Page 1

3GPP TSG SA WG3 Security —3GPPSA3-Ad Hoc on LTE/SAE S3-070259
Sophia-antipolis, France, 27– 29 March 2007
Souce:

Huawei

Title:

procedure of key update
Document for:

Discussion
Agenda Item:

SAE/LTE
1
Introduction
In the last SA3 meeting, an idea of updating keys separately is mentioned in tdoc S3-070052. Some discussions on this idea are performed. There are some concerns about complexity of solution of updating keys separately. This paper introduced a procedure of key updating in LTE/SAE. It could be seen from the procedure that key updating procedure could be combined with SMC procedure. The key updating procedure would not be complex as imagined.
2 SMC in LTE/SAE
There are six alternatives for security algorithm negoitiation in latest specification 33.821. This paper introduces how to combine separate key-updating procedure with SMC based on alternative 6.

Since UPE disappeared in LTE/SAE according to RAN2/RAN3/SA2 decision, and cipher of user plane was moved to eNB, procedure of alternative 6 was modified to keep in line with these changes. Procedures related to UPE were deleted. It was assumed that same key and algorithm would be used to cipher user plane and RRC signalling. Note that it is just an example to show that the separate key updating solution is not complex; the analysis would not depend on such an assumption.
Figure 1 showed an example of SMC. In next section, how to combine separate key updating solutions would be discussed.

[image: image1]
Figure 1

3 Separate key updating procedure
It was assumed that START mechanism similar to UMTS would be used to avoid the use of same key streams with different instances.

UE and MME would share a master key. Keys for protection of user plane and RRC signalling, keys for protection of NAS signalling are derived from master key.
Since the amount of user data which was ciphered by KeNB.enc would be largest, the COUNT-C for user plane may be wrapped around at the time that COUNT-C for NAS signalling is not wrapped around. In this case, only KeNB.enc need to be updated, KNAS.int and KNAS.enc need not be updated. The key updating procedure could be performed as below:

[image: image2]
Figure 2
1. KSIm and KSInas were sent to MME. If there is no available master key in UE, UE would set KSIm to “111”. If there is no available nas key in UE, UE would set KSInas to “111”.

2. The KSIm “111” would trigger AKA procedure. If only KSInas was set to “111”, AKA procedure would not be performed. After AKA procedure, master key was shared between UE and MME.

3. MME select nas algorithms. If KSInas in step2 was set to “111”, new keys for NAS signalling are derived. New KSInas was also generated.
4. MME would send KSIm and KSInas to UE with integrity protection. If new NAS keys are generated in step3, new KSInas would be send. The message should be integrity protected with new NAS key.
5. UE verify NAS-MAC. If NAS key are generated, UE would derive new NAS keys.
 Note: KSIm and KSInas may be same. It means that keys for protection of NAS signallings would use the same identity with master key. In this case, only one KSI need to be sent in initial L3 message. The KSI “111” would mean that an AKA procedure would be needed to update all keys.

6. UE send NAS security mode complete to MME.

7. In idle-active transition, KSIenb was send to MME. If keys are invailable, related key identity would be set to “111”. KSInas and KSIm may also be sent to MME in this message.
8. If KSIenb was “111”, new keys for eNB would be generated based on master key. New KSIenb would be sent to eNB.
9. eNB select eNB algorithms.
10. eNB send acknowledge to MME.

11. eNB send KSIenb to UE. If new keys for eNB were generated in step8, new KSIenb would be send.

12. UE send eNB security mode complete to eNB.

Note: KSInas and KSIm may be same.

Note: KSIenb, KSInas and KSIm may be same. In this case, KSI “111” would trigger AKA procedure and all keys would be updated.
Note: If new key for eNB would be generated every time when UE enter ACTIVE state to avoid the use of same key streams with different instances of same eNB, KSIenb may be not needed. This is FFS.
From above we can see that separate key updating procedure could be combined with SMC procedure. There is no extra siginalling procedure to perform key update. Only some extra parameter should be carried in messages in SMC procedure. The benefit of updating keys separately is that uncessary security configuration change of NAS signalling could be avoided. We believe the solution of updating keys separately would not be complex.
4 proposal

It is proposed to add procedure in section 3 into TR 33.821 as following:
****************Begin of Changes***
7.4.6
Key identities in LTE/SAE (S3-070053)
Key architecture in LTE/SAE may be different with that in UMTS. A so-called master key may be generated both in UE and MME after AKA authentication. Master key is derived from CK and IK in authentication vector. For example, master key could be the concatenation of CK and IK. That is master key = CK||IK. Master key is used to deduce two key pairs (i.e. KNAS.enc/KNAS.int and KeNB.enc/KeNB.int). So in this key architecture, KNAS.enc/KNAS.int and KeNB.enc/KeNB.int can be updated by reusing a existed master key. These key pairs could be updated without AKA procedure. If so, consumption of authentication vector could be reduced. In addition, latency could be reduced since MME need not contact HSS for authentication vectors.

Furthermore, the amount of data that is protected by different key pairs should be different. It is easy to understand that the amount of data that is ciphered by KeNB.enc would be large, while the amount of data that is protected by KNAS.enc/KNAS.in would be small. So KNAS.enc/KNAS.in need not update when KeNB.enc should be updated. A mechanism that allows updating these key pairs separately would address the different amount of data that are protected by these three key pairs. And such a mechanism could make LTE/SAE more flexible and reduce the unnecessary changes of security configurations.

