Page 4

3GPP TSG-SA3 #49

 S3-070710
Munich, 8-12. October, 2007
Title:
NAF Identifier and privacy
Source:
Nokia, Nokia Siemens Networks

Document for:
Discussion/Decision Pseudo-CR

Agenda Item:
6.9.5 GBA push

1 Introduction
During SA3#48 it was recognized that all broadcast networks use NAF based DNS based names for the Head-ends. Approaches to the problem were discussed and the requirements were added to TS 33.223 section 4.3.9. This contribution outlines the technical solution part for these requirements in the Pseudo CR below as was presented in SA3#48 (S3-070563).

Pseudo Change Request

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 31.102: "3rd Generation Partnership Project; Technical Specification Group Terminals; Characteristics of the USIM application".

[2]
3GPP TS 33.102: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3G Security; Security architecture".

[3]
Void

[4]
A. Niemi, et al,: "Hypertext Transfer Protocol (HTTP) Digest Authentication Using Authentication and Key Agreement (AKA)", RFC 3310, September 2002.

[5]
3GPP TS 33.221: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Generic Authentication Architecture (GAA); Support for Subscriber Certificates".

[6]
Void

[7]
Void
[8]
3GPP TS 23.228: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; IP Multimedia Subsystem (IMS); Stage 2 (Release 6)".

[9]
IETF RFC 3546 (2003): "Transport Layer Security (TLS) Extensions".

[10]
3GPP TS 31.103: "3rd Generation Partnership Project; Technical Specification Group Terminals; Characteristics of the IP Multimedia Services Identity Module (ISIM) application".
[11]
3GPP TS 23.003: "3rd Generation Partnership Project; Technical Specification Group Core Network; Numbering, addressing and identification".

[12]
IETF RFC 3548 (2003): "The Base16, Base32, and Base64 Data Encodings".

[13]
3GPP TS 33.210: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3G Security; Network domain security; IP network layer security".
[14]
IETF RFC 3588 (2003): "Diameter Base Protocol".

[15]
3GPP TS 31.101: "3rd Generation Partnership Project; Technical Specification Group Terminals; UICC-terminal interface; Physical and logical characteristics".
[16]
3GPP TS 33.203: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3G security; Access security for IP-based services".
[17]
IETF RFC 3280 (2002): "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile".

[18]
IETF RFC 2818 (2000): "HTTP over TLS".

[19]
3GPP TS 33.310: "3rd Generation Partnership Project; Technical Specification Group Service and System Aspects; Network Domain Security (NDS); Authentication Framework (AF)".
[20]
IETF RFC 2560 (1999): "X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP".

[21]
FIPS PUB 180-2 (2002): "Secure Hash Standard".

[22]
IETF RFC 2104 (1997): "HMAC: Keyed-Hashing for Message Authentication".
[23]
ISO/IEC 10118-3:2004: "Information Technology – Security techniques – Hash-functions – Part 3: Dedicated hash-functions".
[24]
IETF RFC 3629 (2003): "UTF-8, a transformation format of ISO 10646".

[25]
3GPP TS 33.222: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Generic Authentication Architecture (GAA); Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)".

[26]
3GPP TS 33.246: "3G Security; Security of Multimedia Broadcast/Multicast Service (MBMS)".
[27]
IETF RFC 4279 (2005): "Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)"

[28]
IETF RFC 2246 (1999): "The TLS Protocol Version 1".

[29]

3GPP TS 24.109: 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Bootstrapping interface (Ub) and network application function interface (Ua); Protocol details".
[30]
OMA WAP-219-TLS, 4.11.2001: http://www.openmobilealliance.org/tech/affiliates/wap/wap-219-tls-20010411-a.pdf.

[31]
OMA WAP-211-WAPCert, 22.5.2001: http://www.openmobilealliance.org/tech/affiliates/wap/wap-211-wapcert-20010522-a.pdf.

