Page 4

3GPP TSG-SA3 #48

 S3-070563
Montreal, Canada, 10-13 July, 2007
Title:
GBA push: Key derivation for broadcast NAF and privacy
Source:
Nokia, Nokia Siemens Networks

Document for:
Discussion/Decision

Agenda Item:
6.7.5 GBA push

1 Introduction
GBA Push main feature and difference to GBA as outlined by TS 33.220 is that TS 33.223 could bootstrap keys for usage within broadcast networks i.e. unidirectional usage. The use of GBA Push in broadcast networks needs some special considerations with regard to the key derivation techniques that are used in TS 33.220. One of these aspects is the NAF Name. It cannot be assumed that all broadcast networks use DNS based names for the Head-ends (serving as the NAF). This contribution looks into the technical consequences of this restriction to the usage of TS 33.223.

2 NAF: DNS naming or IP address?
For example, when performing broadcasting over an IP network as DVB-H no DNS names are used. Also we assume that the user has no means to perform an uplink reverse DNS query to resolve the DNS name related to the source IP address. Also electronic program guides (EPG) as in DVB-H do not contain this mapping information of IP address towards DNS names.

Using the source IP address in the NAF key derivation has several drawbacks:

· This source IP-address needs to be communicated from the IP-layer to the GBA client in the terminal.

· The IP address of the NAF may change.

· BSF and UE need to make their resource IP address exactly at the same time, else there is a risk that due to IP address change, different keys are derived.

· Proxies and firewall may pose an additional problem e.g. NAF resides behind a firewall.

· Fixed IP addresses easily fall victim to DoS attacks. With flexible IP address management DoS attacks can be easier mitigated.

· It requires both Ua-endpoints to implement an additional key derivation mechanisms and to select between them depending on the usecase.

· It may require change to the UICC e.g. for handing the IP address to the UICC.

Explicit DNS name transmission (along with the Ua security protocol identifier when it cannot be derived via other means) seems therefore the best solution and keeps the GBA push solution in line with UE initiated GBA concepts. The transfer of the NAF host name has been assumed already by TS 33.223 (S3-070456), the above analysis confirms this that necessity.

On the other hand transferring the DNS name within the GBA-PUSH-INFO
 increases the message overhead, but somehow this information has to reach the UE anyway.

3 Confidentiality protecting the NAF ID
Transferring the NAF ID (NAF DNS name and Ua protocol ID) may however pose a privacy problem (see companion contribution to SA3#48), if both the user identity and the NAF ID are visible in the clear when transmitted over the broadcast network.

For the NAF-key derivation at the UE, the NAF ID needs to be available before the keys Ks_ext/int_NAF can be derived from Ks. Therefore the latter keys are not useful for confidentially protecting the NAF ID.

A possible solution to provide confidentiality protection of the NAF ID (NAF host name + Ua application ID) transfer is to use an additional key. An additional (intermediate) key derivation can be used for this instead of requiring a pre-configured key. As input to this GBA based key derivation there are different possibilities. The BSF name (and assigned specific protocol identity) or any other generally known (not privacy compromising) information can be used. This information can be pre configured in the UE (e.g. bsf1234@operator.com + Upa application ID) such that it can be used to derive a set of keys Ks-int/ext_BSF) or could be transferred within the GBA-PUSH-INFO (but then requires a longer message). As this GBA based key derivation is to be performed in the BSF, it seems logical to take the BSF name for this. Without pre-configuration a name needs to be added to the Zpn and Upa messages. For these keys that will protect the NAF-host name we require that the keys that are derived at the BSF using the NAF-ID= BSF name are not transferred to the requesting NAF. This gives the property that the NAF, will be unable to modify (for integrity protection of GPI) and read the protected parts of the GPI (GBA-PUSH-INFO).

[image: image1.emf]

2. Fetch AV when needed; Derive Ks

1. Request for GPI i.e. GBA - PUSH - INFO (User - id) – Upa - usage = UICC or ME BSF

3. Derive Ks_(ext/int)_BSF (with BSF acting as NAF and Ua - appli - id = GBA_push)

4. Derive Ks_(ext/int)_NAF (with Ua - appli - id as received via Zpn)

5. BSF encrypts NAF ID, and possibly other information with Ks_(ext/Int)_BSF dependent on Upa - usage  E_GPI equals the encrypted part of GBA_PUSH_INFO and includes a non - encrypted selection bit for UICC respectively ME selection (U pa - usage).

