for the UE to set-up a SA. The key in this SA is a NAF-key and the GPI is requested from the BSF. The NAF-key is generated as defined in GBA, TS 33.220. After the SA establishment the NAF can send protected Push-messages to the UE. If a return channel exists, the UE can also use the established SA to protect response messages to the initiating NAF if defined by the Ua application..

GBA-Push is aimed for both GBA_U and GBA_ME environment.

The GBA-Push mode of operation utilizes a so called Disposable-Ks model. In the Disposable-Ks model, a Ks is only used once to derive a single set of NAF-keys (and other keying material used to protect the GPI during transport). After the NAF-key derivation, the Ks is erased or its further usage is denied implicitly, which means that no reuse of Ks is possible and that a new GBA-Push operation is needed whenever a new set of NAF-keys for another NAF is needed..

NOTE 1:
A generated NAF-key can be used to protect multiple Push-messages from the NAF to the UE. NAF-keys from different NAFs can coexist.

Also, with Disposable-Ks model the existing NAF-keys established as specified in normal GBA will be unaffected, i.e., applications using NAF-keys can continue to use the keys as long as they are valid. Also, with GBA_ME, GBA Push procedure does not cause the Ks established previously be invalidated. With GBA_U, the existing Ks must be invalidated in order to enforce the Disposable-Ks model as according to TS 33.220 the Ks on the UICC will be overwritten when GBA-Push procedure is executed with GBA_U aware UICC. In this case, the ME will deny effectively any further NAF-key derivation using the Ks on the UICC that was established using GBA-Push, and thus enabling the Disposable-Ks model in the GBA_U case as well.

The Disposable-Ks model is chosen as the main mode of operation as analysis has shown that the single Ks model suffers from certain synchronization problems. The rationale behind this choice is given in Annex A.

The transport of GPI from a NAF to a UE is not standardized;

NOTE 2: Examples of possible methods are SMS, MMS, SIP MESSAGE, UDP or broadcast. For the transport of GPI to UEs, a NAF needs to know the message transport addresses to use for the chosen transport method. For SMS and MMS the transport address is the MSISDN, for SIP MESSAGE it is an IMPU and for UDP an IP-address. For broadcast delivery the UE transport addresses could be any public identity associated with a UE or an identity agreed between the NAF and the UE.

Resending of messages is a standard method to get “reliability” for delivery over unreliable channels like e.g. SMS or broadcast. Hence the GBA-Push shall allow that GPI is retransmitted several times including cases when it is sent every time a payload is pushed to the UE. Thus the system shall handle retransmissions of GPI efficiently.
The SA defined by the GPI, is based on the use of a particular UICC application (USIM/ISIM). Sometimes the transport method / address indicate to the UE which UICC application to use but in other cases it has to be explicitly signaled. If MSISDN is used as delivery address then the USIM associated with that MSISDN should be used. This is so because a SMS will only reach the UE when the USIM corresponding to the MSISDN is active in the UE. When an IMPU is used as destination address, the corresponding ISIM should be used. For UDP and broadcast the USIM/ISIM application to use has to be indicated in the GPI or be agreed upon out of band.

To protect user privacy, parts of the GPI shall be confidentiality protected, in particular the identity of the initiating NAF when broadcast transport is used. For unlinkability between NAF to UE and UE to NAF messages a separate SA identity for UE to NAF security is assigned by the NAF and be included in the confidentiality protected part of the GPI. To help prevent serious effects of DoS attacks and thwart some NAF misuse of GBA-Push the GPI also needs to be integrity protected. The integrity protection of GPI will also prevent that incorrect GBA Push security associations are accepted by the UE as it will detect transmission errors. The keys used for the optional confidentiality protection and the mandatory integrity protection are derived from the Ks defined by the GPI.

Editors NOTE: It has to be verified that GPI confidentiality protection is mandatory.

4.2
GBA Push Architecture

4.2.1
Description and Rationale

The GBA Push functionality builds on the architecture and functionality provided by TS 33.220 [1]. The main difference from TS 33.220 is the definition of a new reference point between the BSF and the NAF, as indicated in figure 4.1, which is a modified version of figure 4.1 in TS 33.220 [1].

[image: image2.wmf]

UE

HSS

BSF

Ua

Zh

Zpn

NAF

SLF

Dz

Upa

Figure 4.1: Simple network model for pushed bootstrapping via NAF

The GBA Push architecture outlined in Figure 4.1 is based on the following rationales:

-
The Ua reference point protection shall be unaffected i.e. it should not make any difference for Ua-protocols whether the GBA-keys used for protection are UE-initiated or push-initiated.

