3GPP TSG SA WG3 Security — SA3#43
S3-060288
Apr 4-7, 2006

Athens, Greece

Source:
Huawei
Title:
“Pseudo CR message flow to SSO scenario of ID-WSF authentication service”
Agenda item:
7.25(Liberty-3GPP security interworking)
Document for:
Discussion and decision

1 Introduction

In the latest TR 33.980, there is no message flow for SSO scenario of ID-WSF. This contribution will present such a message flow for SSO scenario of ID-WSF authentication service and usage of GBA.
2 Proposal

*****************Begin changes*******************
4.3.5
SSO scenario: ID-WSF Authentication Service
In this scenario the UE is LAP enabled, i.e. a LUAD (Liberty enabled User Agent or Device as defined in Liberty ID-WSF Profiles for Liberty enabled User Agents and Devices specification [16]). The protocol elements used are taken from ID–WSF Authentication Service [8], and the interaction of UE with IdP comprises two consecutive protocol runs. The active LUAD client contacts the NAF/IdP first before accessing the service provided by the SP.

1.
The UE authenticates with the Authentication Service (AS) of the IdP and retrieves a security token, which entitles the UE to invoke some services.

2.
The UE invokes the Single-Sign-On Service (SSOS) of the IdP using the security token. In this step the UE receives the authentication assertion (authentication and authorisation information) to be used at the SP.

3.
The UE presents the authentication assertion to the SP acting as a WSP for web service access.

In case the WSP providing the web service to the user is part of the domain of the IdP operator, the LUAD client may also contact the WSP directly with the security token. In this case the SSOS contact may be left out.

The IdP can be co-hosted with the NAF or the BSF and hence the scenario may be mapped differently to GBA. The two cases are described below:

-
In the default case, the IdP is co-hosted with the NAF.

The first step is mapped to the communication between user (LUAD) and AS as specified within LAP [8]. The authentication protocol is embedded in the SASL protocol as described in clause 4.2.1.2. The Ub run must be executed by the UE if necessary. This is not based on LAP protocols [6], [7] or [8], but only on GBA protocols [1].

The second and third steps are completely as defined in LAP (no connection to GBA). The only dependency on GBA is in the content of the SAML authentication assertion depending partly on GBA results (protocol parameters, e.g. execution time, and user specific parameters, e.g. taken from USS).

This is the ID-WSF scenario discussed in the remainder of this document.
The following gives a message flow for SSO scenario of ID-WSF authentication service with response transfer. This can also applies when the SSOS also offers an ID-WSF authentication service, in which case the SSOS is collocated with the AS.
1.
The UE contacts the SP to gain access to a service provided by the SP by sending an HTTP request.

2.
On receipt of the HTTP request from UE, the SP obtains the AS address and sends a redirect HTTP response to UE. The HTTP response may or may not contain an <AuthnRequest> header according to the application or deployment model. The means by which the AS’s address is obtained is implementation-dependent.

3.
The UE (LUAD-WSC) sends an HTTP request to the AS. The request contains a soap-bound <SASLRequest> header, where the “mechanism” parameter is filled with a list of one-or-more client-supported SASL mechanism names.
The UE shall indicate to the NAF/AS that GBA-based authentication is supported by adding a constant string to the "User-Agent" HTTP header as a product token as specified in IETF RFC 2616 [12]. This constant string shall be set according to step 2 of section 5.3 of TS 33.222[2].
If a bootstrapped security association between UE and NAF/AS exists, then UE and NAF/AS share the keys to protect reference point Ua and the UE may perform subsequent authentication procedure if the SASL profile allows. In this case step 3 is combined with the request in step 6, and step 4 and step 5 is omitted.

