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**************************Begin of Change**************************
4.5.2
Bootstrapping procedures

When a UE wants to interact with a NAF, and it knows that the bootstrapping procedure is needed, it shall first perform a bootstrapping authentication (see figure 4.3). Otherwise, the UE shall perform a bootstrapping authentication only when it has received bootstrapping initiation required message or a bootstrapping negotiation indication from the NAF, or when the lifetime of the key in UE has expired (cf. subclause 4.5.3).

NOTE 1:
The main steps from the specifications of the AKA protocol in TS 33.102 [2] and the HTTP digest AKA protocol in RFC 3310 [4] are repeated in figure 3 for the convenience of the reader. In case of any potential conflict, the specifications in TS 33.102 [2] and RFC 3310 [4] take precedence.
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Figure 4.3: The bootstrapping procedure

A UE shall always include the product token "3gpp-gba-tmpi" in the user agent request-header field when communicating over Ub. A BSF shall always include the product token "3gpp-gba-tmpi" in the server response-header field when communicating over Ub.

NOTE 1a:
According to the HTTP specification RFC 2616 [33], the product tokens may contain any text. They are ignored when unknown by a UE or a BSF.

1.
The UE sends an HTTP request towards the BSF. When a TMPI associated with the IMPI in use is available on the UE, the UE includes this TMPI in the "username" parameter, otherwise the UE includes the IMPI.

2.
The BSF recognises from the structure of the "username" parameter (cf. Annex B.4) whether a TMPI or an IMPI was sent. If a TMPI was sent the BSF looks up the corresponding IMPI in its local database. If the BSF does not find an IMPI corresponding to the received TMPI it returns an appropriate error message to the UE. The UE then deletes the TMPI and retries the request using the IMPI.


The BSF retrieves the complete set of GBA user security settings and one Authentication Vector (AV, AV = RAND||AUTN||XRES||CK||IK) over the reference point Zh from the HSS.


In the case that no HSS with Zh reference point is deployed, the BSF retrieves the Authentication Vector over the reference point Zh' from either an HLR or an HSS with Zh' reference point support.


If the BSF implements the timestamp option and has a local copy of the GUSS for the subscriber that has been fetched from the HSS during a previous bootstrapping procedure, and this GUSS includes a timestamp, the BSF may include the GUSS timestamp in the request message. Upon receiving that timestamp, if the HSS implements the timestamp option, the HSS may compare it with the timestamp of the GUSS stored in the HSS. In this case, if and only if the HSS has done the comparison and the timestamps are equal, then the HSS shall send "GUSS TIMESTAMP EQUAL" indication to the BSF. In any other case, the HSS shall send the GUSS (if available) to the BSF. If the BSF receives "GUSS TIMESTAMP EQUAL" indication, it shall keep the local copy of the GUSS. In any other case, the BSF shall delete the local copy of the GUSS, and store the received GUSS (if sent). 
NOTE 2:
In a multiple HSS environment, the BSF may have to obtain the address of the HSS where the subscription of the user is stored by querying the SLF, prior to step 2.

3.
Then BSF forwards the RAND and AUTN to the UE in the 401 message (without the CK, IK and XRES). This is to demand the UE to authenticate itself.

4.
The UE checks AUTN to verify that the challenge is from an authorised network; the UE also calculates CK, IK and RES. This will result in session keys IK and CK in both BSF and UE.

5.
The UE sends another HTTP request, containing the Digest AKA response (calculated using RES), to the BSF.

6.
The BSF authenticates the UE by verifying the Digest AKA response.

NOTE 3:
The password in "AKAv1" HTTP Digest AKA is in binary format.
7. The BSF generates key material Ks by concatenating CK and IK. The B-TID value shall be also generated in format of NAI by taking the base64 encoded [12] RAND value from step 3, and the BSF server name, i.e. base64encode(RAND)@BSF_servers_domain_name.

NOTE 3a: If the HSS/AuC uses a good random number generator, then the chance of a B-TID collision is practically zero. If such a collision occurs, then the key retrieved by the NAF can have a mismatch with the UE generated NAF key. This will result in a Ua authentication failure which will cause the NAF to once again request the UE to bootstrap which will create a new Ks and a new B-TID.

If the request included the product token "3gpp-gba-tmpi" in the user agent request-header field the BSF shall compute a new TMPI as specified in Annex B.4 and store it together with the IMPI, overwriting a previous TMPI related to this IMPI, if any.