-
In viewpoint of the BSF, the NAF is still the initiating entity of a key retrieval, but now in situations where the NAF has no B-TID (but the UE may have a valid GBA session). A Zpn reference point is introduced, based on the Zn-reference point protocols defined by TS 33.220 [1].

-
A new reference point Upa is introduced between the NAF and the UE. All messages over Upa are network initiated. Upa defines the GBA-PUSH-INFO.

NOTE 1: For Upa it is anticipated that the GPI will not be transported over HTTP as this would require the UE to run an HTTP server. This is different compared to the UE initiated Ub reference point, which uses HTTP Digest AKA.

-
The NAF receives the GBA-PUSH-INFO intended for the UE from the BSF over the Zpn reference point and forwards it over Upa.

Editor's Note:
SA3 needs to define the information that needs to be transferred on Upa. CT1 needs to define the encapsulation of this authentication information independent of the Ua-application it is used for.

4.2.2
GBA-Push keying model

The Disposable-Ks model is the only available keying model for GBA-Push. It is the keying model selected for GBA-Push main mode of operation.

The Disposable-Ks model is operationally independent of normal GBA. In GBA_ME, a Ks generated by a bootstrapping according to TS 33.220 [1] will be unaffected by a GBA-Push bootstrapping and the generated Ks can be used as normal. In GBA_U, a Ks generated by bootstrapping according to TS 33.220 [1] will be invalidated by a GBA-Push bootstrapping, and a new Ks needs to be established using normal GBA if an application requires NAF-keys after GBA-Push bootstrapping. The applications can continue using NAF-keys derived earlier from this invalidated Ks, i.e., applications already using NAF-keys are unaffected of the GBA-Push bootstrapping run.
The Disposable-Ks model only supports generation of a so called NAF SA’s, shared by a UE and a NAF. There will be no generally usable BSF SA established between the UE and the BSF. Only a temporary BSF SA will exist and it will be used solely for securing the GPI. In the Disposable-Ks model, Ks is derived as specified in TS 33.220 [1].

A NAF SA contains a NAF-key, key life-time and other information as defined in Clause 5. xx.

Editors NOTE: To be defined

A BSF SA contains a Ks, key lifetime, and other information as defined in Clause 5.xx.

Editors NOTE: To be defined

	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

4.3
GBA Push Requirements

Editor's note:
The requirements need to be kept aligned with TS 33.220. The version used in this section is 7.5.0.

4.3.1
General GBA Push Requirements

The following general requirements are applicable to enable GBA Push:

-
A network entity, a so called Push NAF, shall be able to securely trigger the generation of a security association between itself and a UE.

-
A Push-NAF shall be able to use channels with deferred delivery of messages when triggering the generation of a security association.

- A Push-NAF shall be able to use public identities when referencing a UE in a request towards the BSF.

Editors NOTE: This is a new requirement and has to be verified. See also requirements on BSF.

-
The generation of the security association in the UE is triggered by the reception of a message pushed to the UE from the Push-NAF.
-
The UE should not have to contact any network entity to be able to correctly generate the security association.

4.3.2
Requirements on HSS

The requirements for HSS are in TS 33.220 [1].

4.3.3
Requirements on BSF

In addition to the BSF requirements in section 4.2.1 of TS 33.220 [1] following requirements apply:

-
The BSF shall be able to find the private identity corresponding to a public identity.

Editors NOTE: This requirement on the BSF to resolve the private identity from the public identity is ffs

-
The BSF shall be able to index existing Ks’s based on private user identity.

-
The BSF shall be able to generate GPI based on a fresh Ks as well as on an already existing Ks

-
The BSF shall integrity protect the GPI.

-
The BSF shall confidentiality protect certain fields in the GPI.

Editors NOTE: This list of requirements has not been finalized

4.3.4
Requirements on UE

In addition to the UE requirements in section 4.2.4 of TS 33.220 [1] following requirements apply:

-
The UE shall be able to store and handle NAF SAs

A GBA-aware ME shall support GBA-Push as well as GBA-U and GBA-ME.

4.3.5
Requirements on Reference Point Upa

The requirements for reference point Upa are:

-
The UE shall be able to validate that the GPI comes from an authorized source (BSF) based on AKA

-
The UE shall be able to determine the UICC application used for bootstrapping.
NOTE 1:
The Push-NAF is indirectly authenticated by its knowledge of Ks_(ext/int)_NAF (i.e., BSF has authenticated the NAF).

-
The NAF and the UE shall be able to establish a shared NAF SA

-
The NAF and the BSF shall be able to send NAF SA identifier information.

-
the BSF shall be able to indicate to the UE the lifetime of the key material. The key lifetime sent by the BSF over Upa shall indicate the expiry time of the key.

-
The information sent from the BSF to the UE used to establish a security association shall be integrity protected.

