TISPAN WG7
TD17
Interim Drafting Meeting
Oslo, 19-21 April 2005

3GPP TSG SA WG3 (Security) meeting #44
S3-060499
Tallinn, Estonia, 11 - 14 July 2006
Source:
Ericsson

Title:
Issues in GBA Push

Agenda item:
6.12 Push
Document for:
Discussion / Decision

1 Introduction

Based on contributions [1], [2], [3], [4] and the draft TS on GBA Push [5] we have identified a number of issues that need to be resolved. This contribution addresses these issues and proposes solutions.
2 UE Addressing
Assume that a NAF offers a service to which users subscribe. Then a user would have to submit an identity which the NAF can use to deliver the service. The identity submitted would typically be a MSISDN or an IMPU, i.e. a public identity, which normally is what is known by the user. The private identities IMSI and IMPI could not be expected as input and as a matter of fact they are not expected to be used for a purpose like the one described and not be handled by service providers. Furthermore, public identities are the identities used for routing purposes, MSISDN is used to send SMS and IMPU’s are used in IMS. Thus we have to assume that a NAF must be able to submit a public identity to the BSF when requesting parameters for the establishment of Push bootstrapping session. But on the other hand, to establish a bootstrapping session, the BSF needs the private identity of the USIM/ISIM to be used. As these private identities are not to be handled by a service provider the BSF has to be able to map a submitted public identity to a corresponding private identity.
A problem with using public IMS identities, IMPUs, is that they may be mapped to several IMPIs. But to establish a useful bootstrapping session the BSF needs to know which of these IMPIs that should be used. Thus there is a need to only allow the NAF to submit IMPUs to the BSF that are in a one-to-one correspondence with an IMPI.
3 Reuse of bootstrapping sessions and replay protection
The reuse of existing bootstrapping sessions for Push brings several problems. The first and perhaps the most important one is that it cannot be guaranteed that a UE will have an active bootstrapping session corresponding to the one held by a BSF and which is sent to a NAF. The UE may for different reasons have erased the associated Ks.
For the NAF to escape out of the deadlock situation when it uses a void bootstrapping session, it must have the possibility to request that the BSF generates a fresh bootstrapping session. For important push messages, a NAF may default into always require fresh bootstrapping sessions and the benefits of having reuse decreases. Still, reuse would limit the consumption of authentication vectors.
If one and the same bootstrapping session is used to protect several push messages, the push messages must be protected against replay. Here one can argue along the line that if a bootstrapping session is reused, it is up to the NAF and the UE to use a protocol which supports replay protection. However, this will require that the NAF is stateful and can keep state about its sessions with the UEs. Still, each time the NAF sends a push message it would have to request the current bootstrapping session from BSF to decide if a new session has been established or if the old one should be used. It would be an advantage if GBA push could be used securely by stateless NAFs. To remove the need to check with the BSF if a new bootstrap session should be used the system could be designed to handle push bootstrap sessions separately, i.e. the BSF and the UE should be able to handle several sessions simultaneously.
If a reused bootstrapping session is initiated by the UE, the public identity of the user is never exposed over any communication interfaces. This gives the user a certain amount of privacy. But when such an existing bootstrapping session is reused for push the B-TID can be associated with the public identity of the UE. This would allow someone that intercepts all traffic between the network and the UE to link services protected by the bootstrapping session identified by B-TID to an identifiable user. Thus, part of the privacy protection vanishes with reuse of bootstrapping sessions.
A solution which resolves the issues discussed above is to mandate that Push bootstrap sessions are generated per NAF and that UE initiated bootstrap sessions and bootstrap sessions initiated by other NAFs are not allowed to be reused.
The process would be that when a NAF needs a push bootstrap session it requests it from the BSF. The BSF always fetches a new authentication vector and generates a fresh bootstrap session key Ks. The BSF delivers the NAF_key, B-TID, RAND and AUTN and other parameters to the NAF but it doesn’t store the Ks. This of course means that the BSF cannot reuse this bootstrap session. The NAF then sends the push message to the UE which derives the NAF_key and stores it together with the B-TID and possibly also the NAF_Id. The UE also deletes the Ks.
In the proposed solution the BSF will not have to store and handle any push initiated bootstrap session after the request from the NAF and the UE only has to handle another NAF_Key, which it anyhow has to be able to do. Thus we only introduce minor extensions to the functionality in GBA and no additional storage requirements.

The proposed system also supports replay protection as each time a fresh push bootstrap session is initiated a new NAF_Key is generated. If this push bootstrap session is to be reused for additional push messages the protocol for pushing these messages should have a replay protection mechanism. More on the formats for push messages later but the establishment of a new NAF_key for push could trigger generation of a replay counter with an initial value of zero.
If special NAF specific push bootstrap sessions are used, the public user identity used to address the intended UE can only be linked to the B-TID used for push and not to any other bootstrap session.
4 Push Message Information Content
There is a need to establish which parameters a push message should contain. Obviously, when a push bootstrap session is to be established the push message needs to carry AUTN, B-TID, NAF-Id etc. If the B-TID isn’t based on the RAND then the RAND also has to be included. Furthermore a Protocol Id is required if push should reuse existing GBA concepts. There is no need to carry a replay counter as AUTN will ensure that the same message cannot be used twice. However, it would be prudent to link the NAF_Id to the other parameters in the push message. If this is not done the message could be manipulated and e.g. the NAF_Id could be changed without detection. This might lead to that the NAF and the UE will record different bootstrap session parameters.

If a NAF wants to reuse an existing push NAF_Key to push additional messages to the UE a replay protection mechanism is needed. As indicated above one way to facilitate this is to let the push message generate the creation of replay counter and its initialization to zero.

To allow reuse of push NAF_Key to secure push messages we propose that a push message protocol is defined. The protocol should only contain information on required and optional parameters, how it is integrity and replay protected and how a message payload is confidentiality protected. It should also contain a definition of how the NAF_Key and possibly derivatives thereof is used to key the protection functions. A first draft of formats is

Initial push message which establishes a push NAF_Key:

{AUTN, [RAND], B-TID, NAF-Id, lifetime, 0, enc(data), MAC}
And additional push messages reusing the same push NAF_Key

{ , , B-TID, [NAF-Id], , cntr, enc(data), MAC}

5 Conclusions and recommendations
A summary of our findings is that

1. The NAF must be allowed to use public UE identifiers in its request for push bootstrap session parameters.

2. The NAF should always receive a fresh push bootstrap session when sending a request for a push bootstrap session to the BSF. The BSF and the UE should not reuse the associated Ks for other purposes.
3. A push message protocol and format should be defined allowing reuse of an established push NAF_Key to protect additional push messages. Replay protection must be provided.
We recommend that SA3 endorses the proposed solutions and that they are to be included in the draft TS. If our proposal is accepted we will happily help in writing the required pseudo CR’s.
6 References
[1] S3-050757 GBA Push

[2] S3-060092 Pure Push Technical Solution

[3] S3-060125 Comments on S3-060092: Pure Push Technical Solution

[4] S3-060226 GAA Push Solution

[5] Draft TS 33.923 Generic Bootstrapping Architecture (GBA) Push Function