8.
The BSF shall send a 200 OK message, including a B-TID, to the UE to indicate the success of the authentication. In addition, in the 200 OK message, the BSF shall supply the lifetime of the key Ks. The key material Ks is generated in UE by concatenating CK and IK.

9.
Both the UE and the BSF shall use the Ks to derive the key material Ks_NAF during the procedures as specified in clause 4.5.3. Ks_NAF shall be used for securing the reference point Ua.


Ks_NAF is computed as Ks_NAF = KDF (Ks, "gba-me", RAND, IMPI, NAF_Id), where KDF is the key derivation function as specified in Annex B, and the key derivation parameters consist of the user's IMPI, the NAF_Id and RAND. The NAF_Id is constructed as follows: NAF_Id = FQDN of the NAF || Ua security protocol identifier. The Ua security protocol identifier is specified in Annex H. KDF shall be implemented in the ME.

NOTE 4:
If a NAF hosts two or more applications which use the same FQDN and Ua security protocol identifier, they will share the same NAF specific keys. This causes a risk of so called two-time pad which may lead to the situation that the security of these applications is compromised. This can be avoided by running bootstrapping separately to each application or by application specific means, which are however out of the scope of the current specification.

To allow consistent key derivation based on NAF name in UE and BSF, at least one of the three following prerequisites shall be fulfilled:

(1)
The NAF is known in DNS under one domain name (FQDN) only, i.e. no two different domain names point to the IP address of the NAF. This has to be achieved by administrative means.
This prerequisite is not specific to 3GPP, as it is necessary also under other circumstances, e.g. for TLS V1.0 without use of wildcard or multiple-name certificates.

(2)
Each DNS entry of the NAF points to a different IP address. The NAF responds to all these IP addresses. Each IP address is tied to the corresponding FQDN by NAF configuration. The NAF can see from the IP address, which FQDN to use for key derivation.

(3)
Ua uses a protocol which transfers the host name (FQDN of NAF as used by UE) to NAF (e.g. HTTP/1.1 with mandatory Host request header field). This requires the NAF to check the validity of the host name, to use this name in all communication with UE where appropriate, and to transfer this name to BSF to allow for correct derivation of Ks_NAF.
In case of a TLS tunnel this requires either multiple-identities certificates or the deployment of RFC 3546 [9] or other protocol means with similar purpose.


The UE and the BSF shall store the key Ks with the associated B-TID for further use, until the lifetime of Ks has expired, or until the key Ks is updated or until the deletion conditions are satisfied (see 4.4.11).

NOTE 5: 
The following case can occur. The UE contacts the NAF1 and generates keys for NAF1. Then the UE contacts NAF2 and generates NAF2 keys. Then NAF1 requests then keys from the BSF, but the old key keys could have been overwritten due to NAF2 having initiated a new GBA run. The UE initiates a new GBA-run (B-TID2) after handling NAF1 (B-TID1) and starting the request to the NAF1 over Ua. One possible reason is that B-TID1 lifetime was about to expire. It is very likely that the GBA-run takes much more time (HSS involvement) then the Zn/Ua request such that the B-TID1 request at the BSF should arrive in most cases earlier at the BSF. So this out-of-order case should be very rare. This error situation will be signalled back to the UE, such that the most recent B-TID2 will also be used for NAF1. This out-of order case is self-correcting, since if the B-TID1 is unknown in the BSF, then the Ua request will fail and the UE can send a new request using B-TID2.

If the response included the product token "3gpp-gba-tmpi" in the server response-header field the UE shall compute the TMPI as specified in Annex B.4 and store it together with the IMPI, overwriting a previous TMPI related to this IMPI, if any.

**************************Next Change**************************
5.3.2
Bootstrapping procedure

The procedure specified in this clause differs from the procedure specified clause 4.5.2 in the local handling of keys and Authentication Vectors in the UE and the BSF. The messages exchanged over the Ub reference point are identical for both procedures.

When a UE wants to interact with a NAF, and it knows that the bootstrapping procedure is needed, it shall first perform a bootstrapping authentication (see figure 5.1). Otherwise, the UE shall perform a bootstrapping authentication only when it has received bootstrapping initiation required message or a bootstrapping renegotiation indication from the NAF, or when the lifetime of the key in UE has expired (see clause 5.3.3).

NOTE:
The main steps from the specifications of the AKA protocol in TS 33.102 [2] and the HTTP digest AKA protocol in RFC 3310 [4] are repeated in figure 5.1 for the convenience of the reader. In case of any potential conflict, the specifications in TS 33.102 [2] and RFC 3310 [4] take precedence.
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Figure 5.1: The bootstrapping procedure with UICC-based enhancements

A UE shall always include the product token "3gpp-gba-tmpi" in the user agent request-header field when communicating over Ub. A BSF shall always include the product token "3gpp-gba-tmpi" in the server response-header field when communicating over Ub.

