
3GPP TSG SA WG3 Security — SA3#47
S3-070302

Tallinn, Estonia, 22-25 May, 2007
Source:
Huawei
Title:
Solutions to ensure key stream freshness
Agenda item:
SAE/LTE security

Document for:
Discussion

Introduction
In last SA3#46bis meeting, it is decided that rather contributions for ensuring key stream freshness should be provided. This paper presents a solution to ensure key stream freshness.

NAS signalling
NAS signalling would be protected between UE and MME. Knas.enc and Knas.int should be used to protect NAS signalling. When UE was in idle and active state, a counter, similar to HFN, should be used with packet sequence number as a parameter of security algorithm so that key stream could be different.

The counter could not be repeated in lifetime of Knas.int and Knas.enc. So Knas.int and Knas.enc should be refreshed. Knas.int and Knas.enc were deduced based on Kasme. Kasme would be refreshed by AKA procedure. It is proposed to update Knas.int and Knas.enc with Kasme.

When Kasme is refreshed, Knas.int and Knas.enc are also refreshed. The counter should be restarted from zero. The length of count depends on the lifetime of Knas.int and Knas.enc and Kasme.
RRC signalling and user plane

When UE is in active state, RRC signalling and user plane data should be protected between UE and eNB. Krrc.int and Krrc.enc should be used to protect RRC signalling, while Kup.enc would be used to protect user plane data.

For RRC signalling, a counter, similar to HFN, would be used with packet sequence number as a parameter of security algorithm so that key stream could be different. For user plane data, a counter similar to HFN is also needed.

Counters for RRC signalling should not be repeated in lifetimes of Krrc.enc and Krrc.int. Counter for user plane date should also not be repeated in lifetime of Kup.enc. When Krrc.enc and Krrc.int (or Kup.enc) is refreshed, counter for RRC signalling (or user plane data) could be restarted from zero.

Krrc.enc, Krrc.int and Kup.enc are derived based on Kenb. Kenb could be used to derive different Krrc.enc, Krrc.int and Kup.enc. It is proposed to derive new Krrc.enc, Krrc.int and Kup.enc in every idle-active transition, detach-active transition and handover. However, since same Kenb could be used to derive different Krrc.enc, Krrc.int and Kup.enc, it is unnecessary to update Kenb in every idle-active transition and handover.

Following, two solutions for updating Kenb is presented.
Solution 1

[image: image1]
Figure1: Solution 1

Figure 1 shows how to use START similar mechanism to update Kenb. A counter, which is called START in figure 1, would be used to reflect the number of times of derivation based on Kenb. START would be stored in UE. UE and MME would store another counter which reflects the number of times of deducing Kenb based on Kasme.

1. In idle-active transition, UE send START, KSIasme and KSIenb to network. If there is no available Kasme and/or Kenb, KSIasme and/or KSIenb should be set to special value, e.g. ’111’.

2. If KSIenb received from UE is set to special value, MME would generate new Kenb based on Kasme and counter which reflect the number of times of deducing Kenb based on Kasme. Kenb and value of counter were sent to eNB.

3. eNB derive Krrc.int, Krrc.enc and Kup.enc based on Kenb received from MME and START received from ME. Value of counter which is received from MME was send to ME.

4. UE perform anti-replay check by comparing count received from network and count stored in UE so that UE would not be fooled to generate a used Kenb. The detailed anti-replay mechanism is FFS.

5. When handover occurs, eNB1 would add the value of START and send the new START to eNB2 along with Kenb. eNB2 would derive new Krrc.int, Krrc.enc and Kup.enc based on new START and Kenb. New START was informed to ME so that ME could derive new Krrc.int, Krrc.enc and Kup.enc.

6. When UE enter idle state, UE store the value of START.

Solution 2

[image: image2]
Figure2: Solution 2
Figure 2 shows another alternative to update Kenb. UE and MME should maintain two counters. Counter 1 is used to reflect the number of deducing Kenb based on Kasme. Counter 2 is used to reflect the number of derivation based on Kenb.

1. In idle-active transition, UE send KSIasme and KSIenb to network. If there is no available Kasme and/or Kenb in UE, KSIasme and/or KSIenb would be set to a special value, e.g. ‘111’.

2. If the value of counter 2 reached to the maximum set by operator, MME would generate new Kenb. Value of counter 1 is used as parameter of deducing Kenb. If new Kenb is generated, value of counter 2 is set to zero. Kenb and values of counter 1 and counter 2 were sent to eNB.

3. eNB deduce Krrc.int, Krrc.enc and Kup.enc based on value of counter 2 and Kenb.

4. eNB send value of counter 1 and counter 2 to UE. UE perform anti-replay check by comparing count received from network and count stored in UE so that UE would not be fooled to generate a used Kenb. The detailed anti-replay mechanism is FFS.

5. When handover occurs, value of counter 2 would be added and is transferred from eNB1 to eNB2. New value of counter 2 would be informed to UE so that UE could deduce new Krrc.enc, Krrc.int and Kup.enc.

6. When UE enter idle mode, value of counter 2 should be informed to MME.

Conclusion and Proposal

Solution is this paper could be summarized as below:

1. refresh Kasme by running AKA procedure

2. Knas.int and Knas.enc would be refreshed when new Kasme is generated. When UE is in idle or active state, a count, similar to HFN, should be maintain both in UE and MME to protect NAS signalling.

3. Krrc.int, Krrc.enc and Kup.enc should be refreshed in every idle-active transition and handover. When UE is in active state, counters, similar to HFN, should be maintained both in UE and eNB to protect RRC and user plane data.

4. Kenb need not be refreshed in every idle-active transition and handover. Kenb could be refreshed based on solution mentioned in section 3.
It could be seen that such a solution could ensure the key stream freshness in LTE/SAE. It is proposed to compare this solution with other solutions in order to find the best solution to ensure the key stream freshness in LTE/SAE.

count

Compare count and that stored in ME.

MME

UE

eNB2

eNB1

Kenb

count

KSIenb

KSIasme

Generation of new Krrc.int, Krrc.enc and Kup.enc

START++

new START

START

KSIasme

KSIenb

Kenb=KDF(Kasme , count…)

START would be used as a parameter to derive Krrc.int, Krrc.enc and Kup.enc.

Generation of new Krrc and Kup

MME

UE

eNB2

eNB1

Kenb

count1

count2

KSIenb

KSIasme

Count2 would be used as a parameter for deducing Krrc and Kup.

count2++

new count2

KSIasme

KSIenb

Kenb=KDF(Kasme , count1…)

count1

count2

6
1

