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1 Introduction
SA3 has identified the need for security associations between the UE and various network entities. In this contribution we propose a method for obtaining keys for these security associations. We focus mainly on the keys used for the ciphering function, but the method applies equally for other keys for protecting RRC signalling, NAS signalling, etc. The proposed method has several desirable properties, such as perfect forward secrecy when switching the encryption point in the network (UPE relocation or handover), localized signalling to minimize latency for the switching operation, etc. The method is described without any assumption on any particular ciphering algorithm.
2 Background
Reference [1] summarizes the rationale for various decisions taken by SA3 so far regarding threat situations and solutions for 3GPP LTE. A layered approach to security for LTE has been agreed upon (cf. section 4 in [1]), wherein the evolved packet core signalling layer (NAS) and user plane layer (UP) are secured independently (i.e. with separate cryptographic keys) from the evolved UTRAN signalling layer (RRC). The primary intent is to minimize the effect of any compromise of the E-UTRAN layer (“security layer 1”) on the EPC layer (“security layer 2”). Section 7.4.3 (specifically 7.4.3.1) in [1] briefly outlines the process for obtaining suitable keys during initial access. It is noted that the CK, IK keys obtained for the authentication exchange (AKA) are the basis for deriving the appropriate keys for use by the MME (NAS), UPE (UP) and eNB (RRC).

In this contribution, we propose a method for obtaining these various keys. We focus on the key used for the ciphering function, but the method can equally apply to all the relevant keys described above. 
2.1 Terminology

Keeping in mind the current discussion on the location of the ciphering function (eNodeB or UPE), the procedure is deliberately described in a manner agnostic to the location of the ciphering function itself. For the purposes of this contribution, we simply denote the network element that performs user-plane ciphering as the Ciphering Function Entity (CFE). 
We note that the CFE for a given UE could change during the lifetime of the UE’s session. For example, if the CFE were the eNodeB, then a handover would result in a change of the CFE from the old eNodeB to the new eNodeB. If the CFE were the UPE, then UPE relocation would result in a change of the CFE from the old UPE to the new UPE. For the purposes of this contribution, we denote such a change of CFE as CFE migration. Thus CFE migration would refer to handover if the ciphering function were at the eNodeB, whereas it would refer to UPE relocation if the ciphering function were at the UPE. Once the location of the ciphering function is settled, the terms CFE and CFE migration can be replaced by the appropriate terms. 

In either case, it is important for the method of obtaining keys for ciphering to properly handle the creation of new keys in the event of CFE migration.
2.2 Desired characteristics

Suppose that ciphering for a particular UE is initially being handled by CFE1, and then a CFE migration procedure is executed so that the ciphering is taken up by CFE2 (the details of how the CFE migration is executed are not relevant at this point). Then the ciphering key used by CFE2 should be independent of any keys used by CFE1. The reason is that if any of the keys used at CFE1 are compromised subsequent to the CFE migration (e.g. by cryptanalysis, or physical tampering with the CFE1, or by some vulnerability in the implementation of CFE1), any subsequent keys should not be compromised. It is desirable to avoid such a domino effect. This is illustrated in Figure 1- the key used for the security association between UE and CFE2 (K2) after the CFE migration should be independent of the key used for the SA between UE and CFE1 (K1) prior to the CFE migration.
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Figure 1. UE-CFE interactions.
We note that such avoidance of a domino effect is desirable not just for the key used by the ciphering function, but also for the key used for RRC signalling (where such independence between keys is desirable at handovers between eNodesB) and the key used for NAS signalling (during MME relocations).
Referring again toFigure 1, another desirable characteristic is that the method of obtaining K2 at CFE migration should only involve localized signalling. That is, it should not be required to involve any remote entities in generating the key, since that would add to the latency of the CFE migration procedure. 
It is also desirable that even while the UE is connected to a particular CFE, it should be possible to roll over the key to a new key that is completely independent of the previous keys. The reason is to limit the effect of exposure of a particular key so that subsequent keys (even at the same CFE) are not compromised (avoiding a domino effect). Again, note that this is desirable for the keys for RRC and NAS signalling as well, in addition to the ciphering key.
In the following, we will propose a method for obtaining UE-CFE keys that have all the above characteristics. As noted earlier, the method will also apply for the generation of other keys for protecting NAS and RRC signalling.