6. BSF replies to the NAF request by sending GPI = User ID || RAND || AUTN || E_GPI || I_GPI and Ks_(int/ext)_NAF; Key Lifetime, GUSS* to the NAF; Integ rity protection may be applied to GPI using Ks_(ext/int)_BSF if needed resulting in I_GPI

7. Response to Zpn request

Figure 1: Processing steps in the BSF to create GBA-PUSH-INFO and protect NAF Id transfer.

In the above solution the BSF acts as a trusted server, encrypting the NAF ID that needs to be transferred towards the UE. The NAF has no means to modify this data. A UE that has the possibility to resolve the NAF ID from an IP address is able to check and match this data.

A NAF sending falsified GPI with invalid RAND AUTN cannot be prevented but that bootstrapping attempt will fail. A NAF sending a falsified GPI with valid (but unused RAND AUTN) cannot be prevented and this will result in a successful bootstrapping. If that NAF is not allowed as a Push NAF than it also will be unable to integrity protect GPI and hence being detected by the UE (that NAF would use Zn-interface to request NAF keys as specified for TS 33.220).

[image: image2.emf]

2. ME sends RAND, AUTN to UICC to create Ks

1. Receiving GBA - PUSH - INFO (Upa - usage = ME) and Ua - message UE

3. ME initiates Ks_(ext/int)_BSF derivation (using BSF as NAF name and Ua - appli - id = GBA_push)

5. ME decrypts NAF ID and possibly other information with Ks_(ext) _BSF

6. ME initiates Ks_(ext/int)_NAF derivation using NAF name (and Ua app l id).

7. The ME can now start processing Ua application part of the Ua messages using Ks_(ext)_NAF

4. ME verifies I_GPI using Ks_(ext) _BSF

Figure 2: Processing steps in the ME/UICC with GPI intended for ME as example.
4 Conclusions and Proposal

We propose to agree on following requirements for inclusion in TS 33.223.

· GBA push bootstrapping shall not be based on IP addresses but on NAF-ID in alignment with TS 33.220.

· The transfer of the NAF ID in GPI shall be confidentiality protected for privacy reasons.

· The mechanism to generate keys for confidentially protection (and integrity protection) of GPI shall be based on GBA-keys in order to avoid pre-configuration of keys.

· The NAF shall be unable to obtain or generate the keys that protect GPI.

� Further abbreviated to GPI in this contribution.

 page 1

_1244880185.doc

[image: image1]

BSF

2. Fetch AV when needed; Derive Ks

4. Derive Ks_(ext/int)_NAF (with Ua-appli-id as received via Zpn)

7. Response to Zpn request

1. Request for GPI i.e. GBA-PUSH-INFO (User-id) – Upa-usage = UICC or ME

5. BSF encrypts NAF ID, and possibly other information with Ks_(ext/Int)_BSF dependent on Upa-usage (E_GPI equals the encrypted part of GBA_PUSH_INFO and includes a non-encrypted selection bit for UICC respectively ME selection (Upa-usage).

3. Derive Ks_(ext/int)_BSF (with BSF acting as NAF and Ua-appli-id = GBA_push)

6. BSF replies to the NAF request by sending GPI = User ID || RAND || AUTN || E_GPI || I_GPI and Ks_(int/ext)_NAF; Key Lifetime, GUSS* to the NAF; Integrity protection may be applied to GPI using Ks_(ext/int)_BSF if needed resulting in I_GPI

_1243261073.doc

[image: image1]

UE

2. ME sends RAND, AUTN to UICC to create Ks

7. The ME can now start processing Ua application part of the Ua messages using Ks_(ext)_NAF

4. ME verifies I_GPI using Ks_(ext)_BSF

1. Receiving GBA-PUSH-INFO (Upa-usage = ME) and Ua-message

5. ME decrypts NAF ID and possibly other information with Ks_(ext)_BSF

3. ME initiates Ks_(ext/int)_BSF derivation (using BSF as NAF name and Ua-appli-id = GBA_push)

6. ME initiates Ks_(ext/int)_NAF derivation using NAF name (and Ua appl id).

