
3GPP TS 55.226 V0.1.0 (2004-02)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

3G Security;

Specification of the A5/4 Encryption Algorithms for GSM

and ECSD, and the GEA4 Encryption Algorithm for GPRS

(Release 6)

[image: image1.wmf]GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

[image: image2.jpg]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

GSM, GPRS, security, algorithm

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2004, 3GPP Organizational Partners (ARIB, CCSA, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Notation
5
3.1
Radix
5
3.2
Conventions
6
3.3
Bit/Byte ordering
6
3.4
List of Symbols
6
3.5
List of Variables
7
4
Core function KGCORE
7
4.1
Introduction
7
4.2
Inputs and Outputs
8
4.3
Components and Architecture
8
4.4
Initialisation
8
4.5
Keystream Generation
8
5
A5/4 algorithm for GSM encryption
9
5.1
Introduction
9
5.2
Inputs and Outputs
9
5.3
Function Definition
9
6
A5/4 algorithm for ECSD encryption
10
6.1
Introduction
10
6.2
Inputs and Outputs
10
6.3
Function Definition
11
7
 GEA4 algorithm for GPRS encryption
11
7.1
Introduction
11
7.2
Inputs and Outputs
11
7.3
Function Definition
12
Annex A (informative):
Specification of the 3GPP confidentiality algorithm f8
13
A.1
Introduction
13
A.2
Inputs and Outputs
13
A.3
Function Definition
13
Annex B (informative):
Figures of the algorithms
15
Annex C (informative):
Simulation program listings
19
Annex D (informative):
Test data
20
Annex E (informative):
Change history
21

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

In this document are specified three ciphering algorithms: A5/4 for GSM, A5/4 for ECSD, and GEA4 for GPRS (including EGPRS). The algorithms are stream ciphers that are used to encrypt/decrypt blocks of data under a confidentiality key KC. Each of these algorithms is based on the KASUMI algorithm that is specified in TS 35.202 [5]. The three algorithms are all very similar. We first define a core keystream generator function KGCORE (clause 4); we then specify each of the three algorithms in turn (clauses 5, 6 and 7) in terms of this core function.

Note that:

-
GSM A5/4 is the same algorithms as GSM A5/3 but with KLEN changed from 64 to 128 bits.

-
and ECSD A5/4 is the same algorithms as ECSD A5/3 but with KLEN changed from 64 to 128 bits.

-
and GEA 4 is the same algorithms as GEA3 but with KLEN changed from 64 to 128 bits.

1
Scope

This specification of the A5/4 encryption algorithms for GSM and ECSD, and of the GEA4 encryption algorithm for GPRS has been derived from TS 55.516 [1]: Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS. The only essential change is the change of external key length input from 64 bits to 128 bits.

This document should be read in conjunction with the entire specification of the A5/3 and GEA3 algorithms:

-
Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS. Document 1: A5/3 and GEA3 Specifications.

-
Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS. Document 2: Implementors’ Test Data.

-
Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS. Document 3: Design Conformance Test Data.

The normative part of the specification of the block cipher (KASUMI) on which the A5/3, A5/4, GEA3 and GEA4 algorithms are based can be found in TS 35.202 [5].

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
TS 55.516: "Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS; Document 1: A5/3 and GEA3 Specifications".

[2]
TS 55.517: "Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS; Document 2: Implementors’ Test Data".

[3]
TS 55.518: "Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS; Document 3: Design Conformance Test Data".

[4]
TS 35.201: "Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 1: f8 and f9 specifications".

[5]
TS 35.202: "Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 2: KASUMI specification".

3
Notation

3.1
Radix

We use the prefix 0x to indicate hexadecimal numbers.

3.2
Conventions

We use the assignment operator ‘=’, as used in several programming languages. When we write

<variable> = <expression>

we mean that <variable> assumes the value that <expression> had before the assignment took place. For instance,

x = x + y + 3

means

(new value of x) becomes (old value of x) + (old value of y) + 3.