3 Proposed method
We first focus on the situation outlined in Figure 1above. Ciphering for the UE is initially handled by CFE1, and the UE shares a key K1 with CFE1, and the UE is about to migrate to CFE2. We will deal later with the question of how K1 was obtained in the first place, and first deal with the question of obtaining a new key K2 for the SA between UE and CFE2. Figure 2 illustrates a method for obtaining K2 based on an authenticated Diffie Hellman exchange (for references, see [2] and the references therein). 
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Figure 2. Key exchange during CFE migration.
The basic idea is that if CFE1 and CFE2 have a secure (integrity protected) signalling channel between them (e.g. an IPSec SA), then the UE can execute a Diffie-Hellman exchange with the target CFE2 to obtain the new key K2, using its existing security association with CFE1 to authenticate the D-H exchange. The message flow could be executed in a slightly different order to achieve the same effect, but the key ideas of the method are contained in the flow above. 
It is assumed that for the Diffie-Hellman calculations, the base g and the prime p are pre-agreed or publicly known.
1. The UE picks a Diffie-Hellman private value a, and sends the public value gamod p to CFE1, using its existing key K1 to authenticate the message (to CFE1). In addition (if the sender UE is using “ephemeral” D-H), then it can also include a Nonce1. CFE1 validates the integrity of the message and identity of the sender (UE) using K1. 
2. CFE1 relays the D-H value gamod p (and Nonce1) to CFE2 over the secure signalling channel. CFE2 validates the integrity of the message and the identity of the sender (CFE1) using the integrity protection of the signalling channel.

3. CFE2 picks a Diffie-Hellman private number b, and sends the public value gbmod p (along with a Nonce, if it is also using “ephemeral” D-H) to CFE1 over the signalling channel. CFE1 validates the integrity of the message and the identity of the sender (CFE2) using the integrity protection of the signalling channel.

4. CFE1 relays the D-H value gb mod p (and Nonce 2) to the UE, using K1 for message authentication. The UE validates the integrity of the message and identity of the sender (UE) using K1. At this point, both the UE and CFE2 have enough information to perform the Diffie Hellman calculation and obtain their new mutually shared key K2 = gab mod p. If the nonces were used, then a secure hash function may use these as inputs along with the D-H number gab mod p to compute K2, such as in [2]. At this point the secure key derivation is essentially complete, and the rest of the steps are simply to complete execution of the CFE migration.
5. This step is optional: it may be used for CFE1 to confirm to CFE2 that the CFE migration will indeed be executed, and to indicate a time at which the UE should be expected at CFE2, etc. This is not a security step per se, but such a message will commonly be used to complete a handover, for example.

6. This step is also optional, but will typically be used to do some additional context transfer (e.g. IP address information, or buffered data transfer, or other context information) to complete the CFE migration process.

7. The CFE migration is now complete, and the UE and CFE2 can use K2 to cipher data. 

A concise illustration of the above process is provided in Figure 3.
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Figure 3. Derivation of new key at CFE migration.
4 Additional Remarks
The Diffie-Hellman exchange ensures that the key K2 is completely independent of the key K1 – compromise of K1 (e.g. by cryptanalysis) has no effect on K2. Note that it is not necessary for either of the exchanges (between UE and CFE1, and between UE and CFE2) to be encrypted, but message authentication and integrity protection is required.

Since the derivation of K2 is completed prior to the UE actually leaving CFE1 and connecting to CFE2, there is no signalling latency for key derivation after the switch of CFEs. Thus this procedure does not add to the latency of the CFE migration procedure. This could be an especially important consideration if the CFE is the eNodeB and CFE migration corresponds to a handover.
On the network side, the only entities involved in the procedure are CFE1 and CFE2. These entities need to be involved in the intra-network signalling for the CFE relocation procedure anyway. Further, the messages required for the proposed method can be easily combined with the messages needed for executing the CFE relocation procedure between CFE1 and CFE2. Thus the method does not add any additional burden on CFE1 and CFE2 in terms of signalling. Further, since no additional network entities are involved, the signalling is localized. As noted earlier, this is a desirable property in terms of reducing the latency of the CFE relocation procedure.
In the above example, the key K2 is shown as being directly used for ciphering, but in practice there is likely to be one more step. That is, the shared key K2 may be used as source material for deriving further keys, such as a separate key for integrity protection, and possibly asymmetric keys for uplink and downlink directions to avoid reflection attacks, etc. The basic idea remains the same, however.

