TISPAN WG7
TD17
Interim Drafting Meeting
Oslo, 19-21 April 2005

​3GPP TSG SA WG3 Security — SA3#41
S3-050751
15 – 18 November, 2005

San Diego, USA

Source:
Ericsson

Title:
Verification of TLS endpoints in GBA
Agenda item:
2G GBA / GBA enhancements
Document for:
Discussion and decision

1 Introduction 

2G GBA uses TLS over Ub reference point. This contribution discusses the problems that arise when TLS with shared key based user authentication and certificate based server authentication is used. A known problem of certificates is for example certificate revocation. Instead of using CA certificate signature to verify the server certificate, it is proposed in this contribution that the server (BSF) signs the server certificate with AKA based keys and therefore the UE can trust the TLS tunnel. 
It should be noted that this contribution mainly discusses 2G GBA, but it also makes references to another contribution to this meeting [S3-050755] that proposes to use TLS over Ub reference point in 3G GBA.

2 Discussion

When TLS with shared key based user authentication and certificate based server authentication is used, the UE needs to be able to trust the TLS tunnel, i.e. the UE needs to know that an authorized entity and not a man-in-the-middle (MitM) is on the other end of the TLS tunnel. In case of 2G GBA this means that the UE should be able to trust the server certificate provided by the BSF. The trust is based on the CA (Certificate Authority) signature, which is part of trust relations in a Public Key Infrastructure. 

However, use of certificates has some known issues. A general problem with certificates is certificate revocation. Another issue is globally trusted CAs. This means that it could be possible for a crook to trick a CA to sign a certificate with false name. A third issue with certificates is the need for a PKI infrastructure, which is probably not a problem but more a burden. 
This contribution proposes an AKA asserted solution to the certificate trust problem, where the server (BSF) and client (UE) bind AKA session keys to the TLS tunnel. Instead of using CA certificate signature to verify the server certificate, the BSF signs the server certificate with AKA based keys and therefore assertion of the server certificate is provided. 
The solution works as follows: In order for the UE to be able to trust the server side certificate, the BSF calculates a MAC (called server token in this contribution) over the server side certificate with AKA based key and sends this to the UE. By verifying the server token the UE is able to trust the server side certificate and the corresponding TLS tunnel. The UE in turn calculates a MAC (called client token in this contribution) over the server token using the same key, and sends this to the BSF. By sending this client token the UE acknowledges that it received and accepted the server token. 

It should be noted that the server side certificate used by BSF does not need to be part of any particular PKI for the user to trust it and it can be a self-signed certificate, if the mechanism described in this contribution is used. The only requirement on the certificates is that they are formed according to the general format and that the public key of the server is included properly. PKI certificates may still be used, but the client will not need to verify the CA signature (as this verification is replaced by the server token). A consequence of this is that certificate revocation is not an issue.  
3 Usage of server and client tokens in bootstrapping

3.1 Bootstrapping procedure for 2G GBA
The usage of the authorization tokens in 2G GBA is described below.


[image: image1.wmf] 

2. Request

 

(user identity)

 

 

UE

 

 

 

HSS

 

 

 

BSF

 

 

 

3. Zh interface: BSF 

retrieves 2G AV and 

GUSS

 

4. 401 Unauthorized

 

WWW

-

Au

thenticate:

 

Digest (RAND, Ks

-

input 

delivered), 

s_

token

 

5. Client runs conversion and 

SIM algorithms, and derives 

RES. Client checks the s_token 

and creates c_token

 

6. Request Authorization:

 

Digest (RES is used), 

c_token

 

7. Server checks the received 

Digest and c_token.

 

8. Ks derived from 

 

Kc, SR

ES, Ks

-

input

 

10. Ks derived from 

 

Kc, SRES, Ks

-

input

 

 

9. 200 OK

 

Identifier

 

1. Establish TLS tunnel

 


Figure 1: The bootstrapping procedure


1.
The UE sets up a confidentiality-protected TLS tunnel with the BSF. The UE shall check that the "realm" attribute contains the same FQDN of the BSF that was present in the certificate offered by the BSF. All further communication between ME and BSF is sent through this TLS tunnel. 

NOTE:
To avoid unnecessary computations (and possible user interaction), the UE need not verify the CA signature in the certificate, as it can simply accept the certificate. This is due to the CA certificate verification is replaced by the s_token.

2.
The UE now sends an initial HTTPS request.

3.
The BSF retrieves authentication vectors and GUSS from the HSS over Zh.


The BSF converts one 2G authentication vector (RAND, Kc, SRES) to the parameter RES. 

-
RES = KDF (key, "3gpp-gba-res", SRES), truncated to 128 bits

where key = Kc || Kc || RAND and KDF is the key derivation function specified in Annex B of TS 33.220.

