3GPP TSG SA WG3 Security — SA3#41
S3-050753
November 15-18, 2005

San Diego, USA

Source:
Ericsson

Title:
Enhanced Privacy support in GAA/GBA

Agenda item:
GAA

Document for:
Discussion/Decision
1 Introduction

Current GAA/GBA procedures present some weaknesses with respect user’s identity privacy protection towards third-party applications. Two or more independent third party applications can trace back the user as linkability (a.k.a. collusion) via B-TID is possible. This contribution proposes a solution to avoid this privacy weakness.

2 GAA/GBA Privacy weakness

Currently in GAA/GBA, permanent user identifiers (e.g. IMPI) are used over Ub interface in order to initiate a bootstrapping procedure. This triggers the generation of a B-TID identifier which is used instead at Ua and Zn reference points. During the validity period of a particular bootstrapped material, the same B-TID is used with all accessed NAFs.

Even when the permanent identifier (e.g. IMPI) is not employed at Ua and Zn, it would be possible for two or more applications implementing NAF’s to collect information and find which B-TID identifiers are the same across several applications. This would reveal which user is subscribed to the same services and hence build profiles on such users violating their privacy.

Such an attack is known as linkability. While this is a minor issue for applications that are provided by the same operator, it may become a serious concern when applications are provided by third parties, when the operator hosts 3rd party services within its premises or when the applications are in a visited network.

In order to tackle this privacy problem, this contribution proposes the use of an additional bootstrapping identifier to the one currently defined in GAA/GBA specs. The current B-TID identifier will be generated using existing procedures, but shall only be used between the UE and the BSF over Ub reference point.

The bootstrapping identifier used between the UE and the NAF over Ua reference point and between NAF and BSF over Zn reference point shall be different from the B-TID and will be specific for each NAF; i.e. B-TID_NAF.

This will prevent the user from being linked over the Ua interface between the UE and different NAF applications.

3 Detailed description

This section will present the proposed solution to the identified privacy weaknesses in more detail and also shows how this solution fit into the current GAA/GBA procedures.

3.1 B-TID_NAF Generation Procedure

This contribution proposes that BSF keeps using B-TID identifier but only at Ub reference point. B-TID shall be generated using the same and existing procedures currently defined in GAA/GBA [1].

Additionally, BSF shall be able to generate new bootstrapping identifiers to be used with the NAF applications over Ua and Zn reference points. These new identifiers are called B-TID_NAF. When the UE wants to access a particular NAF application and knows that bootstrapping material is required, the UE requests the generation of a particular B-TID_NAF identifier to BSF.

In the current state of the GAA/GBA specifications [1], the UE doesn’t need to contact the BSF each time a new NAF is accessed since with the original B-TID the UE has enough provisioned information to contact new NAF’s. In order to mitigate the effect of this additional signaling, this contribution proposes the possibility for the UE to ask in advance and in one single message flow for a number of B-TID_NAF identifiers corresponding to e.g. typical NAFs used by the user or accessed by the system.

Note that the effect of considering B-TIDs per NAF implies that various B-TID_NAFs will point to the same bootstrapped key Ks.

[image: image1.wmf]

UE

BSF

B

-

TID

_NAF

, Prof

1. Application Request

(B

-

TID

_NAF

, msg)

NAF

Ua

Zn

2. Authentication Request

(B

-

TID

_

NAF

,NAF hostname,

Keys)

3. Authentication Answer

(Ks_NAF, Prof, Bootstrap time,

Key Lifetime)

4. App

lication Answer

msg

 is appl. specific dataset

Prof

 is application specific part of user profile

The Server stores KS_NAF,

Prof Bootstrap time and

Key Lifetime

B

-

TID

_NAF

Figure 1 shows how the procedure for generation of B-TID_NAF identifiers would look like.

Figure 1. B-TID_NAF Generation procedure
Step1.
The UE initiates the B-TID_NAF Generation Procedure. This procedure will typically take place after a bootstrapping procedure has been already performed each time the UE does not have a valid B-TID_NAF identifier to access a particular NAF application.

B-TID is used by the UE in order to indicate the BSF the right user for which the B-TID_NAF identifier shall be generated. B-TID is used instead of a permanent user identifier (e.g. IMPI) in order to expose this permanent user identifier the least as possible (only used during initial boostrapping procedure).

Additionally, the UE indicates BSF the NAF identifier(s) for which B-TID_NAF identifier(s) are requested.

This procedure doesn’t require authentication. The B-TID is enough to identify the user and locate the material from previously bootstrapped session. However, B-TID and B-TID_NAF need to be protected against eavesdroppingand TLS with server-side authentication is assumed to be used in the Ub interface.