Based on above analysis, we would discuss how to identify key pairs in LTE/SAE. It’s assumed that MME will deduce two key pairs (i.e. KNAS.enc/KNAS.int and KeNB.enc/KeNB.int) based on master key.

· same identity
In this case, these key pairs will use the same identity that is called KSIen. KSIen may be same with KSIm that is the identity of master key.

If key pairs are invalid, KSIen would be set to “111”. New key pairs would be generated based on master key both in MME and UE. New KSIen would be stored in MME and UE also. If master key is invalid, KSIm would be set to “111”. Authentication should be performed to update all keys.

In this solution, if KSIen is same with KSIm, KNAS.enc/KNAS.int and KeNB.enc/KeNB.int could only be updated by new AKA procedure. If KSIen is different with KSIm, these key pairs could be updated based on existed master key and the consumption of authentication vector would be reduced.

However, in this solution, KNAS.enc/KNAS.int and KeNB.enc/KeNB.int could only be updated together. This would lead to unnecessary changes of security configurations since the amount of data that is protected by different key pairs should be different.

· different identities
In this case, the identities of two key pairs would be different. These identities are called KSInas and KSIenb. If one of these key pairs is invalid, the corresponding identity would be set to “111” to inform MME.

For example, if key pair KeNB.enc/KeNB.ins is invalid, KSIas would be set to “111”.If master key is invalid, KSIm would be set to “111”, an AKA procedure should be performed to update all keys.

In this solution, different key pairs could be updated separately. So the key update solution is more flexible and unnecessary changes of security configurations can be avoided.

The detailed solution could be described as below:

[image: image3]
1. KSIm and KSInas were sent to MME. If there is no available master key in UE, UE would set KSIm to “111”. If there is no available nas key in UE, UE would set KSInas to “111”.

2. The KSIm “111” would trigger AKA procedure. If only KSInas was set to “111”, AKA procedure would not be performed. After AKA procedure, master key was shared between UE and MME.

3. MME select nas algorithms. If KSInas in step2 was set to “111”, new keys for NAS signalling are derived. New KSInas was also generated.

4. MME would send KSIm and KSInas to UE with integrity protection. If new NAS keys are generated in step3, new KSInas would be send. The message should be integrity protected with new NAS key.

5. UE verify NAS-MAC. If NAS key are generated, UE would derive new NAS keys.

 Note: KSIm and KSInas may be same. It means that keys for protection of NAS signallings would use the same identity with master key. In this case, only one KSI need to be sent in initial L3 message. The KSI “111” would mean that an AKA procedure would be needed to update all keys.

6. UE send NAS security mode complete to MME.

7. In idle-active transition, KSIenb was send to MME. If keys are invailable, related key identity would be set to “111”. KSInas and KSIm may also be sent to MME in this message.

8. If KSIenb was “111”, new keys for eNB would be generated based on master key. New KSIenb would be sent to eNB.

9. eNB select eNB algorithms.

10. eNB send acknowledge to MME.

11. eNB send KSIenb to UE. If new keys for eNB were generated in step8, new KSIenb would be send.

12. UE send eNB security mode complete to eNB.

Note: KSInas and KSIm may be same.

Note: KSIenb, KSInas and KSIm may be same. In this case, KSI “111” would trigger AKA procedure and all keys would be updated.

Note: If new key for eNB would be generated every time when UE enter ACTIVE state to avoid the use of same key streams with different instances of same eNB, KSIenb may be not needed. This is FFS.

****************End of Changes***

eNB

UE

2 Authentication and key agreement

4 Selected NAS algos, all UE caps, KSIm, KSInas protected by NAS integrity key

6 NAS security mode complete

7 RRC Resource connection request; KSIenb, KSIm, KSInas

eNB security mode complete

Idle-active transition

Acknowledge

RRC resource connection setup including eNB SMC:

selected eNB algos, protected by eNB integrity key

Select eNB algo(s)

Allowed eNB algos, UE caps, Kenb

RRC Resource connection request

Attachment

NAS security mode complete

Verify NAS-MAC

Selected NAS algos, all UE caps, KSI protected by NAS integrity key

Select NAS algo(s)

Authentication and key agreement

Initial layer 3 message: include all UP caps, KSI

MME

eNB

UE

MME

1 Initial layer 3 message: include all UP caps, KSIm, KSInas

3 Select NAS algo(s)

5 Verify NAS-MAC

Attachment

8 Allowed eNB algos, UE caps, Kenb, KSIenb

9 Select eNB algo(s)

11 RRC resource connection setup including eNB SMC:

selected eNB algos, KSIenb protected by eNB integrity key

10 Acknowledge

Idle-active transition

12 eNB security mode complete

12 eNB security mode complete

Idle-active transition

10 Acknowledge

11 RRC resource connection setup including eNB SMC:

selected eNB algos, KSIenb protected by eNB integrity key

9 Select eNB algo(s)

8 Allowed eNB algos, UE caps, Kenb, KSIenb

Attachment

5 Verify NAS-MAC

3 Select NAS algo(s)

1 Initial layer 3 message: include all UP caps, KSIm, KSInas

MME

eNB

UE

2 Authentication and key agreement

4 Selected NAS algos, all UE caps, KSIm, KSInas protected by NAS integrity key

6 NAS security mode complete

7 RRC Resource connection request; KSIenb, KSIm, KSInas

CR page 1