The BSF shall also select a 128-bit random number “Ks-input” and set

server specific data = Ks-input 
in the aka-nonce of HTTP Digest AKA 

The BSF calculates the server token (s_token) over the BSF’s server certificate using the Token-key as specified in section 3.2 below.
4.
The BSF shall forward RAND, s_token and server specific data in the 401 message to the UE (without RES).

5.
The UE calculates the corresponding Kc and SRES values. It then calculates the parameter RES from these values as specified in step 3. The UE calculates the Token-key and validates the s_token using the Token-key. If the validation of s_token fails, the procedure is aborted and the TLS tunnel is released. The UE then calculates the c_token as specified in section 3.2.
6.
The UE sends another HTTP request, containing the Digest AKA response (calculated using RES as the password), the c_token and a cnonce to the BSF.

7.
The BSF authenticates the UE by verifying the Digest AKA response. If the authentication fails the BSF shall not re-use the authentication vector in any further communication. Then the BSF validates the c_token using the Token-key. If the validation of c_token fails, the procedure is aborted and the TLS tunnel is released.
8.
The BSF shall generate key material Ks by computing Ks = KDF (key, Ks-input, "3gpp-gba-ks", SRES).
The B-TID value shall be also generated in format of NAI by taking the base64 encoded RAND value from step 4, and the BSF server name, i.e. base64encoded(RAND)@BSF_servers_domain_name.

9.
The BSF shall send a 200 OK message, including a B-TID and an authentication-info header, to the UE to indicate the success of the authentication. In addition, in the 200 OK message, the BSF shall supply the lifetime of the key Ks. 

10.
The UE shall abort the procedure if the server authentication fails. If it is successful the UE shall generate the key material Ks in the same way as the BSF.

3.2 Calculation of authorization tokens in 2G GBA
The s_token consists of a MAC value that is calculated over the BSF’s server certificate using HMAC-SHA1-96 [RFC2404] as algorithm and Token-key as the key.

The c_token consists of a MAC value that is calculated over the s_token using HMAC-SHA1-96 [RFC2404] as algorithm and Token-key as the key. 

The Token-key is calculated for 2G GBA as follows:

Token-key = KDF (key, "3gpp-gba-token"), truncated to 128 bits, where the key = Kc || Kc || RAND as specified in Annex I and KDF is the key derivation function specified in Annex B of TS 33.220.

3.3 Calculation of authorization tokens in 3G GBA

The use and calculation of authorization tokens in 3G GBA 
is similar to 2G GBA. The only notable difference is how the Token-key is calculated for 3G GBA. For 3G GBA the Token-key is calculated as follows:

Token-key = KDF (IK, "3gpp-gba-token"), truncated to 128 bits, where the KDF is the key derivation function specified in Annex B of TS 33.220.
4 Conclusion

This contribution has discussed the problems that arise when TLS with shared key based user authentication and certificate based server authentication is used. A solution was described where the BSF calculates server token over the server side certificate with AKA based keys and sends this to the UE. By verifying the server token the UE is able to trust the server side certificate and the corresponding TLS tunnel. The UE in turn calculates a client token over the server token using the same keys, and sends this to the BSF. By sending this client token the UE acknowledges that it received and accepted the server token. 
It is proposed to adopt the presented solution to 2G GBA. 

The accompanying CR [S3-050752] implements the solution in TS 33.220 [33220].

In case TLS is adopted for 3G GBA as is proposed in another contributon to this meeting [S3-050755], it is also proposed to adopt the solution for 3G GBA. 
5 References
[33220] 


3GPP TS 33.220, GAA, Generic Bootstrapping Architecture
[RFC2404]

IETF RFC 2404 (1998): " The Use of HMAC-SHA-1-96 within ESP and AH”

[S3-050752] 

3GPP TD S3-050752, Verification of TLS endpoints in GBA, Ericsson

[S3-050755] 

3GPP TD S3-050755, Using TLS on Ub reference point, Ericsson























































� TLS is not currently used in 3G GBA. However, this is proposed in another contributon to this meeting.





_1192613653.doc
		

		

		

		



		

		

		

		



		

		

		

		



		

		

		

		









6. Request Authorization:



Digest (RES is used), c_token







1. Establish TLS tunnel







2. Request



(user identity)











7. Server checks the received Digest and c_token.







4. 401 Unauthorized



WWW-Authenticate:



Digest (RAND, Ks-input delivered), s_token







5. Client runs conversion and SIM algorithms, and derives RES. Client checks the s_token and creates c_token







9. 200 OK



Identifier







10. Ks derived from 



Kc, SRES, Ks-input











8. Ks derived from 



Kc, SRES, Ks-input







3. Zh interface: BSF retrieves 2G AV and GUSS







 







BSF







 







HSS







 







UE












