TISPAN WG7
TD17
Interim Drafting Meeting
Oslo, 19-21 April 2005

​3GPP TSG SA WG3 Security — SA3#40
S3-050570

12 September – 15 September, 2005

Portorose, Slovenia

Source:
Ericsson, Lucent, Nokia

Title:
Analysis of Enhanced 3GPP R5/6 Access Security Mechanism

Agenda item:
IMS

Document for:
Discussion

1 Introduction

This document analyses the Enhanced 3GPP R5/6 Access Security Mechanism (E3G-ASM) that is presented in [S3-050402]. The Section 2 comprises from sub-sections that present detailed analysis of specific aspects of E3G-ASM. The special focus is given to issues related to UDP encapsulation [RFC3948].

2 Analysis

When dealing with transport security, it can be noted that NAT traversal in general becomes more transparent to the security layer, the higher up in the stack you apply the security. A session/application layer security solution (like TLS) will not need to bind the security association to the transport addresses and ports, but can do the mapping on other identities. In contrast, the lower in the layers you apply the security (such as IPsec), the more "fixes" must be done to the solution to be able to handle the NATs. While IPsec partly was created to be "transparent" to the application, the E3G-ASM solution has proven that the transparency is all long gone. In fact, not only is the application involved in the key management, but will also need to handle the NAT traversal. This creates a very tight coupling between the network layer and the application, which in many respects can be questioned if it is desirable (this problem is sometimes referred to as layer violation).

This analysis focus on four aspects of the E3G-ASM:

1. Implementation (and upgrades)

2. Co-existence with other applications

3. Immaturity of Standard

4. NAT compatibility problems

2.1 Implementation

The E3G-ASM solution is often regarded as a relatively simple extension to the existing access security mechanism of 3GPP R5/6. However, implementation wise, it is not always that straightforward. The Figure 1 shows the coarse diagram from typical, existing IPsec implementation. Kernel needs to have a support for IPsec, and in needs to include a standard base Application Programming Interface (API). User space has to have some kind of keying daemon and policy database. Numbers in figures indicate the order of events. The events in Figure 1 are the following:

1. Keying daemon reads the policies from database.

2. Keying daemon registers itself to the kernel.

3. Application tries to send information to the network.

4. The SA decisions part of the kernel informs keying daemon that the required SA does not exist.

5. Keying daemon initiates a key exchange procedure (e.g. IKE).

6. Keying daemon creates a SA in the kernel.

7. The data sent by the application is passed by the IPsec implementation in the kernel. After IPsec procedures the data is sent to the network.

Today, there are only few IPsec implementations that support UDP encapsulation (and most likely that current TS 33.203 implementation does not have UDP encapsulation support), so, therefore, a typical IPsec implementation without UDP encapsulation is chosen as a reference. IPsec implementations are operating system specific. IPsec implementations on some operating systems may slightly differ from the diagram presented in Figure 1. However, the same principles apply to most of them.

[image: image1.emf]User space

Kernel space

Application Keying daemon

Policies

SA decisions

API

1

2

4 6

5

7

Net

IPsec

3 User space

Kernel space

Application Keying daemon

Policies

SA decisions

API

1

2

4 6

5

7

Net

IPsec

3

Figure 1: Coarse diagram from typical, existing IPsec implementation
The IPsec implementation required by the E3G-ASM is presented in the Figure 2. The events are slightly different when compared to the typical IPsec implementation, and the biggest changes are emphasized with bold font:

1. Keying daemon reads the policies from database.

2. Keying daemon registers itself to the kernel.

3. Application tries to send information to the network.

4. The SA decisions part of the kernel informs keying daemon that the required SA does not exist.

5. Keying daemon initiates a key exchange procedure, which is done on SIP layer.
6. Keying daemon creates a SA in the kernel. This procedure call also needs to convey the information that UDP encapsulation is needed.
7. The data sent by the application is passed by the IPsec implementation in the kernel. SA decisions part of the kernel needs to be able to make a decision whether or not the data needs to be UDP encapsulated.
8. IPsec packets are UDP encapsulated, and then sent to the network.

Part where big changes are needed are displayed with grey, diagonal pattern. Hardest things to implement are the three different changes to the kernel. First change is the API. The API needs to be modified in such a way that it is possible to convey UDP encapsulation information from user space to kernel space. The second change is that the part making the SA decisions in the kernel needs to be able to determine whether the application data needs to be UDP encapsulated or not. From implementer’s point of view this is not very easy, because it is possible that a new routing decision is needed, and there might also be a need to create a new queue for the data packets. The third change is the insertion of UDP encapsulation functionality itself, which is not present in the most current IPsec implementations. In case some or all of these are implemented in hardware, changing them is especially difficult if not even impossible.

Also the user space requires a new keying daemon, which does the key exchange on SIP layer. It is good to keep in mind that these changes proposed by E3G-ASM are not only related to the terminals, put also to the system software in P-CSCF needs to be changed.
[image: image2.emf]User space

Kernel space

Application

Keying daemon

Policies

UDP encaps.

SA decisions

1

2

4 6

5

7 8

API

Net

IPsec

3 User space

Kernel space

Application

Keying daemon

Policies

UDP encaps.