Step 2.
The BSF verifies that valid bootstrapping material associated to the received B-TID is available.

In the case, the received B-TID is not available at BSF and/or BSF detects that existing boostrapping material needs to be refreshed, BSF shall request the UE to trigger a new boostrapping procedure.

Step 3.
BSF generates B-TID_NAF identifiers for those NAF identifiers included in the original request.

Step 4.
BSF provides the UE with the requested B-TID_NAF identifiers.

[image: image2.wmf]

1. Request B

-

TID_NAF

 [

B

-

TID

,

(NAF_id)n

]

4. 200 OK [B

-

TID,

(B

-

TID_NAF)n

]

UE

BSF

2. Server checks

if

B

-

TID is valid

3.

Generate (B

-

TID_NAF)n

The B-TID_NAF generation procedure could be also easily executed during the request of a bootstrapping procedure as shown in figure 2.

Figure 2. Bootstrapping and B-TID_NAF Generation procedure

3.2 Bootstrapping Usage Procedure

Figure 3 shows how the B-TID_NAF identifier shall be handled within the currently specified bootstrapping usage procedure.

[image: image5.wmf]

1. Request [(user identity),

 (NAF_id)n

]

8

. 200 OK

[B

-

TID, Lifetime,

(B

-

TID_NAF)n

]

3. 401 Una

uthorized

WWW

-

Authenticate:

Digest (RAND, AUTN

delivered)

UE

HSS

BSF

2.

Zh interface:

BSF retrieves AV

and user pr

ofile.

4 Client runs AKA

algorithms, verifies

AUTN, and session

keys derives RES

5. Request

Authorization:

Digest (RES is used)

6. Server checks

the

given RES, if it is

correct.

7. Generate Ks

Generate (B

-

TID_NAF)n

Figure 1. Boostrapping usage procedure

The Bootstrapping usage procedure currently defined in GAA/GBA specifications [1] is modified so the UE uses the B-TID_NAF identifier specific for each NAF it tries to get access for. Consequently, a valid B-TID_NAF identifier will be used over Ua and Zn reference points instead of B-TID (Steps 1 and 2).

With this information, BSF shall be able to identify the boostrapping procedure (B-TID) and answer the NAF with the related boostrapped key material, Ks_NAF (Step 3).

The process then continues as currently specified in GAA/GBA specifications [1].

3.3 Format and Derivation of B-TID_NAF identifiers

The format of a B-TID_NAF identifier is similar to the original B-TID. A slightly different random number is used instead where RAND’ is a one way function F () of the original RAND used during the bootstrapping and the NAF identifier:

B-TID_NAF= RAND’@BSFdomainId

RAND’=F[RAND|NAFid]

The information in this format will not allow two or more independent NAF applications to identify that the same user is accessing their services since bootstrapping identifiers are specific for each NAF application and it is not possible to retrieve relevant information from them.

In order to add additional security over Ua interface, the use of B-TID_NAF could be characterized to be of a single use only. This would prevent that a man in the middle executes reply attacks over Ua trying to impersonate a valid UE user accessing a particular NAF application. Alternatively, the Ua interface can be protected with TLS when applicable.

3.4 Refresh of Bootstrapping Material

According to this proposal, using the B-TID_NAF identifier received at Zn reference point, the BSF shall be able to associate a particular boostrapping key material (Ks) and generate specific keys (Ks_NAF).

Since bootstrapped key material has a defined validity period, when this is reached NAF applications will normally indicate the need for the UE to execute a new boostrapping procedure that would result in a refresh of the boostrapped material.

In order for the NAF application to be able to identify that the new boostrapped material actually correspond to the refresh of previously stablished material, some additional requirements must be supported.

During a boostrapping generation procedure where existing boostrapped material needs to be refreshed then:

· The BSF shall be able to automatically genarate new B-TID_NAF identifiers for those previously computed B-TID_NAF identifiers and associate them to a new B-TID.

· The BSF shall be able to download to the UE over Ub these newly generated B-TID_NAF identifiers for those NAF ids already previously downloaded to the UE even if the UE did not include the request for the generation of B-TID_NAF identifiers in the original request. This shall be done in the Boostrapping response.

· The UE shall be able to refresh not only B-TID but also previously downloaded B-TID_NAF ids even if no B-TID_NAF was requested in the boostrapping request and only for those for which the UE had a previous B-TID_NAF identifier.
3.5 Backwards Compatibility

If approved by SA3, the mechanism for enhanced privacy protection proposed in this contribution shall be specified and implemented as enhancements for GBA during Release 7.