Since CFE1 cannot compute K2, physical compromise of CFE1 subsequent to the CFE migration has no effect on K2. One question that may arise here is what if CFE1 is compromised prior to the execution of the CFE migration. For example, in that case, the CFE1 could act as a man-in-the-middle of the D-H exchange between UE and CFE2, and could thus spoof the UE and CFE2 into deriving a poisoned key. However, note that if CFE1 is compromised prior to the CFE migration, then the UE is already in a vulnerable situation – it will be in the position of trusting a key K1 with a compromised peer. In this situation, CFE1 may launch any number of attacks on the UE. In fact, in this situation, the attacker who has gained control of CFE1 has really no incentive to let the UE migrate to a non-compromised CFE2. He would simply continue to hold on to the UE to extract maximum value from the attack. The execution of the D-H exchange in the indicated way does not make the situation worse. In other words, it is sufficient that the method protects the new key K2 from compromise of CFE1 and K1 subsequent to the CFE migration.
Appendix A shows a method to execute the D-H exchange so that CFE1 is not a direct man-in-the-middle for the D-H, by using signalling after the CFE migration is complete. However, the method is equivalent to the above procedure in the following sense - as long as K1 is not compromised prior to the CFE migration, K2 is secure, and K2 remains secure even if CFE1 or K1 is compromised at a time subsequent to the generation of K2.

Also we note that although various optimizations may be possible, such as making the UE cache a previous key used at a previous eNodeB so that if the UE returns to the same eNodeB within a short amount of time, the same key may be reused. If such optimizations are used, the spatial and temporal scope of the key should be carefully set and respected. In general it is safer to derive a fresh key, and this should be the recommended procedure.

We now consider the following extensions of the above method.

4.1 Refreshing keys

As noted in section 2, while a UE remains connected to a particular CFE1, it is desirable to be able to periodically obtain a fresh key that is independent of previous keys. Suppose the UE and CFE1 share a key K1, and wish to obtain a new key K2. As described in [2], if the key K1 was itself obtained from a D-H exchange, it can serve as the source of further keying material, e.g. through a nonce exchange. Since the randomness of the keying source is limited to the entropy of K1, however, at some point it may be necessary to generate a fresh key not derived out of K1. In that case, the UE and CFE1 can perform an authenticated Diffie-Hellman exchange directly with each other, using the existing K1 to authenticate the exchange. The new key K2 will be independent of the previous K1. Either side may include a nonce in the D-H exchange (i.e. operate in “ephemeral” mode). As noted earlier, rather than using K2 directly, K2 may be used as a source of keying material in case multiple shared keys are required between the UE and CFE1 (e.g. a separate key for integrity protection and ciphering, or separate keys for uplink and downlink directions, etc.).
4.2 Initial key derivation after authentication 

So far we have considered how to obtain refreshed keys at a particular CFE, and new keys after CFE migration, when the UE already shares a key with its CFE. Now we address the question of how to initially establish a shared key between the UE and its first CFE immediately after authentication.

After the UE completes AKA authentication (using UMTS-AKA or EAP-AKA), the UE shares CK and IK keys with the MME. We assume that the MME has a protected (encrypted and integrity protected) signaling channel with the UE’s CFE (the eNodeB or the UPE). Then the MME can derive a subsidiary key out of the CK and IK (and RAND, if needed) using a suitable KDF function, e.g. K0=KDF(CK, IK, RAND), and transport this key to the CFE. Note that since the key is transported, encryption is required on the signaling channel between the MME and CFE. The UE can unilaterally perform the same computation to obtain the same key K0. Then, the UE and CFE should immediately do a D-H exchange authenticated with this shared key K0 to obtain a new mutually shared key K1, so as to be independent of the key K0 , which was transported to the CFE. From here on, the UE and CFE can use the key K1 for further operations – as the source for further keying material, or for authenticating further D-H exchanges for refreshing keys or CFE migration. The derivation of the initial keys from CK, IK is illustrated in Figure 4.
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Figure 4. Initial key derivation for ciphering key.

4.3 Obtaining keys for protecting other procedures

So far we have focused on obtaining keys for the ciphering function. However, the same idea can be used for obtaining keys for other procedures like protecting RRC signaling and NAS signaling. 

We consider RRC signaling first. Suppose the ciphering function is at the eNodeB (i.e. the CFE is the eNB). In that case, the above method already provides a way for the UE and eNodeB to obtain a key through the Diffie-Hellman exchange. This D-H key can be used as the source of separate key material for RRC integrity protection and ciphering, in addition to separate keys for ciphering. On the other hand, suppose the ciphering function was at the UPE. In that case, the UE and eNodeB could still follow exactly the same procedure for obtaining keys for RRC signaling protection between the UE and eNB – i.e. do a Diffie-Hellman exchange at handover authenticated by the UE’s key with the previous eNB to obtain the RRC signaling protection key for the new eNB, and do a D-H exchange to refresh the keys at a given eNB. Note that this D-H exchange would be distinct from the D-H exchange that the UE would do with the CFE (since in this case the CFE is the UPE, not the eNodeB).