-
Part of the GPI shall be confidentiality protected..NOTE 2:
The requirements for the Upa reference point are based on the requirements of the Ub reference point c. f. TS 33.220 [1].

4.3.6
Requirements on Reference Point Zh

The requirements for reference point Zh are in TS 33.220 [1].

4.3.7
Requirements on Reference Point Zpn and Zpn'

Editor's Note:
Some further work on clarity and further study of the details needed.

The requirements for reference point Zpn are:

-
mutual authentication, confidentiality and integrity shall be provided;

-
If the BSF and the NAF are located within the same operator's network, the DIAMETER based Zpn reference point shall be secured according to NDS/IP [3];

-
If the BSF and the NAF are located in different operators' networks, the DIAMETER based Zpn' reference point between the Zn-Proxy and the BSF shall be secured using TLS as specified in RFC 2246 [4];

NOTE 1:
Annex E of TS 33.220 [1] specifies the TLS profile that shall be applied.

Editor’s Note:
A harmonization of TLS profiles in 3GPP Security for Rel8 may require change of references here, needs to be checked before finalization of Rel8.

-
An Web Services based Zpn/Zpn' reference point shall be secured using TLS as specified in RFC 2246 [4];

NOTE 2:

Annex E of TS 33.220 [1] specifies the TLS profile that shall be applied.

-
The BSF shall verify that the requesting NAF is authorised to obtain the key material or the key material and the requested USS;

-
The NAF shall be able to send a key material request to the BSF, containing NAF's public hostname corresponding to the use over Upa reference point. The BSF shall be able to verify that a NAF is authorized to use this hostname, i.e. the FQDN seen by UE on Upa reference point;

NOTE 3:
This requirement is a modified requirement from [1] that has been adapted for the GBA Push purpose.

-
The BSF shall be able to send the requested key material to the NAF;

-
The NAF shall be able to get a selected set of application-specific USSs from the BSF, depending on the policy of the BSF and the application indicated in the request from the NAF over Zpn;

-
The NAF shall be able to indicate to the BSF the single application or several applications it requires USSs for;

NOTE 4:
If some application needs only a subset of an application-specific USS, e.g. only one IMPU, the NAF selects this subset from the complete set of USS sent from BSF.

-
The BSF shall be able to be configured on a per NAF or per application basis

-
Whether private subscriber identity, i.e. IMPI, may be sent to the NAF;

-
Whether a particular USS may be sent to a NAF;

-
If a NAF requests USSs from the BSF and they are not present in subscriber's GUSS, it shall not cause an error, provided the conditions of the local policy of the BSF are fulfilled. The BSF shall then send only the requested and found USSs to the NAF;

-
It shall be possible to configure a local policy as follows: BSF may require one or more application-specific USS to be present in a particular subscriber's GUSS for a particular requesting NAF, and to reject the request from the NAF in case the conditions are not fulfilled. In order to satisfy this local policy, it is not required that the NAF requests the USSs over the Zpn reference point, which the BSF requires to be present in the GUSS, rather it is sufficient that the BSF checks the presence of the USSs locally. It shall also be possible to configure the BSF in such a way that no USS is required for the requesting NAF;

NOTE 5:
For more information on the local policy usage, see Annex J of TS 33.220 [1].

-
The NAF shall be able to request the life-time that a NAF SA should have.

-
The BSF shall be able to indicate to the NAF the bootstrapping time and the lifetime of the key material. The key lifetime sent by the BSF over Zpn shall indicate the expiry time of the key, and shall be identical to the key lifetime sent by the BSF to the UE over Upb.

Editor's note:
What data is send over Upa are subject for further study.

NOTE 6:
This does not preclude a NAF to refresh the NAF SA before the expiry time according to the NAF's local policy.

Editors NOTE: Is it a requirement that a NAF shall be able to delete a NAF SA?

NOTE 7:
If one or more of the USSs that have been delivered to the NAF has been updated in subscriber's GUSS in the HSS, this change is propagated to the NAF the next time it fetches the USS from the BSF over Zpn reference point (provided that the BSF has updated subscriber's GUSS from the HSS over Zh reference point).

-
NAF shall be able to indicate to BSF the protocol identifier of Ua security protocol for which it requires the key material (cf. Annex H of TS 33.220 [1]).

-
The NAF shall be able to indicate the user identity to the BSF. Both public and private identities shall be allowed.

Editors NOTE: This requirement must be verified.

NOTE 8:
The requirements for reference point Zpn are based on the Zn-reference point requirements as described in TS 33.220 [1].

-
The NAF shall be able to indicate whether the NAF-key in the NAF SA shall be a Ks_int_NAF or a Ks_ext_NAF key.