In order to ensure backwards compatibility with Release 6, it shall be possible that Release 7 BSF, NAF or UE implementations can interwork properly with Release 6 implementations.

This section analyses the different scenarios and shows how this is achieved without the need of extra requirements:

· The proposed B-TID-NAF can be handled exactly in the same way as for the B-TID in the interfaces towards the NAF (i.e. Ua and Zn). This would be subject for protocol definition but in principle no new protocol parameters would be even required.

· At the Ub interface, a Rel-6 BSF implementation would reject B-TID_NAF requests from Rel-7 UEs (e.g. "operation not supported" type of error). In a similar way, a Rel-6 BSF implementation would be able to ignore B-TID_NAF elements within a Boostrapping request procedure (e.g. "Unexpected data" type of error). That should ensure that Rel-7 UE implementations falls back and uses only B-TID as in Rel-6.

· Finally, also at the Ub interface and for the case of a Rel-6 UE implementation and a Rel-7 BSF implementation, everything should work fine as the UE will not initate any of the proposed operations.
4 Conclusion & Proposal

The concept to use B-TID​_NAF identifiers over Ua interface (UE-NAF), which are generated specific for each NAF and used according to this contribution, disables the possibility to link the user over NAFs as it currently happens in current GAA/GBA specifications.

In order to add additional security over Ua interface, the use of B-TID_NAF could be characterized to be of a single use only, or protected by TLS. This would prevent that a man in the middle executes reply attacks over Ua trying to impersonate a valid UE user accessing a particular NAF.

Additionally, B-TID is used over Ub interface (UE-BSF) instead of a permanent user identifier (e.g. IMPI/IMSI) in subsequent UE queries to the BSF for UE request of B-TID-NAF identifiers. This is introduced in order to expose the user identity the least as possible.

Finally, the proposed mechanism does not seem to imply any backward compatibitility issue.

SA3 is kindly requested to analyse and discuss the handling of B-TID_NAF identifiers and incorporate its use as proposed in this contribution in order to overcome the related privacy weaknesses also highlighted by this contribution. If approved by SA3, Ericsson will be happy to provide necessary Change Requests related to this proposal in subsequent meetings.
5 References

[1]
3GPP TS 33.220: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture" v.6.6.0

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

[image: image3.wmf]

1. Request [(user identity),

 (NAF_id)n

]

8

. 200 OK

[B

-

TID, Lifetime,

(B

-

TID_NAF)n

]

3. 401 Una

uthorized

WWW

-

Authenticate:

Digest (RAND, AUTN

delivered)

UE

HSS

BSF

2.

Zh interface:

BSF retrieves AV

and user pr

ofile.

4 Client runs AKA

algorithms, verifies

AUTN, and session

keys derives RES

5. Request

Authorization:

Digest (RES is used)

6. Server checks

the

given RES, if it is

correct.

7. Generate Ks

Generate (B

-

TID_NAF)n

[image: image4.wmf]

1. Request B

-

TID_NAF

 [

B

-

TID

,

(NAF_id)n

]

4. 200 OK [B

-

TID,

(B

-

TID_NAF)n

]

UE

BSF

2. Server checks

if

B

-

TID is valid

3.

Generate (B

-

TID_NAF)n

_1191065804.doc
		

		

		

		

		

		

		

		

7. Generate Ks

 Generate (B-TID_NAF)n

1. Request [(user identity),

 (NAF_id)n]

. 200 OK

[B-TID, Lifetime,

(B-TID_NAF)n]

8

correct.

5. Request

3. 401 Unauthorized

WWW -Authenticate:

Digest (RAND, AUTN delivered)

given RES, if it is

6. Server checks the

Digest (RES is used)

Authorization:

keys derives RES

AUTN, and session

algorithms, verifies

4 Client runs AKA

and user profile.

BSF retrieves AV

2. Zh interface:

BSF

HSS

UE

_1191066357.doc

(B-TID_NAF,NAF hostname, Keys)

3. Authentication Answer

 is application specific part of user profile

 is appl. specific dataset

msg

Prof

The Server stores KS_NAF,

Prof Bootstrap time and

Key Lifetime

(Ks_NAF, Prof, Bootstrap time,

Key Lifetime)

4. Application Answer

B-TID_NAF

B-TID_NAF, Prof

(B-TID_NAF, msg)

2. Authentication Request

1. Application Request

Ua

NAF

BSF

UE

Zn

_1191064244.doc
		

		

		

		

		

		

		

		

4. 200 OK [B-TID, (B-TID_NAF)n]

3. Generate (B-TID_NAF)n

2. Server checks if B-TID is valid

1. Request B-TID_NAF

 [B-TID, (NAF_id)n]

BSF

UE