3.3
Bit/Byte ordering

All data variables in this specification are presented with the most significant bit (or byte) on the left hand side and the least significant bit (or byte) on the right hand side. Where a variable is broken down into a number of sub-strings, the left most (most significant) sub-string is numbered 0, the next most significant is numbered 1 and so on through to the least significant.

For example an n-bit STRING is subdivided into 64-bit substrings SB0,SB1…SBi so if we have a string:

0x0123456789ABCDEFFEDCBA987654321086545381AB594FC28786404C50A37…

we have:

SB0 = 0x0123456789ABCDEF

SB1 = 0xFEDCBA9876543210

SB2 = 0x86545381AB594FC2

SB3 = 0x8786404C50A37…

In binary this would be:

000000010010001101000101011001111000100110101011110011011110111111111110…

with
SB0 = 0000000100100011010001010110011110001001101010111100110111101111

SB1 = 1111111011011100101110101001100001110110010101000011001000010000

SB2 = 1000011001010100010100111000000110101011010110010100111111000010

SB3 = 1000011110000110010000000100110001010000101000110111…

3.4
List of Symbols

=
The assignment operator.

Å
The bitwise exclusive-OR operation

||
The concatenation of the two operands.

KASUMI[x]k
The output of the KASUMI algorithm applied to input value x

using the key k.

X[i]
The ith bit of the variable X. (X = X[0] || X[1] || X[2] || …..).

Y{i}
The ith octet of the variable Y. (Y = Y{0} || Y{1} || Y{2} || …..).

Zi
The ith 64-bit block of the variable Z. (Z = Z0 || Z1 || Z2 || ….).

3.5
List of Variables

A
a 64-bit register that is used within the KGCORE function to hold an intermediate value.

BLKCNT
a 64-bit counter used in the KGCORE function.

BLOCK1
a string of keystream bits output by the A5/4 algorithm - 114 bits for GSM, 348 bits for ECSD.

BLOCK2
a string of keystream bits output by the A5/4 algorithm - 114 bits for GSM, 348 bits for ECSD.

BLOCKS
an integer variable indicating the number of successive applications of KASUMI that need to be performed.

CA
an 8-bit input to the KGCORE function.

CB
a 5-bit input to the KGCORE function.

CC
a 32-bit input to the KGCORE function.

CD
a 1-bit input to the KGCORE function.

CE
a 16-bit input to the KGCORE function.

CK
a 128-bit input to the KGCORE function.

CL
an integer input to the KGCORE function, in the range 1…219 inclusive, specifying the number of output bits for KGCORE to produce.

CO
the output bitstream (CL bits) from the KGCORE function.

COUNT
a 22-bit frame dependent input to both the GSM and EDGE A5/4 algorithms.

DIRECTION
a 1-bit input to the GEA4 algorithm, indicating the direction of transmission (uplink or downlink).

INPUT
a 32-bit frame dependent input to the GEA4 algorithm.

KC
the cipher key that is an input to each of the three cipher algorithms defined here. Although at the time of writing the standards specify that KC is 64 bits long, the algorithm specifications here allow it to be of any length between 64 and 128 inclusive, to allow for possible future enhancements to the standards.

KLEN
the length of KC in bits, between 64 and 128 inclusive (see above).

KM
a 128-bit constant that is used to modify a key. This is used in the KGCORE function.

KS[i]
the ith bit of keystream produced by the keystream generator in the KGCORE function.

KSBi
the ith block of keystream produced by the keystream generator in the KGCORE function. Each block of keystream comprises 64 bits.

M
an input to the GEA4 algorithm, specifying the number of octets of output to produce.

OUTPUT
the stream of output octets from the GEA4 algorithm.

4
Core function KGCORE

4.1
Introduction

In this section we define a general-purpose keystream generation function KGCORE. The individual encryption algorithms for GSM, GPRS and ECSDwill each be defined in subsequent sections by mapping the relevant inputs to the inputs of KGCORE, and mapping the output of KGCORE to the relevant output.