NOTE a:
According to the HTTP specification RFC 2616 [33], the product tokens may contain any text. They are ignored when unknown by a UE or a BSF.

1.
The ME sends an HTTP request towards the BSF. When a TMPI associated with the IMPI in use is available on the UE, the UE includes this TMPI in the "username" parameter, otherwise the UE includes the IMPI.

2.
The BSF recognises from the structure of the "username" parameter (cf. Annex B.4) whether a TMPI or an IMPI was sent. If a TMPI was sent the BSF looks up the corresponding IMPI in its local database. If the BSF does not find an IMPI corresponding to the received TMPI it returns an appropriate error message to the UE. The UE then deletes the TMPI and retries the request using the IMPI.


The BSF retrieves the complete set of GBA user security settings and one Authentication Vector 
(AV, AV = RAND||AUTN||XRES||CK||IK) over the Zh reference point from the HSS. 


If the BSF implements the timestamp option and has a local copy of the GUSS for the subscriber that has been fetched from the HSS during a previous bootstrapping procedure, and this GUSS includes a timestamp, the BSF may include the GUSS timestamp in the request message. Upon receiving that timestamp, if the HSS implements the timestamp option, the HSS may compare it with the timestamp of the GUSS stored in the HSS. In this case, if and only if the HSS has done the comparison and the timestamps are equal, then the HSS shall send "GUSS TIMESTAMP EQUAL" indication to the BSF. In any other case, the HSS shall send the GUSS (if available) to the BSF. If the BSF receives "GUSS TIMESTAMP EQUAL" indication, it shall keep the local copy of the GUSS. In any other case, the BSF shall delete the local copy of the GUSS, and store the received GUSS (if sent).


The BSF can then decide to perform GBA_U, based on the user security settings (USSs). In this case, the BSF proceeds in the following way:
-
BSF computes MAC* = MACÅ Trunc(SHA-1(IK))

NOTE 1:
Trunc denotes that from the 160 bit output of SHA‑1 [21], the 64 bits numbered as [0] to [63] are used within the * operation to MAC.
The BSF stores the XRES after flipping the least significant bit.

NOTE 2:
In a multiple HSS environment, the BSF may have to obtain the address of the HSS where the subscription of the user is stored by querying the SLF, prior to step 2.

3.
Then BSF forwards the RAND and AUTN* (where AUTN* = SQN ( AK || AMF || MAC*) to the UE in the 401 message (without the CK, IK and XRES). This is to demand the UE to authenticate itself.

4.
The ME sends RAND and AUTN* to the UICC. The UICC calculates IK and MAC (by performing MAC= MAC* ( Trunc(SHA-1(IK))). Then the UICC checks AUTN(i.e. SQN ( AK || AMF || MAC) to verify that the challenge is from an authorised network; the UICC also calculates CK and RES. This will result in session keys CK and IK in both BSF and UICC. The UICC then transfers RES (after flipping the least significant bit) to the ME and stores Ks, which is the concatenation of CK and IK, on the UICC.
5.
The ME sends another HTTP request, containing the Digest AKA response (calculated using RES), to the BSF.

6.
The BSF authenticates the UE by verifying the Digest AKA response.

NOTE 3:
The password in "AKAv1" HTTP Digest AKA is in binary format.
7. The BSF generates the key Ks by concatenating CK and IK. The B-TID value shall be also generated in format of NAI by taking the base64 encoded [12] RAND value from step 3, and the BSF server name, i.e. base64encode(RAND)@BSF_servers_domain_name.

NOTE 3a: If the HSS/AuC uses a good random number generator, then the chance of a B-TID collision is practically zero. If such a collision occurs, then the key retrieved by the NAF can have a mismatch with the UE generated NAF key. This will result in a Ua authentication failure which will cause the NAF to once again request the UE to bootstrap which will create a new Ks and a new B-TID.

If the request included the product token "3gpp-gba-tmpi" in the user agent request-header field the BSF shall compute a new TMPI as specified in Annex B.4 and store it together with the IMPI, overwriting a previous TMPI related to this IMPI, if any.

8.
The BSF shall send a 200 OK message, including the B-TID, to the UE to indicate the success of the authentication. In addition, in the 200 OK message, the BSF shall supply the lifetime of the key Ks.