4.3.8
Requirements of Zn-Proxy
In the case that push NAF is operated in another network other than home network, this visited NAF shall use a Zn-proxy of the NAF's network to communicate with subscriber's BSF (i.e. home BSF). The requirements for the Zn proxy are described in TS 33.220 [1].

4.3.9
Requirements on Reference Point Ua

The requirements for reference point Ua can be found in TS 33.220 [1].

Editors NOTE: It shall be checked that other SA identifiers than standard B-TID can be used as GBA-Push will allow arbitrary formats for uplink SA identifiers.

-
It shall be possible to use SA identifiers in the uplink that are unlinkable with the push message establishing the used NAF SA.

4.3.10
Requirements on SA identifiers

4.3.10.1
Requirements on Bootstrapping Transaction Identifier

Bootstrapping transaction identifier (B-TID) shall allow binding the subscriber identity to the keying material in reference points Ua, Upa and Zpn in the Single-Ks model.

NOTE 1: Other SA identifiers may also be used as defined in 4.3.8.1 when SA is generated by GBA-Push

Requirements for B-TID are:

-
B-TID shall be globally unique;

-
B-TID shall be usable as a key identifier in protocols used in the reference point Ua;

-
The UE shall be able to identify the BSF from the B-TID.

NOTE 2:
NAF can remove the security association based on deletion conditions after the key has become invalid.

NOTE 3:
Care has to be taken that the parallel use of GBA and non-GBA authentication between UE and NAF does not lead to conflicts, e.g. in the name space. This potential conflict cannot be resolved in a generic way as it is dependent on specific protocol and authentication mechanism used between UE and application server. It is therefore out of scope of this specification.
For the example of HTTP Digest authentication used between UE and NAF, parallel use is possible as the following applies: <username,password>-pairs must be unique to one realm only. As the NAF controls the realm names, it has to ensure that only the GBA based realm is named with the reserved 3GPP realm name. In the special case that the NAF wants to allow non GBA based authentication in the GBA realm also, it has to ensure that no usernames in the format of a B-TID are used outside GBA based authentication.

NOTE 4:
The requirements for B-TID are based on those in TS 33.220 [1].

4.3.10.2
Requirements on NAF and BSF SA identifiers

Editors NOTE: This clause shall list the requirements for uplink and downlink SA identifiers used for identifying SA’s generated by GBA-Push.

4.3.11
Requirements on Reference Point Dz

This interface between BSF and SLF is used to retrieve the address of the HSS and the requirements are the same as described in TS 33.220 [1]. This interface is not required in a single HSS environment.

4.3.12
Other Requirements

-
The UE and the NAF shall be able to use bootstrapped NAF specific keys Ks_(ext/int)_NAF on Ua reference point independent on whether the bootstrapping has been performed via Ub or Upa reference point;

NOTE 1:
When a GBA-push mechanism was used to create a BSF SA between the UE and the BSF it shall not restrict a NAF to use the derived security association for network initiated protocols only. Analogously, the fact that UE initiated GBA was used shall not restrict a NAF to use the derived security association for UE-initiated protocols only (Ua reference point).

-

-
The NAF shall be able to indicate to the UE which type of NAF SA that shall be generated, i.e. the type of NAF-key (Ks_ext_NAF or Ks_int_NAF) in the SA.

NOTE 2:
The key indication in the push message over Ua reference point has the same purpose as the key indication used over Zn reference point within TS 29.109 [x].

- The transfer of the NAF_Name and other information (e.g. Prot_Id, P-TID,..) in GPI shall be confidentiality protected for privacy reasons.

Editors NOTE: That GPI confidentiality protection is mandatory has to be verified.

-
The mechanism to generate keys for confidentially protection (and integrity protection) of GPI shall be based on GBA-keys in order to avoid pre-configuration of keys.

-
The NAF shall be unable to obtain or generate the keys that protect GPI.

5
GBA Push Function

5.1
GBA Push Message Flow

Figure 5-1 outlines the message flow for the case, where the NAF wants to send data to the UE, but has no valid NAF specific keys available i.e. no Ks_(int/ext)_NAF available The reason that the NAF has to initiate NAF SA establishment can be that the UE may be unable to perform a bootstrapping procedure directly with the BSF or that the UE should not perform a bootstrapping procedure directly with the BSF. The processing also needs to handle use of the Single-Ks model when its use is allowed.
NOTE 1:
An example use case when the UE is unable to perform a bootstrapping procedure is in a broadcast scenario.

[image: image3]
Figure 5-1: High level message flow description for bootstrapping through the NAF

A precondition for use of GBA-Push is that the UE is registered with the Push-NAF for the intended service. Annex B describes the information that the Push-NAF must register to be able to deliver the push service and the information that has to be agreed between the UE and the Push-NAF.
Processing and message flow:

1.
A NAF needs to establish a shared NAF SA with a UE which is registered for Push services. It knows the identity of subscriber. The Push-NAF performs the processing described in clause 5.1.2 and generates the GPI Request.

