3GPP TSG SA WG3 Security — SA3#35
S3-040741
October 5-8, 2004

St Paul's Bay, Malta

Source:
Nokia, Siemens, Huawei

Title:
GBA User Security Settings (GUSS) usage

Agenda item:
6.9.2 (GBA)

Document for:
Information/Decision

1
Introduction

At SA3#34 is was decided that GBA User Security Settings (GUSS) will be used in transferring identity and authorization information from the HSS to the BSF, and application specific User Security Setting (USS) will be used transfer the identity and authorization information from the BSF to the NAF (see S3-040650). This discussion paper discusses the content of these information elements as they have been defined in CN4 (sections 2.1 and 2.2), describes the procedrue related to the GUSS usage (section 2.3), and lists some open questions with tentative answers related to the GUSS usage (section 2.4).

2
Discussion

2.1
GBA User Security Setting (USS)

S3-040650 defined GBA User Security Setting (USS) the following way: 

"An application-specific parameter set describing the security related usage of bootstrapping function by the BSF and, optionally, some types of NAFs in the context of an application and in relation to a subscriber. A user security setting has two parts, an authentication part, which contains the list of identities of the user needed for the application (e.g IMPI, IMPUs, MSISDN, pseudonyms), and an authorisation part, which contains the user permission flags (e.g. access to application allowed, type of certificates which may be issued). Sometimes also called application-specific user security setting."

An example of a USS that is based on the XML Schema defined by CN4 (see annex A) is given below.

CN4 has defined an XML Schema (N4-041005) that is also listed in Annex A. Below is an example of an USS.

<uss id="1234567890" type="1">


<uids>



<uid>tel:358504837438</uid>



<uid>pekka.laitinen@nokia.com</uid>



...


</uids>


<flags>



<flag>1</flag>



...


</flags>

</uss>

The <uss> element contains list of user identifiers inside <uids> element and authorization flags inside <flags> element. A <uss> element can be identified by the "id" attribute that contains the application identifier. The element also contains "type" attribute that indicates the type of the application, e.g., PKI portal (1), authentication proxy (2), or Presence admin server (3). The meaning of separate authorization flags are directly liked to the application type, e.g., for the PKI portal type flag "1" would mean that the issuance of authentication certificate is allowed, and "2" would meant the non‑repudiation certificate issuance is allowed for the subscriber. If the particular flags are missing then the corresponding action is not allowed.

The NAF can request one or more <uss> elements from the BSF by listing the application identifiers in the request to the BSF. The BSF will locate the corresponding <uss> elements and return them to the NAF if it is authorized to receive them. Whether a NAF is authorized to receive a particular <uss> element is a configuration option in the BSF.

2.2
GBA User Security Settings (GUSS)

S3-040650 defined GBA User Security Settings (GUSS):


"The set of all application-specific user security settings."

An example of a GUSS that is based on the XML Schema defined by CN4 is given below. For extension of this definition proposed by this document see annex A.

<guss id="358500004837438@ims.mnc050.mcc358.3gppnetwork.org">


<ussList>



<uss id="1234567890" type="1">




<uids>





<uid>tel:358504837438</uid>





<uid>pekka.laitinen@nokia.com</uid>





...




</uids>




<flags>





<flag>1</flag>





...




</flags>



</uss>



...


</ussList>

</guss>

The <guss> element contains a list of <uss> elements for the particular subscriber. A <guss> can be identified by the "id" attribute that contains the IMPI (or pseudo-IMPI derived from the IMSI) of the subscriber.

2.3
GUSS/USS procedure

2.3.1
Successful case

During the bootstrapping procedure the BSF fetches subscriber's GUSS from the HSS and stores it along with other bootstrapping information such as the B-TID, key material, and key lifetime values. When the UE contacts the NAF, the NAF will send a request to the BSF containing:

1.
B-TID (received from the UE),

2.
NAF hostname (that the UE used to contact the NAF), and

3.
zero or more application-ids (each identifying an application/service).

Upon receiving this information, the BSF does the following:

4.
verifies that the NAF is authorized to use the hostname given,

5.
locates the bootstrapping parameters identified by the B-TID,

6.
derives the NAF specific key(s) using the given hostname, 

7.
locates USSs identified by the application-ids given in the request, 

8.
verifies that the NAF is authorized to receive each of these USSs, and

9.
checks whether the existence of certain USSs is required for the NAF.

If all this is successful, the BSF returns the following parameters to the NAF:

10.
key lifetime,

11.
NAF specific key(s), and

12.
zero or more requested USSs.

Upon receiving this information, the NAF does the following:

13.
concludes the authentication procedure with the UE, and

14.
examines USSs for relavant information.

The USS may contain authorization flag(s) to instruct the NAF to either allow or disallow access to the service. This is done for example in the PKI portal case, where the USS will contain information whether the PKI portal is allowed to issue a certain kind of certificate.

2.3.2
(Potential) error cases

Related to subscriber's GUSS or USSs, there are three potential error cases possible:

1.
The subscriber does not have a GUSS in the HSS, 

2.
The subscriber does not have a particular USS that is requested by the NAF, and

3.
The NAF is not authorized to access the requested USS.

The first case marks the situation where the subscriber does not have any GBA related data, i.e., no GUSS in the HSS. As GBA should be usable to all subscribers this should not result to an error. But is should be noted that without of any USSs in the HSS, NAFs will not receive subscriber's identities or authorization flags. The NAF obtains only the information that the UE is a valid subscriber of the operator with an exception that special NAFs (according to local BSF policy set by the operator) may receive the private identity as well.

The second case may be caused by several reasons:

a)
Subscriber does not have a subscription of the service;

b)
Subscriber has a subscription of the service but for some reason is not allowed to use the service.

In general case, a single NAF may host several services each requiring a separate USS, e.g., an authentication proxy, and a subscriber accessing the NAF may have subscribed only to one of those services, the subscriber will have only one USS that the NAF is requesting from the BSF. Since the NAF may not know which service the subscriber is going to access during the authentication phase, it must request USSs for all the services that it is hosting. If this case generates an error message from the BSF to the NAF, the subscriber would not be able to access the service. Therefore a missing USS should not cause an error message in general, and it should be the NAF that handles the missing USS scenario according to its internal policies.

In specific cases, e.g., with visited NAFs, more stricter access control may be needed. In this case, it would be required that the NAF must request one or more USSs and that those USSs must exist for the subscriber. If even one USS is missing from subscriber's GUSS, it would cause an error message being sent to the NAF. This can be implemented in the BSF as a local policy, and it would be enforced in step 9 in section 2.3.1.

So, in the generic case a missing USS would not result to an error, but in the specific cases it would.

Note:
According to the current TS 29.109, if the NAF requested one or more USSs by giving one or multiple application ids in the request over Zn interface, and if any of the USS are missing from subscriber's GUSS, the BSF shall return error: USS not found. This needs to be changed in TS 29.109.

The third case should result to an error message as the NAF is trying to request a USS that it is not authorized to use.

2.4
Questions

1) Should visited NAFs receive USSs?

The particular USS that a visited NAF requests from the BSF is already subjected to access control, i.e., the BSF knows which NAFs are allowed to receive which USSs. Hence, a visited NAF requesting a particular USS should be allowed to receive the USS if the access control check by the BSF is successful. 

Tentantative answer: yes.

2) Should the BSF be able to check the content of an USS?

Since the meaning of th eauthorization flag values depend on the corresponding application types, and new application types can be defined which are not standardized, the BSF should not be required to check the content of USSs. 

Tentative answer: no.

3) If a service has been temporarily revoked for a subscriber how this should be indicated in GAA?

Two ways have been identified to handle this:

1.
The HSS temporarily removes the corresponding <uss> elelement from subscriber's <guss> element that is sent to the BSF.

2.
The HSS uses a "status" parameter in the <uss> element to indicate the current status of the service for the particular subscriber (e.g., <uss id="123..." type="1" status="non-active"/>)

In both cases, the HSS would change the "active" <guss> element in the HSS when subscriber's access to the particular service is revoked.

With option 1, the BSF does not find the <uss> element that the NAF requested. The NAF will receive error message with APPLICATION_ID_UNKNOWN. The NAF will assume that the subscriber does not have a subscription and will not allow the subscriber to access the service.