9.
Both the UICC and the BSF shall use the Ks to derive NAF-specific keys Ks_ext_NAF and Ks_int_NAF during the procedures as specified in clause 5.3.3, if applicable. Ks_ext_NAF and Ks_int_NAF are used for securing the Ua reference point.


Ks_ext_NAF is computed in the UICC as Ks_ext_NAF = KDF(Ks, "gba-me", RAND, IMPI, NAF_Id), and Ks_int_NAF is computed in the UICC as Ks_int_NAF = KDF(Ks, "gba-u, RAND, IMPI, NAF_Id), where KDF is the key derivation function as specified in Annex B, and the key derivation parameters include the user's IMPI, the NAF_Id and RAND. The NAF_Id is constructed as follows: NAF_Id = FQDN of the NAF || Ua security protocol identifier. The Ua security protocol identifier is specified in Annex H. The key derivation parameters used for Ks_ext_NAF derivation must be different from those used for Ks_int_NAF derivation. This is done by adding a static string "gba-me" in Ks_ext_NAF and "gba-u" in Ks_int_NAF as an input parameter to the key derivation function.

NOTE 4:
If a NAF hosts two or more applications which use the same FQDN and Ua security protocol identifier, they will share the same NAF specific keys. This causes a risk of so called two-time pad which may lead to the situation that the security of these applications is compromised. This can be avoided by running bootstrapping separately to each application or by application specific means, which are however out of the scope of the current specification.

To allow consistent key derivation based on NAF name in UE and BSF, at least one of the prerequisites which are specified in clause 4.5.2 shall be met.


The UICC and the BSF store the key Ks with the associated B-TID for further use, until the lifetime of Ks has expired, or until the key Ks is updated or until the deletion conditions are satisfied (see 4.4.11).

If the response included the product token "3gpp-gba-tmpi" in the server response-header field the UE shall compute the TMPI as specified in Annex B.4 and store it together with the IMPI, overwriting a previous TMPI related to this IMPI, if any.

**************************Next Change**************************
I.5.2
Bootstrapping procedures

When a UE wants to interact with a NAF, and it knows that the bootstrapping procedure is needed, it shall first perform a bootstrapping authentication (see figure I.3). Otherwise, the UE shall perform a bootstrapping authentication only when it has received bootstrapping initiation required message or a bootstrapping negotiation indication from the NAF, or when the lifetime of the key in UE has expired (cf. subclause I.5.3).
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Figure I.3: The bootstrapping procedure

1.
The UE sets up a confidentiality-protected TLS tunnel with the BSF. In the set up of the TLS tunnel, the UE shall authenticate the BSF by means of a certificate provided by the BSF. The UE shall check that the "realm" attribute contains the same FQDN of the BSF that was present in the certificate offered by the BSF. All further communication between ME and BSF is sent through this TLS tunnel. The UE now sends an initial HTTPS request.

2.
The BSF requests authentication vectors and GUSS from the HSS over Zh. The HSS returns the complete set of GBA user security settings (GUSS) and one 2G authentication vectors (AV = RAND, SRES, Kc) over the Zh reference point. The BSF discovers that the UE is equipped with 2G SIM by looking at the type of authentication vectors.

If the BSF implements the timestamp option and has a local copy of the GUSS for the subscriber that has been fetched from the HSS during a previous bootstrapping procedure, and this GUSS includes a timestamp, the BSF may include the GUSS timestamp in the request message. Upon receiving that timestamp, if the HSS implements the timestamp option, the HSS may compare it with the timestamp of the GUSS stored in the HSS. In this case, if and only if the HSS has done the comparison and the timestamps are equal, then the HSS shall send "GUSS TIMESTAMP EQUAL" indication to the BSF. In any other case, the HSS shall send the GUSS (if available) to the BSF. If the BSF receives "GUSS TIMESTAMP EQUAL" indication, it shall keep the local copy of the GUSS. In any other case, the BSF shall delete the local copy of the GUSS, and store the received GUSS (if sent).


In the case that no HSS with Zh reference point support is deployed, the BSF requests the authentication vector from either an HSS with Zh' reference point support or an HLR over the Zh' reference point. The HLR or HSS with Zh' reference point support returns one 2G authentication vectors (AV = RAND, SRES, Kc) over the Zh' reference point. The BSF discovers that the UE is equipped with 2G SIM by looking at the type of authentication vectors.


The BSF converts one 2G authentication vector (RAND, Kc, SRES) to the parameter RES. 