4.2
Inputs and Outputs

The inputs to KGCORE are given in table 1, the output in table 2.

Table 1: KGCORE inputs

	Parameter
	Comment

	CA
	8 bits CA[0]…CA[7]

	CB
	5 bits CB[0]…CB[4]

	CC
	32 bits CC[0]…CC[31]

	CD
	A single bit CD[0]

	CE
	16 bits CE[0]…CE[15] (see Note 1 below)

	CK
	128 bits CK[0]….CK[127]

	CL
	An integer in the range 1…219 inclusive, specifying the number of output bits to produce

Table 2: KGCORE output

	Parameter
	Comment

	CO
	CL bits CO[0]…CO[CL-1]

NOTE 1:
All the algorithms specified in this document assign a constant, all-zeroes value to CE.

More general use of CE is, however, available for possible future uses of KGCORE.

4.3
Components and Architecture

(See figure B.1 in Annex B).

The function KGCORE is based on the block cipher KASUMI that is specified in TS 55.517 [2]. KASUMI is used in a form of output-feedback mode and generates the output bitstream in multiples of 64 bits.

The feedback data is modified by static data held in a 64-bit register A, and an (incrementing) 64‑bit counter BLKCNT.

4.4
Initialisation

In this clause we define how the keystream generator is initialised with the input variables before the generation of keystream bits as output.

We set the 64-bit register A to CC || CB || CD || 0 0 || CA || CE, i.e.:

A = CC[0]…CC[31] CB[0]…CB[4] CD[0] 0 0 CA[0]…CA[7] CE[0]…CE[15]
We set the key modifier KM to 0x55555555555555555555555555555555

We set KSB0 to zero.

One operation of KASUMI is then applied to the register A, using a modified version of the confidentiality key.

A = KASUMI[A]CK (KM
4.5
Keystream Generation

Once the keystream generator has been initialised in the manner defined in section 0, it is ready to be used to generate keystream bits. The keystream generator produces bits in blocks of 64 at a time, but the number CL of output bits to produce may not be a multiple of 64; between 0 and 63 of the least significant bits are therefore discarded from the last block, depending on the total number of bits specified by CL.

So let BLOCKS be equal to (CL/64) rounded up to the nearest integer. (For instance, if CL = 128 then BLOCKS = 2; if CL = 129 then BLOCKS = 3.)

To generate each keystream block (KSB) we perform the following operation:

For each integer n with 1 ≤ n ≤ BLOCKS we define:

KSBn = KASUMI[A (BLKCNT (KSBn-1]CK
where BLKCNT = n-1
The individual bits of the output are extracted from KSB1 to KSBBLOCKS in turn, most significant bit first, by applying the operation:

-
For n = 1 to BLOCKS, and for each integer i with 0 (i (63 we define:

CO[((n-1)*64)+i] = KSBn[i]

5
A5/4 algorithm for GSM encryption
5.1
Introduction

The GSM A5/4 algorithm produces two 114-bit keystream strings, one of which is used for uplink encryption/decryption and the other for downlink encryption/decryption.

We define this algorithm in terms of the core function KGCORE.

5.2
Inputs and Outputs

The inputs to the algorithm are given in table 3, the output in table 4:

Table 3: GSM A5/4 inputs

	Parameter
	Size (bits)
	Comment

	COUNT
	22
	Frame dependent input COUNT[0]…COUNT[21]

	KC
	KLEN
	Cipher key KC[0]… KC[KLEN-1], where KLEN is in the range 64…128 inclusive (see Notes 1 and 2 below)

Table 4: GSM A5/4 outputs

	Parameter
	Size (bits)
	Comment

	BLOCK1
	114
	Keystream bits BLOCK1[0]…BLOCK1[113]

	BLOCK2
	114
	Keystream bits BLOCK2[0]…BLOCK2[113]

NOTE 1:
The specification of the A5/4 algorithm only allows KLEN to be of value 128.