4. The AS sends a HTTP response to the UE. The response contains a soap-bound <SASLResponse> header, where the “serverMechanism” parameter is filled with a selected SASL mechanism name (i.e. DIGEST authentication) from the client-supported SASL mechanism list and in this case the <SASLResponse> header also contains a <digest-challenge> parameter. The method and details of this parameter are compliant to RFC2831.
5. If the UE does not contain a valid bootstrapping session or the freshness of the key material is not sufficient for the AS, then the UE will execute a new bootstrapping procedure with the BSF and obtain a shared key Ks_(ext/int)_NAF. This is transparent to the SP.
6. The UE re-sends a HTTP request to the AS. The request contains a soap-bound <SASLRequest> header, where the “mechanism” parameter is filled with the returned SASL mechanism in step 4 and in this case the <SASLRequest> header also contains a <digest-response> parameter, where the authorization data is computed using the B-TID as a username and the Ks_(ext/int)_NAF as password. The method and details of this parameter are compliant to RFC2831. The UE may include further LAP related user data.
7. As the AS is collocated with the NAF, the AS requests Ks_(ext/int)_NAF and other materials from BSF using Zn interface if they are not available yet.

8. The AS processes the <digest-response> parameter in the < SASLRequest> header. Then the AS responds with a soap-bound <SASLResponse> header in the HTTP Response. The <SASLResponse> header contains an ID-WSF EPR (EndpointReference) parameter which refers to the SSOS instance and the Service type URI is set according to [8] to identify the ID-WSF SSOS. The <SASLResponse> header also contains some necessary credentials for the UE to invoke the SSOS. The AS may include further LAP-related data.
9. The UE sends a HTTP request to the SSOS. The request contains a soap-bound <samlp2: AuthnRequest> header, where the ProtocolBinding attribute is set according to [8] to identify the SAML protocol binding to be used .The request also contains a <wsse:security> header which includes the returned credentials in step 8.The UE may have to construct the <samlp2: AuthnRequest> header by itself if it doesn’t receive such a header in step 2 according to the application or deployment model.
10. The < samlp2: AuthnRequest> is processed. The SSOS responds with an < samlp2: Response> header in the HTTP Response redirect URL [12]. The < samlp2: Response> header contains a <saml2:Assertion> parameter . The SSOS may include further LAP-related data.

11. The UE contacts the SP again using this URL and HTTP Request with < samlp2: Response >.
12. The SP answers with a HTTP Response.

[image: image1.emf]UESPASSSOSBSFHSS

1. HTTP Request

2. HTTP Response

 with

<AuthnRequest>

3. HTTP Request with <SASLRequest> in

SOAP Request message

4. HTTP Response with <digest-

challenge> in <SASLResponse> in SOAP

Response message

5. Bootstrapping, if no valid credentials available

6. HTTP Request with <digest-response>

in <SASLRequest> in

SOAP Request message using B-TID/

Ks_(ext/int)_NAF authentication

8. HTTP Response with <SASLResponse>

in SOAP Response message

9. HTTP Request with <AuthnRequest> in SOAP Request

message

7. Request of credentials and related

material using Zn interface, if not

already in AS/NAF

10. HTTP Response with <Response> in SOAP Response

message

11. HTTP Request

with

<Response>

12. HTTP Response

Figure 4.3-3: Message flow for ID-WSF AS and SSO with Response transfer and usage of GBA

-
If the IdP is co-hosted with the BSF, then the first step is mapped to Ub reference point of GBA [4]. The second step is mapped to Ua interface of GBA.

Despite having this formal analogy of executing two consecutive protocol runs required by both protocol worlds, it seems that a simple mapping is not possible. The syntax and semantic of the information elements transferred between GBA and LAP protocols differ substantially. Therefore, the ID-WSF IdP/BSF co-hosting scenario will not be elaborated further in this document.
*****************End changes********************

_1204630744.vsd
UE�

SP�

AS�

SSOS�

BSF�

HSS�

�

1. HTTP Request
�

3. HTTP Request with <SASLRequest> in SOAP Request message �

2. HTTP Response
 with <AuthnRequest>�

4. HTTP Response with <digest-challenge> in <SASLResponse> in SOAP Response message �

5. Bootstrapping, if no valid credentials available
�

�

6. HTTP Request with <digest-response> in <SASLRequest> in
SOAP Request message using B-TID/Ks_(ext/int)_NAF authentication�

8. HTTP Response with <SASLResponse> in SOAP Response message �

9. HTTP Request with <AuthnRequest> in SOAP Request message
�

7. Request of credentials and related material using Zn interface, if not already in AS/NAF�

10. HTTP Response with <Response> in SOAP Response message
�

11. HTTP Request with
<Response>
�

12. HTTP Response
�

