3GPP TSG SA WG3 Security — SA3#46
S3-070006
February 13-17 , 2006

Beijing, China
Source:
Motorola (frank.ciotti@motorola.com and tim.wright@motorola.com)
Title:
Key establishment between a UICC and a terminal: solution proposal

Agenda item:
6.15.1
Document for:
Discussion and decision

1 Introduction

This document presents a denial of service (DOS) attack on the key establishment mechanism defined in [1], “Key Establishment between a UICC and a terminal”.

Specifically, an attacker can take a middleperson role and manipulate messages such that the UICC computes a different KS_local to that computed in the NAF Key Centre and then delivered to the terminal. This difference of key computed will not be known until the terminal and the UICC begin to use KS_local for the required application. The attack is possible because the present protocol does not include any key confirmation.
It is Motorola’s understanding that in general, SA3 does not attempt to defeat “brute force” DOS attacks such as an unintelligent radio jammer attacking the air interface but does attempt to defeat “intelligent” DOS attacks which either target one individual or result in persistent damage to communications without persistent (and therefore discoverable) input by the attacker. It is believed that the attack presented in this contribution falls under the category of “intelligent” DOS attack and SA3 should therefore attempt to defeat it.

A simple mechanism to defeat the attack is presented in this paper and Motorola propose that SA3 accept this proposal and produce and approve CRs to [1] to implement the proposal within [1].

2 Attack description
Section 4.5.2 of [1] describes the procedure for establishing KS_local in the UICC and NAF Key Centre. The attack can occur during steps 4 and 5, which are given below.

4- The Terminal sends a command to perform Ks_local derivation on the UICC. The Terminal sends the NAF_ID corresponding to the NAF Key Center, the Terminal_ID, the Terminal_appli_ID and the UICC_appli_ID and a variational value RANDx. Terminal_appli_ID and UICC_appli_ID correspond to identifiers of applications that aim sharing a key Ks_local.

NOTE: The variational value can be a random value or timestamp produced by the Terminal.
In case that Ks_local has to be established per platform, the UICC_appli_ID and the Terminal_appli_ID octet strings equal to static ASCII-encoded string "platform".

5- The UICC retrieves the Ks_int_NAF and B-TID associated to the received NAF_ID and then derives Ks_local. The UICC stores Ks_local and associated parameters Terminal_ID, Terminal_appli_ID, UICC_appli_ID and Ks_local counter. Ks_local counter is set to COUNT_MAX default value if Ks_local corresponds to a new key value.

Ks_local is computed in the UICC as Ks_local = KDF (Ks_int_NAF, B-TID, Terminal_ID, ICCID, Terminal_appli_ID, UICC_appli_ID, RANDx), where KDF is the key derivation function as specified in Annex A.

The UICC may store a local policy to determine the associations between a Terminal_appli_ID and a UICC_appli_ID which are authorized. If the Terminal requested a Terminal_appli_ID/UICC_appli_ID association not authorized by the UICC policy then the UICC stops the key establishment procedure and returns a "not authorized" error message. The local policy may also not authorize the key establishment procedure based on Terminal_ID value.

As the channel between terminal and UICC is not trusted (or why bother with key establishment at all), a middleperson can manipulate the key establishment data sent from the terminal to the UICC in step 4, specifically the string NAF_ID || Terminal_ID || Terminal_appli_ID || UICC_appli_ID || RANDx.
As the NAF_ID has just been requested from the UICC, mechanisms could be implemented in the UICC to compare the NAF_ID received in step 4 to that sent to the terminal in step 3. The Terminal_ID should already be known to the UICC and manipulation of it also detected. However, there do not seem to be any robust methods to prevent middleperson manipulation of the Terminal_appli_ID, UICC_appli_ID and RANDx. As the UICC may contain policy information dictating which Terminal_appli_ID, UICC_appli_ID combination it is willing to establish secure communications for, these fields cannot be arbitrarily manipulated by the middleperson, but nonetheless, the middleperson can change one valid id for another. By its very nature, there are no methods within the protocol as currently defined for the UICC to detect manipulation of RANDx.

Let us assume that the attacker merely manipulates RANDx to RANDx_2. As KS_local is computed by KDF (Ks_int_NAF, B-TID, Terminal_ID, ICCID, Terminal_appli_ID, UICC_appli_ID, RANDx), we term the actual key computed in the UICC as KS_local_2.
At step 5, the UICC computes KS_local_2 and then the terminal goes on to conduct an entirely separate key establishment procedure with the BSF and NAF Key Centre. This is conducted over https, and assuming trust in https and in the entity within the terminal conducting the key establishment, no middleperson attack is possible, nor required for the attack. The NAF Key Center computes KS_local and sends this to the terminal in step 11.
As the present protocol does not include any key confirmation, the fact that the UICC has computed KS_local_2 and the NAF Key Centre and terminal have KS_local will not be discovered until the terminal and UICC attempt secure communications for the purposes the key establishment was conducted for.
3 Attack motivation, complexity and probability

The attack does not give access to KS_local or KS_local_2, so no access to resultant secure communications is obtained. The attack purely seems to have a nuisance value, though if the attacker could continue to prevent secure communications from being established, they could continue to prevent an application that required secure communications. At present, the use cases for secure UICC to terminal communications that have been proposed are not security critical – if the user is prevented from DVB-H reception or from conducting a DRM application split between the terminal and the UICC or from securely access user data on the UICC, they will be annoyed but not in danger.
The attacker must be able to manipulate terminal to UICC messages in real or near-real time. If the UICC is actually inserted into the terminal, this would require the attacker to have had physical possession of the user’s terminal for enough time to insert a small device that could intercept communications. Gaining such possession of the terminal is not difficult, though building something small enough to intercept communications whilst allowing the UICC to be correctly inserted, battery replaced and so forth does seem hard, though probably not impossible.
If the UICC is not in the terminal but in another device, e.g. a laptop, then the attacker could compromise the short distance communications protocol (if it was conducted over unsecured Bluetooth). If the laptop itself could be compromised in some way, via malware, communications could be manipulated on the laptop.

Overall, then, it can be seen that unless critical services requiring secure terminal to UICC services are developed, the results of the attack are not that significant. However, the attack is relatively easy, and as will be seen below, the defence is very simple. The cost of defeating the attack by the proposed method therefore seems worth the benefit therefore obtained.
4 Defeating the attack

As stated above, the attack results from a lack of key confirmation (of Ks_local) before the closure of the protocol. As key confirmation can only occur between two entities that possess the key to be confirmed, key confirmation can either take place between the UICC and the ME at the conclusion of the protocol, when the ME has received Ks_local from the NAK Key Centre, or can take place slightly earlier between either the UICC and the NAF Key Centre or the UICC and the BSF. The latter approach, of using either the NAK Key Centre or the BSF makes more sense in that the middleperson attack can be detected earlier and before a potentially mismatched Ks_local is delivered to the ME.
The key confirmation can either be of Ks_local itself or of the data from which Ks_local is derived (NAF_ID, Terminal_ID, Terminal_appli_ID, UICC_appli_ID, RANDx).

In the former case, key confirmation could be provided by computing a MAC on suitable known data using Ks_local and transporting this MAC to the NAF Key Centre. In the latter case, key/data confirmation could be provided by computing a MAC on the key derivation data (NAF_ID, Terminal_ID, Terminal_appli_ID, UICC_appli_ID, RANDx) using a suitable key. This key could be Ks_local but it seems strange to use a key that might potentially be mismatched in the MAC function. Instead, use of the existing Ks_int_NAF seems more appropriate and would also allow the key confirmation to be performed in the BSF instead of the NAF Key Centre if required.
As confirmation of key derivation data using Ks_int_NAF can be performed in either the BSF or the NAF Key Centre, this approach is recommended by this contribution, though in the description below the key confirmation check is performed by the NAF Key Centre, on the assumption that the operator of the BSF wishes to restrict its activities to key generation.
HMAC [RFC 2104] using an appropriate hash function (SHA-256 or SHA-1) are recommended for the MAC function.

The additional steps for key confirmation are, in summary:

· Computation of key_conf_MAC = HMAC (Ks_int_NAK, (NAF_ID, Terminal_ID, Terminal_appli_ID, UICC_appli_ID, RANDx)) in the UICC as an adjunct to existing step 5 (step 5-1 below).

· Transmission of key_conf_MAC from the UICC to the ME in a new step (step 5-2 below)

· Addition of key_conf_MAC to the data transmitted in step 7 (now step 7bis below)
· Addition of computation of key_conf_MAC as an adjunct to existing step 10 (step 10bis below).

These are shown in Figure 1 overleaf, a revision of Figure 4-3 in [1]. Additional steps are shown in bold.
5 Conclusion

SA3 is kindly invited to review the above attack description and evaluation. If SA3 judges that the attack should be defeated then it is asked to review the defence description given here and decide if this is the optimal defence or if other defences should be looked for. CRs should then be developed for the chosen defence method. Motorola would be willing to produce these CRs.
6 References

[1]
“Key establishment between a UICC and a terminal”, 3GPP TS 33.110 V7.0.0 (2006-12)

5bis UICC computes MAC key_conf_MAC on NAF_ID, Terminal_ID, Term_appli_ID, UICC_appli_ID, RANDx using Ks_local

1. Request the current B-TID and corresponding key lifetime

5ter Return key_conf_MAC

5 UICC retrieves Ks_int_NAF, derives Ks_local.

The UICC stores Ks_local-specific data

3- Return B-TID

(NAF_ID, B-TID)

2. Request for B-TID

 (NAF_ID)

If no valid key Ks is available in the UICC the terminal requests a complete GBA_U bootstrapping procedure run

12. Stores Ks_local and associated Key Lifetime

11. Application Answer

sent within HTTPS tunnel

(B-TID, Ks_local, Key Lifetime)

9. Authentication Answer

(Ks_NAF, Ks_int_NAF Ks_ext_NAF, Prof, Bootstrap time, key lifetime)

8. Authentication Request

(B-TID, NAF hostname, Terminal_appli_ID, UICC_appli_ID)

10bis. Checks Terminal_ID number, computes key_conf_MAC and compares with received key_conf_MAC. Derives Ks_local from Ks_int_NAF,

7bis. Application Request

for key establishment

sent within HTTPS tunnel

(B-TID, Terminal_ID, Terminal_appli_ID, UICC_appli_ID, RANDx, key_conf_MAC)

6. Establishment of HTTPS tunnel between the terminal and the NAF Key Center

BSF

Terminal

NAF

Key Center

UICC

4. Request for Ks_local generation

(NAF_ID, Terminal_ID, Term_appli_ID, UICC_appli_ID, RANDx)