Similarly for protecting NAS signaling, the UE can run a separate D-H exchange with its MME, using the D-H for generating new keys at MME relocation and for refreshing the MME keys.

4.4 Scopes of keys

It is important to clearly identify the temporal and spatial scopes of various keys, and clearly identify which keys may be handled only by one network entity and which may be passed from one network entity to another. In the above method, the key arising out of the D-H exchange is only known to the end-points of the D-H exchange (in the case of ciphering, the UE and the CFE). The spatial scope of this key can be clearly limited to just the CFE, and it must not be passed to another CFE. At CFE migration, the new CFE obtains a new key through the D-H exchange, and the spatial scope of this key must also be limited to that CFE. Similarly for RRC signaling protection, the keys for ciphering and/or integrity protection of RRC messages between the UE and a particular eNodeB should be limited in spatial scope only to that eNodeB. When a handover is executed, by the proposed method, a new key is obtained at the new eNodeB through the D-H exchange, and the spatial scope of that key is limited to that eNodeB, etc. Thus one important advantage of the proposed method is that it allows generation of keys that are limited in scope only to one network entity.

It is also desirable that the temporal scope of all keys (i.e. the time for which the key is operative) be limited. The proposed method can refresh keys by simply performing a new D-H exchange. This allows all keys derived by the method to be short-term if desired, with an appropriately set (but bounded) key lifetime.

5 Conclusions
This contribution has proposed a method based on the Diffie-Hellman exchange that enables generation and refreshing of keys for user-plane ciphering, RRC, and NAS signalling, including generation of fresh keys avoiding domino effects at handover/relocation. 

It is proposed to discuss and adopt this method and document it in the next version of [1].
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7 Appendix A: Alternative method to derive keys for CFE migration
Here we describe an alternative method to derive keys for CFE migration. The old CFE (or CFE1) is not employed as a man-in-the-middle for the authenticated D-H exchange between UE and the new CFE (or CFE2). Instead, the UE directly performs a D-H exchange with CFE2 after the CFE migration. However, the shared key between the UE and the old CFE1 is used as the basis for authenticating the D-H exchange. This procedure does introduce a somewhat higher latency during CFE migration, since signaling is required after the UE’s switch to CFE2 to establish the new key
Just before the hand-over, the UE and CFE1 share a secret key K1. We assume that the UE initiates the CFE migration, although the procedure would work with slight modifications for network-initiated CFE migration as well. As before, we assume a secure channel between CFE1 and CFE2, but in this case, encryption is required on this channel.
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Figure 5. Alternative key exchange procedure in CFE migration.

1. The UE sends Nonce1 along with its migration request.  
2. CFE2 is selected as the target. CFE1 exchanges verification messages with CFE2 to that extent. 
3. Then the CFE1 informs the UE of CFE2’s identity along with Nonce2. At this point, the UE and CFE1 are independently capable of deriving a bootstrapping key K2. The key K2 is derived via a KDF and using the present shared secret between the UE and CFE1, K1, the Nonces exchanged as well as their identities. 
4. CFE1 sends the bootstrapping key K2 over to CFE2 over the secure (encrypted) signalling channel  along with any other context transfer. Once the UE migration to CFE2 is complete, the UE and CFE2 now have a shared secret key K2. 
5. CFE1 sends any additional context information required to CFE2. This step is not relevant to the security procedures per se, but will typically be used in e.g. handover signaling.
6. Using key K2 to authenticate messages, the UE begins a D-H exchange with CFE2 by sending its public number ga mod p (and a Nonce3 if using ephemeral mode). CFE2 can validate the authenticity of this message using K2, which was provided to it in step 4. 

7. CFE2  sends its public D-H number gbmod p (and possibly a Nonce4) to UE. The UE uses K2 to authenticate this message. At this point, the UE and CFE2 can both perform the D-H calculation to generate a new mutually shared key K3 = gabmod p. 
Note that this procedure requires the derivation of an intermediate key K2 by CFE1 from the key K1 that it shares with the UE. This means that compromise of K1 would compromise K2. However, as long as the compromise of K1 (or K2) happens after the completion of the D-H exchange, the new key K3 generated by the UE and CFE2 from the D-H exchange is safe. As noted in Section 3, compromise of K1 prior to the CFE migration leaves the UE vulnerable anyway, and this procedure does not increase the vulnerability.
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