With option 2, the BSF does find the <uss> element but by checking the "status" parameter it finds out that the service has been temporarily removed, and will not send the <uss> element to the NAF. In NAFs point of view, the difference between the two options are that with option 2 it possible to indicate to the NAF that the subscription exists but it has been temporarily revoked. It should be noted that the HSS should be responsible to set the "status" parameter accordingly in the <uss> element.

Note:
The "status" parameter has not been specified in TS 29.109 as it is not certain this is needed.

Tentantive answer: Option 1 seems to be sufficient as the "non-active" or alike USSs do not need to be transferred to the BSF. Also, it is unclear whether the NAF needs to know the status. Bottom line is that the subscriber is not allowed to access the service.

4) How is information intended for the BSF (such as the GBA_U indication) sent from the HSS over Zh?
There are several ways to send the GBA_U indication (and other possible parameters intended for the BSF) over Zh reference point:

1.
Add an AVP for each parameter.

2.
Use GUSS to send the parameters.

Option 1 seems to be sufficient if the GBA_U indication is the only parameter being sent from the HSS to the BSF. Howver, if there is need to transfer also other parameters (e.g., subscriber specific key lifetime) then option 2 is better as it can be extended easier and there is no need to add new AVPs for each attributes that needs to be transferred from the HSS to the BSF since only the AVP transferring the <guss> element would be needed.

Tentative answer: Option 2 seems better alternative. An BSF specific information element can be added inside the <guss> element called, e.g., <bsfInfo> which can contain the needed parameters for the BSF. If the <bsfInfo> element is not available for a subscriber (i.e., either the <guss> or <bsfInfo> element does not exist for the subscriber), then the BSF will use the default values in the BSF local policy defined by the MNO.

3
Proposal

We ask SA3 to endorse the GUSS/USS procedure descriptions in section 2.3 and the tentative answers in section 2.4. Attached CR implements the required changes to TS 33.220.

Annex A:
XML Schema for GUSS

CN4 defined the XML Schema for the GUSS in N4-041164:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="guss-schema-of-3gpp-gaa"

    xmlns:tns="guss-schema-of-3gpp-gaa"

    xmlns:xs="http://www.w3.org/2001/XMLSchema"

    elementFormDefault="qualified"

    attributeFormDefault="unqualified">

  <!-- This import brings in the XML language attribute xml:lang-->

  <xs:import namespace="http://www.w3.org/XML/1998/namespace"

      schemaLocation="http://www.w3.org/2001/xml.xsd"/>

  <!—- The whole user’s GBA specific data set  -->

  <xs:complexType name="guss">

    <xs:sequence>

       <xs:element ref="bsfInfo" minOccurs="0"/>

       <xs:element ref="ussList"/>

    </xs:sequence>

    <xs:attribute name="id" type="xs:string"/>

  </xs:complexType>

  <!—- BSF specific information element -->

  <xs:complexType name="bsfInfo">

    <xs:sequence>

       <xs:element name="uiccType" type="xs:string" minOccurs="0"/>

       <xs:element name="lifetime" type="xs:integer" minOccurs="0"/>

    </xs:sequence>

  </xs:complexType>

  <!—-List of all users individual User Security Settings -->

  <xs:complexType name="ussList">

    <xs:sequence minOccurs="0" maxOccurs="unbounded">

       <xs:element ref="uss"/>

    </xs:sequence>

  </xs:complexType>

  <!—- User Security Setting data -->

  <xs:complexType name="uss">

    <xs:sequence>

      <xs:element ref="uids"/>

      <xs:element name="flags"/>

    </xs:sequence>

    <xs:attribute name="id"   use="required" type="xs:string"/>
    <xs:attribute name="type" use="required" type="xs:int"/>

  </xs:complexType>

  <!—- User Public Identities for authentication -->

  <xs:complexType name="uids">

    <xs:sequence minOccurs="1" maxOccurs="unbounded">

      <xs:element name="uid"  type="xs:string"/>

    </xs:sequence>

  </xs:complexType>

  <!—- GAA Application type specific Authorization flag codes -->

  <xs:complexType name="flags">

    <xs:sequence minOccurs="0" maxOccurs="unbounded">

      <xs:element name="flag"  type="xs:int"/>

    </xs:sequence>

  </xs:complexType>

</xs:schema>

The revision marked part of the XML schema marks the needed changes regarding the tentative answer to the question 4 in section 2.4.