SA decisions

1

2

4 6

5

7 8

API

Net

IPsec

3

Figure 2: Coarse diagram from IPsec implementation done according the E3G-ASM

If terminals are based on some closed source operating system, such as MS Windows or Macintosh, it is impossible for a 3rd party to make changes to the kernel. Instead, special plug-ins must be developed (in the worst case a full IPsec implementation, which may conflict with the existing one that is used). This fact will probably slow down the adoption of NGN terminal software among customers, because there will not be many implementations to choose from in the marker. It is also noteworthy that the NAT traversal problem is present in fixed access networks, and the vast majority of terminal there are using closed source operating systems.

It should also be noted that hardware implementations are sometimes used for servers and specialized terminals. Adding UDP encapsulation in this case is not non-trivial but will create a large cost.

2.2 Co-existence of Applications

A potential problem for E3G-ASM is the co-existence of other application utilizing the IPsec engine (such as Virtual Private Network (VPN) applications or other applications). These applications typically utilize particular standard keying daemon (such as IKE/IKEv2) or may in different (non-standard) keying deamon. There is a general problem of using more than one keying daemon as there may become conflicts while setting up policies and handling SPI and SAs.

Conflicting policies could easily be created by e.g., a corporate VPN client and a IMS application where the IMS application first set up a policy between UE and P-CSCF, which then the corporate VPN client will try to override (there may even be conflicting policies for I-WLAN clients and IMS applications, in case the IMS application sets up a policy before the I-WLAN client is activated). Another problem is of course SPI handling. When more than one keying deamon competes of the same SPI space, conflicting SPI's may appear as a result.

2.3 Immature standards

UDP Encapsulation [RFC3948] is a new technique, and the first implementations are just starting to emerge. Some problems have been spotted on this technique. The most notable problem is the poor interoperability in the situations where NAT device between two UDP encapsulation capable devices suddenly reboots. Current specification [RFC3948] does not give enough details on how this kind of situation should be handled. As a consequence, it is possible that UDP encapsulation capable devices from vendor A do not work with the devices from vendor B.

Another problem with E3G-ASM is that it requires changes to the IANA registry, which is created by [RFC3329]. Seemingly, a Standards Track IETF RFC or a separate IAB decision is needed in order to make that change. Arguably, it might take too long for such a process, considering the schedule of NGN R1.

2.4 Poor compatibility with NATs

E3G-ASM sets up two Security Associations (SAs), and it uses UDP Encapsulation. These two mechanisms inflict some problems to NAT devices. The use of UDP as a transport protocol mandates frequent keep-alive messages. The following is a citation from “IP Network Address Translator (NAT) Terminology and Considerations" [RFC2663]:

Many heuristic approaches are used to terminate sessions. You can

make the assumption that TCP sessions that have not been used for

say, 24 hours, and non-TCP sessions that have not been used for a

couple of minutes, are terminated.
It is obvious that not all NAT implementations are in direct accordance with this text, but is gives a pretty good estimate from the scale of NAT binding lifetimes. Real life example: UDP bindings in the NAT implementation of Linux 2.6.10 timeout in 60 seconds, when compared to TCP bindings which timeout in 5 days.

The fact that E3G-ASM uses two SAs causes the need to make two bindings to NAT devices per one signalling connection. This is not a problem to such NAT devices that reside on customer premises, but it might be a problem for those NAT devices that reside on the premises of access network provider. The maximum number of bindings per outer IP address in NAT devices is 65536.

In addition, IPsec itself has some unsolved problems with NATs. Conflicted situations are possible, and in some scenarios even probable, when using either tunnel or transport mode. These conflicted situations are explained in detail in Section 5 of [RFC3948].

3 Conclusions

There are problems related to E3G-ASM. These problems need to be taken into consideration when a new access security solution is chosen. These problems are:

· non-trivial implementation,

· problems with co-existence with other applications,

· the use of immature standards, and

· inherently poor compatibility with NATs.

Implementation of E3G-ASM may prove to be demanding due to its complexity, since it requires changes to several places in the kernel (and in some cases hardware). However, it may be technically feasible as long as it is not adopted to a proprietary (closed) operating system. This could be problematic for terminals. UDP encapsulation is a new standard, and the first implementations from it are proven to have some incompatibility problems in the situation where NAT device is rebooted. E3G-ASM is inherently quite poorly suited for NAT traversal due to short lifetimes of UDP bindings and profuse port consumption.

4 References
[S3-050402]
Contribution to 3GPP, Enabling NAT traversal for signaling messages in the IMS access security framework, Siemens, SA3#39.

[RFC3948]
A. Huttunen et al., UDP Encapsulation of IPsec ESP Packets, Proposed Standard, RFC 3948, January 2005.

[RFC2663]
P. Srisuresh and M. Holdrege, IP Network Address Translator (NAT) Terminology and Considerations, RFC 2663, Informational, August 1999.

[RFF3329]
J. Arkko et al, Security Mechanism Agreement for the Session Initiation Protocol (SIP), Proposed Standard, RFC 3329, January 2003.

