Page 1



3GPP TSG SA WG3 Security — SA3#41
S3-050776

November 15-18, 2005

San Diego, USA

Source:



Ericsson

Title:




ROC synchronization
Document for:
Discussion/Approval

Agenda Item:
 
MBMS

1 Introduction

As identified in S3-050416 [1], the synchronization of SRTP's [2] local ROC variable in MBMS is not trivial in all cases. Currently, when a user joins the session, it is given the ROC value in a MIKEY [3] MSK delivery message, and the ROC can be updated in MTK delivery messages.  Some cases where the UE will lose synchronization are:

1. The user registers for the service and receives the first MSK message including the current ROC, but does not join the service for some time. In the meantime, the ROC will wrap around (maybe several times) in the server, before the user actually joins the services and starts receiving MTK messages including the ROC. In this case the UE will be out of synch until the next MTK message arrives, which could be a long time.

2. The same use case as 1, but the service provider decides not to include the ROC in the MTK messages. Now the UE will never get back in synch.

3. If the UE leaves the session (due to being out of radio coverage or because of user action), and does not start receiving traffic from the service again until after 2^{15} packets, the UE will be out of synch.

4. The user joins a service, when the SEQ is close after wraparound, say SEQ = 0x0001. The server generates the MIKEY MSK message, and includes the current value of ROC, say ROC = 1. The MIKEY message reaches the UE, who reads the ROC value and initializes it's local ROC to 1. Now, if a SRTP packet with a SEQ lower than 0, say SEQ = 0xffff, was delayed and reaches the UE as the first SRTP packet the UE sees, the UE will initialize it's highest received sequence number, s_l, to 0xffff. Next the UE will receive SRTP packets with sequence numbers larger than zero, and will deduce that the SEQ has wrapped. Hence the UE will incorrectly update the ROC and will be out of synch.

Since there are difficulties to cover all cases that can occur with service configuration, user behavior and reordering of SRTP packets relative to the MIKEY MTK message and packet loss, it is less complex to provide a solution similar to the one used in 3GPP2, where the ROC is sent in each SRTP packet. If the ROC is included in each SRTP packet, the synchronization is immediate, and as discussed below does not necessarily increase the bandwidth utilization vastly. 

2 Proposed Solution

In 3GPP2 the ROC is sent in the MKI field of each SRTP packet. However, RFC 3711 states that the MKI field should be used to identify the master key only. Hence, that solution is not entirely clean with respect to RFC 3711. Also, sending the ROC in each SRTP packet may consume bandwidth unnecessarily. An alternative is to introduce a new integrity transform, which contains the ROC as part of the tag. 

There is an overhead of 4 bytes per packet in adding the ROC. To remedy this, the ROC is only added to packets which have a sequence number (SEQ, which is available from the RTP header) which is equal to zero modulo a constant R. The value of R and the use of the new transform need to be agreed out of band; it can be added to the MIKEY signaling.

The integrity of the ROC must be ensured to avoid DoS attacks. If an attacker modifies the ROC in a packet, the UE will be out of synch until the next ROC is delivered (unless the attacker modifies that one too). The new integrity transform will serve two purposes: transportation of the ROC and protection of the integrity of the ROC.  

Since RFC 3711 provides "hooks" where new transforms can be added, this can be specified in an IETF draft that adds the functionality to SRTP. The new transform can be added by registering a new value to table 6.10.1.c in MIKEY, and the value of R can be added as a new parameter in table 6.10.1a for the SRTP policy. These two registrations can be put in the IETF draft that specifies the new transform.

2.1 New Integrity Transform

2.1.1 Sender Side Operation

It is assumed that integrity protection is only provided to the packets that carry the ROC. 

Process the RTP packet as follows:

· Process the RTP packet according to RFC3711, until the step where the authentication tag is added.

· If (SEQ % R == 0) then 

· Compute MAC = HMAC-SHA1(auth_key, RTP_hdr  ||  RTP_payload  ||  ROC_loc). ROC_loc is the local value of the ROC at the sender side. The coverage of the HMAC is shown in Figure 1.

· Construct the TAG =ROC_loc || MAC and append it to the SRTP packet. Then send it to the receiver side. Figure 2 shows the logical structure of the SRTP packet in transmission.

else

· Omit the authentication TAG calculation.


[image: image1.wmf] 


Figure 1. The coverage of the HMAC on the sender side.

[image: image2.png]
Figure 2.  The logical structure of the SRTP packet during transmission. ROC_pkt is equal to the sender's local value of ROC.

2.1.2 Receiver Side Operation

It is assumed that integrity protection is only provided to the packets that carry the ROC.

Process the received SRTP packet as follows:

· If (SEQ % R == 0) then 

· Compute MAC = HMAC-SHA1(auth_key, RTP_hdr ||  RTP_payload  || ROC_pkt). The coverage of the TAG is depicted in Figure 3. 

· If MAC is equal to TAG excluding ROC_pkt (as received in the SRTP packet), accept the packet and set the local ROC value to ROC_pkt.

else

· Omit the authentication TAG calculation.

· Continue to process the packet according to RFC3711 at the stage that the packet has passed the authentication step.

[image: image3.png]
Figure 3. The coverage of the HMAC on the receiver side.

2.2 Integrity Transform Versions

Since the above scheme only provides integrity protection of the packets that carry the ROC, and this may not be every packet, it is not possible to have integrity protection for all packets. One possible solution to this is to have two different versions of the transform. Version 1 would be exactly as described in Section 2.1, and version 2 would process the packets with the following modification on the sender side: 


If  (SEQ % R == 0) then 

Process according to Section 2.1


else 

Compute the TAG as in Section 2.1, but do not add the ROC to the packet, i.e., perform the standard integrity procedure of RFC3711.

The receiver would do the corresponding changes to the processing. 

3 Conclusion and Proposal

The described way of synchronizing the ROC is much more robust than only relying on the ROC sent in the MTK delivery messages. Therefore, it is proposed that it is not allowed to transport the ROC in MTK messages if the above approach is approved.

It is proposed that the attached CR (Att1), which introduces the usage of the above described transform, is implemented in TS 33.246, and that the transform it self is standardized in IETF (an IETF-draft (Att2) for this is attached to this contribution).

4 References

[1] Motorola, S3-050416, "ROC Synchronization Issue and Solution"

[2] IETF RFC3711, "Secure Real-time Transport Protocol"

[3] IETF RFC3830, "Multimedia Internet KEYing"





































































 page 1

_1189334567.doc
[image: image1.png]