2.
The NAF sends the GPI Request to the BSF.
3.
Upon receiving the request from the NAF, the BSF performs the processing steps 1 – 5 described in clause 5.1.3.
4.
The BSF fetches a new AV and subscriber’s GUSS from the HSS. The GUSS contains subscriber security related information e.g. UICC GBA awareness and USS elements.

5
The HSS sends the AV and the GUSS to the BSF.

6.
When the BSF receives the AV Response from the HSS, it performs the processing steps 6 – 9 described in clause 5.1.3.

7.
The BSF sends the GPI Response to the NAF .

8.
The NAF stores the received information together with other user information in a NAF SA.
9.
The NAF then forwards the GPI to the UE over Upa using the selected transport mechanism and the given transport address.
10.
When the UE receives the message containing the GPI, it processes the GPI as defined in clause 5.1.4 and stores the corresponding NAF SA.
The NAF is now ready to use the established NAF SA. However, how the NAF SA is used on Ua is out of scope for this specification. A typical example would be to protect Push-messages. In such a case the applied message protection would be based on the NAF-key in the NAF SA and the NAF SA would be identified by including a downlink SA identifier in the message.

NOTE 2: In TS 33.gpl two generic Push-message formats are defined. The basic format is for independent delivery of Push-messages, i.e. the GPI is sent first followed by independent Push-messages. The second format is for combined delivery of GPI and Push-message payload.

Editors NOTE: Move information about how GPI is delivered and TS 33.gpl into into clause 4.

5.1.2
NAF processing before issuing GPI request

The NAF reads its available data associated with the user and the application for which the security association shall be established. The NAF then determines the Ua protocol identifier to send in the request to the BSF. It also determines the required life-time of the security association. The NAF then generates the GPI request containing the following information:

Editors NOTE: Would a table be a better format for the parameter list below

Ver:

Version of GPI requested.

NOTE 1: A version number is included to allow future introduction of extensions and changes to GPI request

UE_Id:
Identifier for the UE. This may be a private or a public identifier.

Editors NOTE: The UE_Id mapping to IMPI is for ffs, see also BSF requirements

NAF_name:
NAF FQDN

Prot_Id:
Ua security protocol identifier.

NOTE 3: The NAF_Name and the Prot_Id together form the NAF_ID as defined in TS 33.220. In GBA-Push the NAF-Name may also be used to identify the URL to which possible response messages from the UE should be directed.

Editor's note: It is FFS whether only NAF_ID is sent, or NAF_name and Prot_Id separately.

P-TID:
NAF SA identifier to be used by UE when responding to NAF. The identifier is included only to enable that it is confidentiality protected in the GPI. See also clause 5.2.2. and 5.2.4.

Editor's NOTE: It is FFS whether P-TID is needed or whether B-TID should be used.

Int/Ext
Indication if a Ks_int_NAF or a Ks_ext_NAF/Ks_NAF is requested. In GBA-Push only one one NAF-key is generated, i.e. either a Ks_int_NAF or a Ks_(ext_)NAF key.

Key_LT
Requested NAF-key lifetime. If in the Single-Ks model a BSF SA is generated it will get the same lifetime.

E/P:

Indication on use of GPI confidentiality protection.

Editors NOTE: It is discussed to make GPI confidentiality protection mandatory.

Priv_Id:
Indication if UE private identity is requested.

GSID:List:

GSIDs of USS request information.

5.1.3
BSF processing of NAF GPI request

Editor's NOTE: The sequence flow below needs to be updated depending on decisions made by SA3.

When the BSF receives the GPI request from the NAF it performs the following processing steps:

1.
The BSF checks that it supports the GPI version requested. If it doesn’t an error message is generated and the processing is terminated.

The BSF checks that the NAF is authorized to use the NAF_name and Prot_Id provided in the GPI request. If it isn’t, an error message is generated and the processing is terminated.

The BSF checks that the requested Key_LT in the GPI request is less than the allowed max value in the system. If the value is greater than the max value an error message is generated and the processing is terminated.

2.
The BSF queries its database to find out if the UE_Id is registered and if a valid BSF SA already exists. If a valid BSF SA exists and the type of the UICC of the subscriber is GBA_U, the BSF shall invalidate this BSF SA. In other cases, the BSF SA shall remain in BSF's database.
Editors NOTE: The UE_Id mapping to IMPI is for ffs, see also BSF requirements

3.
If the UE_Id is a public identity the BSF (by unspecified methods) retrieves the corresponding private identity (i.e., IMPI or IMSI).