NOTE 2:
t must be assumed that KC is unstructured data — it must not be assumed, for instance, that any bits of KC have predetermined values.

5.3
Function Definition

(See figure B.2 in Annex B).

We define the function by mapping the GSM A5/4 inputs onto the inputs of the core function KGCORE, and mapping the output of KGCORE onto the outputs of GSM A5/4.

So we define:

CA[0]…CA[7] = 0 0 0 0 1 1 1 1

CB[0]…CB[4] = 0 0 0 0 0

CC[0]…CC[9] = 0 0 0 0 0 0 0 0 0 0

CC[10]…CC[31] = COUNT[0]…COUNT[21]

CD[0] = 0

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CK[0]…CK[KLEN-1] = KC[0]…KC[KLEN-1]

If KLEN < 128 then

-
CK[KLEN]…CK[127] = KC[0]…KC[127 – KLEN]
(So in particular if KLEN = 128 then CK = KC)

CL = 228

Apply KGCORE to these inputs to derive the output CO[0]…CO[227].

Then define:

BLOCK1[0]…BLOCK1[113] = CO[0]…CO[113]

BLOCK2[0]…BLOCK2[113] = CO[114]…CO[227]
6
A5/4 algorithm for ECSD encryption

6.1
Introduction

The A5/4 algorithm for ECSD produces two 348-bit keystream strings, one of which is used for uplink encryption/decryption and the other for downlink encryption/decryption.

We define this algorithm in terms of the core function KGCORE.

6.2
Inputs and Outputs

The inputs to the algorithm are given in table 5, the output in table 6:

Table 5: ECSD A5/4 inputs

	Parameter
	Size (bits)
	Comment

	COUNT
	22
	Frame dependent input COUNT[0]…COUNT[21]

	KC
	KLEN
	Cipher key KC[0]… KC[KLEN-1], where KLEN is in the range 64…128 inclusive (see Notes 1 and 2 below)

Table 6: ECSD A5/4 outputs

	Parameter
	Size (bits)
	Comment

	BLOCK1
	348
	Keystream bits BLOCK1[0]…BLOCK1[347]

	BLOCK2
	348
	Keystream bits BLOCK2[0]…BLOCK2[347]

NOTE 1:
The specification of the A5/4 algorithm only allows KLEN to be of value 128

NOTE 2:
It must be assumed that KC is unstructured data — it must not be assumed, for instance, that any bits of KC have predetermined values.

6.3
Function Definition

(See figure B.3 in Annex B).

We define the function by mapping the ECSD A5/4 inputs onto the inputs of the core function KGCORE, and mapping the output of KGCORE onto the outputs of ECSD A5/4.

So we define:

CA[0]…CA[7] = 1 1 1 1 0 0 0 0

CB[0]…CB[4] = 0 0 0 0 0

CC[0]…CC[9] = 0 0 0 0 0 0 0 0 0 0

CC[10]…CC[31] = COUNT[0]…COUNT[21]

CD[0] = 0

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CK[0]…CK[KLEN-1] = KC[0]…KC[KLEN-1]

If KLEN < 128 then

CK[KLEN]…CK[127] = KC[0]…KC[127 – KLEN]

(So in particular if KLEN = 128 then CK = KC)

CL = 696

Apply KGCORE to these inputs to derive the output CO[0]…CO[695].

Then define:

BLOCK1[0]…BLOCK1[347] = CO[0]…CO[347]

BLOCK2[0]…BLOCK2[347] = CO[348]…CO[695]

7

GEA4 algorithm for GPRS encryption

7.1
Introduction

The GPRS GEA4 algorithm produces an M-byte keystream string. M can vary; in this specification we assume that M will never exceed 216 = 65536.

We define this algorithm in terms of the core function KGCORE.