RES = KDF (key, "3gpp-gba-res", SRES), truncated to 128 bits


where key = Kc || Kc || RAND and KDF is the key derivation function specified in Annex B of TS 33.220.

The BSF shall also select a 128-bit random number "Ks-input" and set

server specific data = Ks-input 
in the aka-nonce of HTTP Digest AKA, cf. [4]. 

NOTE 1:
"Truncated to 128 bits" means that from the 256 bits output of KDF, the 128 bits numbered as [0] to [127] are used.

NOTE 2:
In a multiple HSS environment, the BSF may have to obtain the address of the HSS where the subscription of the user is stored by querying the SLF, prior to step 2.

3.
The BSF shall forward RAND and server specific data in the 401 message to the UE (without RES). This is to demand the UE to authenticate itself. 

4.
The UE extracts RAND from the message and calculates the corresponding Kc and SRES values. It then calculates the parameter RES from these values as specified in step 2. 

5.
The UE sends another HTTP request, containing the Digest AKA response (calculated using RES as the password) and a cnonce (cf. [3]), to the BSF.

6.
The BSF authenticates the UE by verifying the Digest AKA response. If the authentication fails the BSF shall not re-use the authentication vector in any further communication.

NOTE 3:
The password in "AKAv1" HTTP Digest AKA is in binary format.
7.
The BSF shall generate key material Ks by computing Ks = KDF (key, Ks-input, "3gpp-gba-ks", SRES).
The B-TID value shall be also generated in format of NAI by taking the base64 encoded [12] RAND value from step 3, and the BSF server name, i.e. base64encoded(RAND)@BSF_servers_domain_name.
NOTE 3a: If the HSS/AuC uses a good random number generator, then the chance of a B-TID collision is practically zero. If such a collision occurs, then the key retrieved by the NAF can have a mismatch with the UE generated NAF key. This will result in a Ua authentication failure which will cause the NAF to once again request the UE to bootstrap which will create a new Ks and a new B-TID.
8.
The BSF shall send a 200 OK message, including a B-TID and an authentication-info header (cf. [3]), to the UE to indicate the success of the authentication. In addition, in the 200 OK message, the BSF shall supply the lifetime of the key Ks. 

9.
The UE shall abort the procedure if the server authentication according to [3] fails. If it is successful the UE shall generate the key material Ks in the same way as the BSF.

10.
Both the UE and the BSF shall use the Ks to derive the key material Ks_NAF for use with the procedures specified in clause I.5.3. Ks_NAF shall be used for securing the reference point Ua.

Ks_NAF is computed as Ks_NAF = KDF (Ks, "gba-me", RAND, IMPI, NAF_Id), where KDF is the key derivation function as specified in Annex B, and the key derivation parameters consist of the user's IMPI, the NAF_Id and RAND. The NAF_Id is constructed as follows: NAF_Id = FQDN of the NAF || Ua security protocol identifier. The Ua security protocol identifier is specified in Annex H. KDF shall be implemented in the ME.

NOTE 4:
If a NAF hosts two or more applications which use the same FQDN and Ua security protocol identifier, they will share the same NAF specific keys. This causes a risk of so called two-time pad which may lead to the situation that the security of these applications is compromised. This can be avoided by running bootstrapping separately to each application or by application specific means, which are however out of the scope of the current specification.

To allow consistent key derivation based on NAF name in UE and BSF, at least one of the three following prerequisites shall be fulfilled:

 (1)
The NAF is known in DNS under one domain name (FQDN) only, i.e. no two different domain names point to the IP address of the NAF. This has to be achieved by administrative means.

(2)
Each DNS entry of the NAF points to a different IP address. The NAF responds to all these IP addresses. Each IP address is tied to the corresponding FQDN by NAF configuration. The NAF can see from the IP address, which FQDN to use for key derivation.

(3)
Ua uses a protocol which transfers the host name (FQDN of NAF as used by UE) to NAF (e.g. HTTP/1.1 with mandatory Host request header field). This requires the NAF to check the validity of the host name, to use this name in all communication with UE where appropriate, and to transfer this name to BSF to allow for correct derivation of Ks_NAF.
In case of a TLS tunnel over Ua this requires either multiple-identities certificates for the NAF or the deployment of RFC 3546 [9] over Ua or other protocol means with similar purpose over Ua.


The UE and the BSF shall store the key Ks with the associated B-TID for further use, until the lifetime of Ks has expired, or until the key Ks is updated or until the deletion conditions are satisfied (see 4.4.11).

**************************End of Change**************************
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