Editors NOTE: Once again, The UE_Id mapping to IMPI is ffs.

4.
If needed, the BSF retrieves the HSS address for the given UE using the SLF.

5.
The BSF requests an AV, and subscriber’s GUSS from the HSS.

Editors NOTE: Could possibly need further explanation

The Ks, the Key_LT, the B-TID and the GUSS are written to the temporary BSF SA. The P-TID in the response is set to the BSF FQDN.
6.
The BSF checks if an internal NAF-key has been requested and verifies that this is compatible with the GBA awareness of the UICC, i.e if the UICC is GBA_U or GBA_P aware. If it isn’t, an error message is generated and the processing is terminated.

The BSF may use USS for policy management and key selection indication as described in TS 33.220 [1].
7.
The BSF generates the requested NAF-key according to provided NAF_ID (i.e., NAF_name and Prot_Id).

8.
The BSF generates the GPI. The parameters of the GPI are defined in clause 5.2.1. The generation of the GPI includes performing confidentiality protection (if requested by NAF) and calculation of the GPI MAC. GPI protection is described in clause 5.3.

Editors NOTE: It is discussed to make GPI confidentiality protection mandatory
Editors note: Correct version of AUTN(*) must be inserted in GPI.

9.
The BSF sends its response to the NAF, and deletes the temporary BSF SA that was created in step 5.. The response contains GPI, plaintext version of confidentiality protected parameters in GPI, the NAF-key, the requested USSs and user’s private identity (if allowed by BSF local policy). The GPI response contains the following information (matching the version of the GPI request)

[GPI]:
The GPI is always included except when the NAF-key is based on reuse of an already existing BSF SA.

[RAND]:
The RAND is only included in the response when the NAF-key is based on reuse of an already existing BSF SA. It is otherwise accessible by the NAF in the GPI. It isneeded by the NFA to form NAF SA and BSF SA identifiers.

NAF-Key:

The generated NAF-key.

NAF_Name:

The NAF_Name used in the NAF-key derivation

Prot_Id:

The Ua security protocol identifier used in the NAF-key derivation

Editors NOTE: It is ffs if the NAF_Name and the Prot_Id are needed in the GPI Response

Key_Type:

The type of key generated (ext/int) and Key model (Single/Disposable)

Key_LT:

Key lifetime.

P-TID:
If the Single-Ks model is used, the P-TID contains the FQDN of the BSF. Otherwise the proposed NAF SA identity from the request is returned. For more information regarding the use of P-TID see also clauses 5.2.2 and 5.2.4.
UE_priv_Id:
User private identity. It is only included in the response if the USS indicates that the NAF is authorized to receive that information.

USS:

USS information
5.1.4
UE processing of GPI

Editor's NOTE: The sequence flow below needs to be updated depending on decisions made by SA3.

When the UE receives a GPI it performs the following steps.

1. UE receives GPI.

2. If the App _Lbl in the GPI is undefined, the UE determines the UICC application to use from used delivery channel of the GPI (e.g. SMS, MMS, SIP Message, etc) or from other context information and updates the App_Lbl.

3. UE checks if it has received the same GPI earlier. The parameters of the GPI are defined in clause 5.2.1

a. If the GPI corresponds to an already existing NAF SA, then the GPI is silently dropped and the GPI processing terminated.

b. If the GPI corresponds to an incomplete NAF SA, the Ks indicated by GPI is activated and processing continues from step 5 (step 7 describes how an incomplete SA may appear)

NOTE 1: To handle retransmissions efficiently the UE should only invoke a UICC application after checking that the GPI doesn’t correspond to an already existing NAF SA. The check can be done by comparing the received (RAND, AUTN(*), Appl_Lbl) triplet with the corresponding triplets associated with existing NAF SAs.

4. The UE reads the GPI version number and selects the corresponding GPI MAC and ciphering algorithm. If the UE doesn’t support this GPI version, the GPI is silently dropped and the GPI processing is terminated.

5. The UE checks that the GPI label indicates a UICC application that shall be used with this GPI.

a. If the UICC application cannot be activated the GPI is silently dropped and the GPI processing ends.

b. If the UICC application is active or can be activated the UE initiates derivation of the Ks by issuing an Authenticate command to the UICC. The type of Authenticate command is determined by the indicated UICC/ME-mode in the GPI, i.e. if GBA_U or GBA_ME should be used. If the authenticate commands returns a failure the GPI processing ends.

If the UICC is GBA_U aware, the generated Ks will effectively be generated on the UICC and not deleted until next Ks is established using Authenticate command. The ME shall restrict any further NAF-key generation procedures with the UICC after the particular NAF SA has been generated associated with this GBA-Push procedure.