[32]
3GPP TS 29.109: "3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Generic Authentication Architecture (GAA); Zh and Zn Interfaces based on the Diameter protocol; Stage 3".

[33]
IETF RFC 2616 (1999): "Hypertext Transfer Protocol -- HTTP/1.1".

[x]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture".

5
GBA Push Function

5.1 GBA Push Message Flow
Figure 5-1 outlines the message flow for the case, where the NAF wants to send data to the UE, but has no valid NAF specific keys available. In addition the UE may be unable toperform bootstrapping procedure directly with the BSF or the UE should not perform bootstrapping procedure directly with the BSF. Instead, the bootstrapping between the UE and the BSF happens through a NAF.

NOTE 1:
A case where the UE has no connection to the network is in a broadcast scenario.

Editor's Note:
It has to be decided if re-usage of an existing bootstrapping session is recommended or not.

[image: image1.wmf]

(2) IMPI, NAF_ID,

[Req_KeyLT*], [GSID*]

(4) [GBA

-

PUSH

-

INFO*], Ks_(ext/int)_NAF, lifetime, [USS

*]

UE

(6) [GBA

-

PUSH

-

INFO*], Ua

-

application data

NAF

BSF

(1) NAF needs to send data securely to the UE but has no

valid NAF specific Keys. NAF knows subscriber’s IMPI and

initiates GBA push to create a GBA session

(3) BSF optionally fetches authentication

vectors, GUSS from HSS based on IMPI,

and

creates

GBA

-

PUSH

-

INFO

(7) UE uses GBA

-

PUSH

-

INFO to authenticate the

network, and derives GBA session.

UE creates Ks_(ext/int)_NAFand uses them on

the Ua reference point.

(5) NAF applies Ks_(ext/int)_NAF to t

he Ua

-

application data

GBA

-

PUSH

-

INFO and data to the UE

Figure 5-1: Procedure for bootstrapping through the NAF

NOTE1:
Ua-application data in the figure equals the push message as defined in this specification.

The procedures for the cases that there is a valid bootstrapping session available or that one has to be created are both described below:

1.
A NAF needs to safely deliver some data over Ua-reference point to a UE, but has no valid NAF specific keys for this. It knows the identity of subscriber, and the data that need to be delivered to the UE.

2.
The NAF sends subscriber's IMPI, its NAF_ID (i.e., NAF hostname and Ua security protocol identifier), and optionally the desired key lifetime (Req_KeyLT) and one or more GSIDs over Zn reference point.

Editor's Note:
The usage of other subscriber's identity then the IMPI e.g. IMPU, pseudonym etc are for further study. In the case that identity other than IMPI is used, BSF shall be able to know the corresponding IMPI from the received identity.
3.
Upon receiving the request from the NAF, the BSF checks if the NAF is authorized to perform the GBA push and if the subscriber has a valid bootstrapping session.

-
If the subscriber has a valid bootstrapping session, then the BSF calculates the Ks_(ext/int)_NAF based on the NAF_ID and the other key derivation parameters as described in [1]. It also extracts the requested USSs (if any) from the subscriber's GUSS. The BSF also creates GBA-PUSH-INFO and sends this to the NAF.

-
If the subscriber has no valid bootstrapping session and the NAF is authorized initiate GBA push.request AUTN and RAND. Then the BSF fetches authentication vectors from the HSS, calculates the Ks_(ext/int)_NAF based on the NAF_ID and other key derivation parameters (see Figure 5-1). It also extracts the requested USSs (if any) from subscriber's GUSS. The BSF creates a bootstrapping session for the subscriber that can be used later with other NAFs. The BSF also creates GBA-PUSH-INFO and sends this to the NAF.

4.
The BSF returns the B-TID, Ks_(ext/int)_NAF, key lifetime and optionally the requested USSs (if any) to the NAF. The BSF may use USS for policy management and key selection as described in TS 33.220 [1].