7.2
Inputs and Outputs

The inputs to the algorithm are given in table 7, the output in table 8:

Table 7: GEA4 inputs

	Parameter
	Size (bits)
	Comment

	INPUT
	32
	Frame dependent input INPUT[0]…INPUT[31]

	DIRECTION
	1
	Direction of transmission indicator DIRECTION[0]

	KC
	KLEN
	Cipher key KC[0]… KC[KLEN-1], where KLEN is in the range 64…128 inclusive (see Notes 1 and 2 below)

	M
	
	Number of octets of output required, in the range 1 to 65536 inclusive

Table 8: GEA4 outputs

	Parameter
	Size (bits)
	Comment

	OUTPUT
	8M
	Keystream octets OUTPUT{0}…OUTPUT{M-1}

NOTE 1:
The specification of the GEA4 algorithm only allows KLEN to be of value 128.

NOTE 2:
It must be assumed that KC is unstructured data — it must not be assumed, for instance, that any bits of KC have predetermined values.

7.3
Function Definition

(See figure B.4 in Annex B).

We define the function by mapping the GEA4 inputs onto the inputs of the core function KGCORE, and mapping the output of KGCORE onto the outputs of GEA4.

So we define:

CA[0]…CA[7] = 1 1 1 1 1 1 1 1

CB[0]…CB[4] = 0 0 0 0 0

CC[0]…CC[31] = INPUT[0]…INPUT[31]

CD[0] = DIRECTION[0]

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CK[0]…CK[KLEN-1] = KC[0]…KC[KLEN-1]

If KLEN < 128 then

CK[KLEN]…CK[127] = KC[0]…KC[127 – KLEN]

(So in particular when KLEN = 128 then CK = KC)

CL = 8M
Apply KGCORE to these inputs to derive the output CO[0]…CO[8M-1].

Then for 0 (i (M-1 define:

OUTPUT{i} = CO[8i]…CO[8i + 7]
where CO[8i] is the most significant bit of the octet.

Annex A (informative):
Specification of the 3GPP confidentiality algorithm f8

A.1
Introduction

The algorithms defined in this specification have been designed to have much in common with the 3GPP confidentiality algorithm, to ease simultaneous implementation of multiple algorithms. To clarify this, a specification of f8 is given here in terms of the core function KGCORE. For the definitive specification of f8, the reader is referred to TS 35.202 [5].

A.2
Inputs and Outputs

The inputs to the algorithm are given in table A.1, the output in table A.2.

Table A.1: f8 inputs

	Parameter
	Size (bits)
	Comment

	COUNT
	32
	Frame dependent input COUNT[0]…COUNT[31]

	BEARER
	5
	Bearer identity BEARER[0]…BEARER[4]

	DIRECTION
	1
	Direction of transmission DIRECTION[0]

	CK
	128
	Confidentiality key CK[0]…CK[127]

	LENGTH
	
	The number of bits to be encrypted/decrypted
(1-20000)

Table A.2: f8 output

	Parameter
	Size (bits)
	Comment

	KS
	1-20000
	Keystream bits KS[0]…KS[LENGTH-1]

NOTE:
The definitive specification of f8 includes a bitstream IBS amongst the inputs, and gives the output as a bitstream OBS; both of these bitstreams are LENGTH bits long. OBS is obtained by the bitwise exclusive-or of IBS and KS. We present just the keystream generator part of f8 here, for closer comparison with A5/4 and GEA4.

A.3
Function Definition

(See fig 5 Annex B)

We define the function by mapping the f8 inputs onto the inputs of the core function KGCORE, and mapping the output of KGCORE onto the outputs of f8.

So we define:

CA[0]…CA[7] = 0 0 0 0 0 0 0 0

CB[0]…CB[4] = BEARER[0]…BEARER[4]

CC[0]…CC[31] = COUNT[0]…COUNT[31]

CD[0] = DIRECTION[0]

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CK[0]…CK[127] = CK[0]…CK[127]

CL = LENGTH
Apply KGCORE to these inputs to derive the output CO[0]…CO[LENGTH-1].