6. The UE initiates the derivation of the GPI keys and other parameters needed for integrity checking and deciphering of the confidentiality protected parts. This processing is defined in clause 5.3

Editors NOTE: Confidentiality protection may become mandatory.

Editors NOTE: It is ffs to decide upon which MAC and ciphering algorithms to us in GPI version 1
7. The UE checks the integrity of the GPI message. If the integrity check fails, the following procedure is followed:

a. with non GBA_U aware UICC, the derived Ks is stored in an “abused” NAF SA and the SA is marked as incomplete and the GPI processing ends.

b. with GBA_U aware UICC, the Ks has already been stored (authenticate command). The BSF SA identity, which normally would be B-TID (see TS 33.220 [1]) is defined as RAND@’undefined’ and stored in the BSF SA. The GPI processing is terminated.

8. If the E/P indicates that confidentiality protection has been applied, the ME deciphers the confidentiality protected parts using the algorithms defined by the GPI version number and the keying material derived from Ks. This means that the NAF-key used is an external NAF-key.

Editors NOTE: Confidentiality protection may become mandatory.
9. If the UE initiates the derivation of the Ks_(int/ext)_NAF using the NAF_ID received as specified in TS 33.220 [1].. The NAF SA consisting of the NAF-key and associated parameters are stored.

a.
b.
If the GPI contains a NAF_Id and a Prot_Id, then a corresponding NAF-key of type Key_Type is generated and a NAF SA consisting of the NAF-key and associated parameters is stored in the ME.

5.2 Data objects

5.2.1
GBA Push Information (GPI)
The definition of GPI information is depicted in figure 5-2. The list below the figure gives definitions and explanations. Note that GPI does not contain any user identity or transport address as these entities are not needed by the GBA processing in the UE. They are only relevant for the transport of the GPI.

Editor’s NOTE:
The content of the terminal management information is for further study.

[image: image4]
Figure 5-2. GPI information and format.

Ver:
Version of GPI definition. We need a version number if we sometime in the future need to
change algorithms for integrity and confidentiality protection or do other updates.

RAND:

As defined in UMTS AKA

AUTN(*):
As defined in UMTS AKA and GBA

App_Lbl:
Label identifying the UICC application to use. This variable may be left empty if the UICC application to use is evident from context or agreement.

TIM:

Terminal management info

Editors NOTE: The content and handling of the Terminal Management Info need to be defined
U/M:
Indicates if AUTN(*) is AUTN or AUTN* which in turn shows if the UICC supports GBA_U
E/P:

Indicates if confidentiality protection is active.

NAF_Name:
NAF FQDN

Prot_Id

Ua security protocol identifier.

Editors NOTE:
It is ffs if also the B-TID needs no be included here.as in the future releases of GAA the B-TID generation could be based on something else than RAND@FQDNofBSF. If it is included it should be possible to apply confidentiality protection.
Key_Type:
The type of key generated (ext/int)
Key_LT:

NAF SA lifetime.
P-TID:
Information used to form the identity of the NAF SA to be used by any uplink security mechanisms based on the established security association. The SA identity equals the P-TID.

MAC:

Message Authentication Code over GPI

5.2.2
SA types

GBA-Push needs to handle two types of security associations: NAF SAs and BSF SAs. A NAF SA holds a SA for a NAF key (Ks_(ext/int)_NAF) and a BSF SA holds a security association for a Ks. The SAs need to have unique identities. In GBA-Push, the BSF SA is always temporary, it is used to generate one NAF SA and then deleted. The NAF SA shall exist as long as the key lifetime indicates or until either UE or NAF decides to invalidate it.

As mentioned in the introduction, identifiers for the NAF SAs may differ in downlink and the uplink direction to support unlinkability between uplink and downlink protection measures.

For GBA-Push the NAF SA identifiers are

RAND@’naf’:

Identifies NAF-key SA in the UE (used by NAF).

P-TID:

Identifies NAF-key SA in the NAF (used by UE)

Note: ‘naf’ indicates a string of the characters naf;
Note: P-TID is assigned by the NAF and should be unique within the NAF

5.2.3
BSF SA

As explained in the previous clause, the BSF SA is only a temporary SA. It is used to generate the requested NAF SA after which it shall be deleted and not used for any other derivations in the BSF and in the UE.

5.2.4
NAF SA

The NAF needs to keep some additional information in its NAF SA compared with the UE. The UE identity used in the BSF request for GPI must be stored to allow the NAF to determine from which UE a response is coming and also to link sequences of SA’s for the same UE. The NAF also needs to store the transport address to which the GPI should be directed. If the NAF uses retransmission to achieve better delivery reliability, it also needs to store the encrypted version of the part of the GPI, which is confidentiality protected. It also has to store the GPI MAC.