The NAF also receives optionally the GBA-PUSH-INFO. The NAF_ID in the GPI may be privacy protected as outlined in section 5.2.
5.
The NAF uses the Ks_(ext/int)_NAF to secure the data on the Ua reference point. In case of GBA_U, if key selection indication given by BSF exists, NAF shall use the key indicated by BSF. Otherwise, NAF should select a proper key for the push message based on policy of NAF.NAF shall indicate which key to be used on the push message by adding a key type indication to the push message.
6.
If the NAF received GBA-PUSH-INFO, the NAF sends this information before applying the NAF specific keys to the Ua application, otherwise applies the NAF specific keys directly to the data the NAF wants to send to the UE. The NAF uses the broadcast channel between it and the UE to send B-TID, NAF_ID, and optionally the protected push data to the UE.
NOTE 2:
NAF_ID and the Ua data itself may be further protected with other means that are out of the scope of this specification.

Editor's Note:
It is for further study, if there is an impact, if there is a long delay between step 5 and 6.

If there was no valid bootstrapping session, then the NAF uses the broadcast channel between it and the UE to send AUTN, RAND, B-TID, NAF_ID, and optionally the encrypted data to the UE. AUTN, RAND, NAF_ID, and the encrypted data itself may be further protected with other means that are out of the scope of this specification.

7.
When the UE receives the GBA-PUSH-INFO, then the UE first checks if the B-TID is known. If this is the case this GBA-PUSH-INFO is a repetition and can be dropped. If the B-TID of the GBA-PUSH-INFO is unknown then the UE will derive the Ks_(ext/int)_NAF.

When the UE receives the push message i.e. the Ua-application data, then the B-TID is used as a reference to find or create the correct NAF specific keys Ks_(ext/int)_NAF. The UE shall use the key indicated by NAF towards this push message. The ME also processes the privacy protected NAF_ID in the GPI.
Editor's note:
Combined delivery needs to be studied further i.e. when the messages receive in reverse order.

Editor's note:
For further study, if GBA-PUSH-INFO should also be send in the case, that there exist already a bootstrapping session or that in this case, the network should be authenticated e.g. usage of NAF specific key on the NAF_ID.

The UE stores the bootstrapping session data that can be used later with other NAFs.
The UE may use newly created bootstrapping session with other NAFs as long as the session is valid or bootstrapping session is created.
5.2 NAF ID Confidentiality Protection
Transferring the NAF ID (NAF FQDN and Ua protocol identifier) may pose a privacy problem, if both a long term user identity and the NAF ID are visible in the clear when transmitted over the network. Therefore this section specifies confidentiality protection for the NAF_ID.
For the protection of the NAF_ID an additional intermediate key is used that shall not leave the BSF.
This additional key uses the KDF function with the following exception, for the NAF_ID (variable P3 in Annex B3 in [x]). The NAF_ID is replaced by the BSF name, and assigned specific Ua-protocol identifier (i.e. (0x01,0x00,0x00, 0x01,0x01) Ua security protocols according to this specification)
Editor’s Note:
The Ua protocol identifier should be part of TS 33.220 where also the other Ua security protocol identifier are listed, when TS 33.223 goes for approval to SA plenary.
This gives the property that the NAF or any other party different from the UE and the BSF, will be unable to modify (for integrity protection of GPI) and read the protected parts of the GPI.

[image: image2.emf]

2. Fetch AV when needed; Derive Ks

1. Request for GPI i.e. GBA - PUSH - INFO (User - id) – Upa - usage = UICC or ME

3. Derive Ks_(ext/int)_BSF (with BSF acting as NAF and Ua - appli - id = GBA_push)

4. Derive Ks_(ext/int)_NAF (with Ua - appli - id as received via Zpn)

5. BSF encrypts NAF_ ID, and key lifetime and generates encrypted MAC of key lifetime with Ks_(ext/Int)_BSF dependent on Upa - usage  E_GPI equals the encrypted part of GBA_PUSH_INFO and includes a non - encrypted selection bit for ME respectively UICC selection (Upa - usage).