Then define:

KS[0]…KS[LENGTH-1] = CO[0]…CO[LENGTH-1]

Annex B (informative):
Figures of the algorithms

[image: image3.wmf]KASUMI

CC || CB || CD || 00 || CA || CE

BLKCNT=0

CO[0] … CO[63]

CO[64] … CO[127]

CO[128] … CO[191]

A

CO[last bits]

KASUMI

KASUMI

KASUMI

KASUMI

BLKCNT=1

BLKCNT=2

BLKCNT=BLOCKS-1

CK

CK

CK

CK

CK

Å

 KM

NOTE:
BLKCNT is specified as a 64-bit counter so there is no ambiguity in the expression
A (BLKCNT (KSBn-1 where all operands are of the same size. In a practical implementation, where the keystream generator is required to produce no more than a certain number of bits, only the least significant few bits of the counter need to be realised.

Figure B.1: KGCORE Core Keystream Generator Function

[image: image4.wmf]CA

CB

CC

CD

CK

CO (228 bits)

0…0 || COUNT

00000

00001111

0

K

C

 cyclically

repeated to

fill 128 bits

KGCORE

BLOCK1 (114 bits) || BLOCK2 (114 bits)

CE

0…0

Figure B.2: GSM A5/4 Keystream Generator Function

[image: image5.wmf]CA

CB

CC

CD

CK

CO (696 bits)

0…0 || COUNT

00000

11110000

0

K

C

 cyclically

repeated to

fill 128 bits

KGCORE

BLOCK1 (348 bits) || BLOCK2 (348 bits)

CE

0…0

Figure B.3: ECSDA5/4 Keystream Generator Function

[image: image6.wmf]CA

CB

CC

CD

CK

CO (8M bits)

INPUT

00000

11111111

DIRECTION

K

C

 cyclically

repeated to

fill 128 bits

KGCORE

OUTPUT (M octets)

CE

0…0

Figure B.4: GEA4 Keystream Generator Function

[image: image7.wmf]CA

CB

CC

CD

CK

CO (LENGTH bits)

COUNT

BEARER

00000000

DIRECTION

CK

KGCORE

Keystream KS (LENGTH bits)

CE

0…0

Figure B.5: 3GPP f8 Keystream Generator Function

Table B.1: GSM A5/4, ECSD A5/4, GEA4 and f8 in terms of KGCORE

	
	GSM A5/4
	ECSD A5/4
	GEA4
	f8

	CA
	0 0 0 0 1 1 1 1
	1 1 1 1 0 0 0 0
	1 1 1 1 1 1 1 1
	0 0 0 0 0 0 0 0

	CB
	0 0 0 0 0
	0 0 0 0 0
	0 0 0 0 0
	BEARER

	CC
	0...0||COUNT
	0...0||COUNT
	INPUT
	COUNT

	CD
	0
	0
	DIRECTION
	DIRECTION

	CE
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	CK
	KC 128 bits
	CK

	CO
	BLOCK1||BLOCK2
	BLOCK1||BLOCK2
	OUTPUT
	KS

NOTE:
The values for A5/4 are the same as for A5/3.
The values for ECSD A5/4 are the same as for ECSD A5/3
The values for GEA4 are the same as for GEA3

Annex C (informative):
Simulation program listings

For coding example of the algorithms see Annex C in TS 55.216 [1]: Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS; Document 1: A5/3 and GEA3 Specifications.

Annex D (informative):
Test data

Test data for the algorithms are to be found in:

TS 55.517 [2]: Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3Encryption Algorithm for GPRS; Document 2: Implementors' Test Data.

TS 55.518 [3]: Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS; Document 3: Design Conformance Test Data.

Both documents contain examples where KLEN is set to be 128 bits.

Annex E (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	02-2004
	-
	-
	-
	-
	Draft presented to SA WG3 for approval
	-
	0.1.0

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

_953458302.unknown