UE_Id:

The user identity used in NAF request. Optional at UE.

UE_trp:

The transport address used by the NAF when pushing GPI to the UE. Optional at UE.

RAND:
Used in GPI identification. Used as downlink SA identifier for NAF-Key.

AUTN(*):
Used in GPI identification.

App_Lbl:

Used in GPI identification.

Ul_SA_Id:
The uplink SA identity to be used by the UE.

Dl_SA_Id:
The downlink SA identity to be used by the NAF

Ks(_int/ext)_NAF: Generated NAF-key

NAF_Name:
FQDN of NAF for which the NAF-key is valid. Default response address for UE.

Prot_Id:

Ua protocol identifier.
Key_Type:
Type of NAF key: int/ext.

Key_LT:

NAF-key lifetime.

ENC_GPI:
Part of GPI that is encrypted by BSF. Only needed by NAF for retransmission of GPI.

MAC_GPI:
BSF generated MAC on GPI. Only needed by NAF for retransmission of GPI.

Rpl_cnt:
Replay counter. Initiated to zero when SA is defined. Only defined when Prot_Id = GPL.

Rpl_win:

Replay detection window. Only defined when Prot_Id = GPL

Private_Id:
Private UE identity, Only in NAF

USS:

One ore more user security settings. Only in NAF
5.3

GPI Integrity and Confidentiality Protection
5.3.1
General considerations

The integrity and confidentiality protection is between the BSF and the UE. This means that the keying material used for the protection shall not leave the BSF and the UE, in particular the NAF shall not have access to keying material. This gives the property that the NAF or any other party different from the UE and the BSF, will be unable to modify (for integrity protection of GPI) and read the confidentiality protected parts of the GPI.

Transferring in the clear the NAF_Name and Ua protocol identifier together with a long term user identity/ transport address may pose a privacy problem in a broadcast network, or in an access network that has not applied confidentiality protection. Therefore it shall be possible to confidentiality protect the NAF_Name and Ua protocol Id in the GPI. This privacy measure is only mandated for the broadcast of GPI and not for unicast delivery if the transport channel provides confidentiality protection.

Editors NOTE: Should confidentiality protection of GPI be mandatory?

5.3.2
Key material generation

The key material for confidentiality and integrity protection of GPI is derived from the Ks in the BSF and the UE, which the GPI defines. The key derivations use the KDF defined in TS 33.220, Annex B3 in [1] with the below defined modifications for the NAF_ID (variable P3). The following keys are defined:

GPI_INT_Key:
The NAF_ID shall equal ’GPI_integrity’.

GPI_ENC_Key:
The NAF_ID shall equal ’GPI_confidentiality’

GPI_IV:

The NAF_ID shall equal ’GPI_IV’

NOTE : It is appropriate to generate the IV this way as the keys will only be used to protect a single message.

Editors NOTE:
It has to be decided if variable P3 shall be dependent on the FQDN of the BSF that has generated the GPI.

5.3.3
GPI Integrity protection

GPI integrity protection is mandatory.

The GPI integrity protection uses algorithm C-MAC with a 128-bit key. The complete GPI is protected as defined in clause 5.2.1.

The MAC is truncated to 32 bits.

Editor’s NOTE: The details of the integrity protection process needs to be defined. The processing and the used algorithm should be reviewed by SAGE.

5.3.4
GPI Confidentiality protection

GPI confidentiality protection is mandated for the broadcast of GPI and optional for unicast delivery if the transport channel is known to provide confidentiality protection.

Editor’s NOTE: Should confidentiality protection of GPI be mandatory?

The GPI confidentiality protection shall be applied on NAF_name, Prot_Id, Key_Type, Key_LT, and P-TID in GPI. The GPI confidentiality algorithm is AES-CM with a 128-bit key and a 128-bit IV

Editor’s NOTE: The details of the ciphering process needs to be defined. The processing and the used algorithms should be reviewed by SAGE.

'===== END CHANGE ==

Ciphered

Cleartext

Ver RAND AUTN(*) App_Lbl U/M E/D TIM NAF_Name Prot_Id Key_type, Key_LT P-TID MAC

Push message

8. NAF SA Storage

9. GPI Push

8. NAF SA Storage

7. GPI Response: GPI, ...

6. BSF SA processning. NAF SA generation.

5. AV Response: AV, USS,…

4. AV Request: IMPI,…

3. Initial processing of GPI � Request. (see steps 1– � 5 in 5.1.3

1. Generate GPI Request � (see 5.1.2)

2. GPI request: UE_Id,…

HSS

BSF

UE

NAF

3GPP

SA WG3 TD

_1223981403.doc

Dz

SLF

NAF

Zpn

Zh

Upa

Ua

BSF

HSS

UE