6. BSF replies to the NAF request by sending GPI = UserId || AUTN(*) || RAND || B - TID || terminal management info* || E_GPI || and Ks_(int/ext)_NAF; Key Lifetime, GUSS* to the NAF .

7. Response to Zpn request

BSF NAF

Figure 5-2: Processing steps in BSF to generate the GPI and privacy protect the NAF_ID.

For a user identifier the IMPI or IMPU may be used.
NOTE: The BSF acts as a trusted server, encrypting the NAF ID that needs to be transferred towards the UE. The NAF has no means to modify this data. A UE that has the possibility to resolve the NAF ID from an IP address is able to check and match this data.

[image: image3.emf]

2. ME sends RAND, AUTN to UICC to create Ks

1. Receiving GBA - PUSH - INFO and optionally Ua - message

3. ME initiates Ks_(ext/int)_BSF derivation (using BSF as NAF name and Ua - appli - id = GBA_push)

5 . ME initiates Ks_(ext/int)_NAF derivation using NAF name (and Ua appl id).

6 . The ME can now start processing Ua application part of the Ua messages using Ks_(ext)_NAF

4. ME decrypts E _GPI (including NAF_ID) using Ks_(ext) _ BSF and verifies include d integrity protection

UE NAF

Figure 5-3: Processing steps in UE for privacy protected NAF_ID.

3 Proposal

We ask SA3 to study the above proposal and to accept this for integration into TS 33.223.

 page 7

_1252487654.doc

[image: image1]

UE

2. ME sends RAND, AUTN to UICC to create Ks

NAF

6. The ME can now start processing Ua application part of the Ua messages using Ks_(ext)_NAF

4. ME decrypts E_GPI (including NAF_ID) using Ks_(ext)_BSF and verifies included integrity protection

1. Receiving GBA-PUSH-INFO and optionally Ua-message

3. ME initiates Ks_(ext/int)_BSF derivation (using BSF as NAF name and Ua-appli-id = GBA_push)

5. ME initiates Ks_(ext/int)_NAF derivation using NAF name (and Ua appl id).

_1252488384.doc

[image: image1]

BSF

2. Fetch AV when needed; Derive Ks

4. Derive Ks_(ext/int)_NAF (with Ua-appli-id as received via Zpn)

7. Response to Zpn request

NAF

1. Request for GPI i.e. GBA-PUSH-INFO (User-id) – Upa-usage = UICC or ME

5. BSF encrypts NAF_ID, and key lifetime and generates encrypted MAC of key lifetime with Ks_(ext/Int)_BSF dependent on Upa-usage (E_GPI equals the encrypted part of GBA_PUSH_INFO and includes a non-encrypted selection bit for ME respectively UICC selection (Upa-usage).

3. Derive Ks_(ext/int)_BSF (with BSF acting as NAF and Ua-appli-id = GBA_push)

6. BSF replies to the NAF request by sending GPI = UserId || AUTN(*) || RAND || B-TID || terminal management info* || E_GPI || and Ks_(int/ext)_NAF; Key Lifetime, GUSS* to the NAF.

_1224071894.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

(4) [GBA-PUSH-INFO*], Ks_(ext/int)_NAF, lifetime, [USS*]

(1) NAF needs to send data securely to the UE but has no valid NAF specific Keys. NAF knows subscriber’s IMPI and initiates GBA push to create a GBA session

(5) NAF applies Ks_(ext/int)_NAF to the Ua-application data GBA-PUSH-INFO and data to the UE

(7) UE uses GBA-PUSH-INFO to authenticate the network, and derives GBA session.

UE creates Ks_(ext/int)_NAFand uses them on the Ua reference point.

(3) BSF optionally fetches authentication vectors, GUSS from HSS based on IMPI, and creates GBA-PUSH-INFO

(2) IMPI, NAF_ID,

[Req_KeyLT*], [GSID*]

(6) [GBA-PUSH-INFO*], Ua-application data

BSF

NAF

UE

_935227290.doc

