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1. Status report of the shared-key Internet-Draft 

The I-D “Use of Shared Keys in the TLS Protocol” has been developed a new version [1] in 
October 2003. It is attached to this discussion paper for information of SA3 group. So far 
there is no security hole identified in IETF TLS WG mail discussion. There is IETF meeting 
in week 46 and the progress is to be reported if ever possible. 
 
This paper is likely to proceed fast towards RFC status since it became TLS working group 
draft (i.e., not a personal draft) during last summer. 
  

1. Status report of the shared-key Internet-Draft ........................................................................................1 
2. Shared key TLS usage in GAA .............................................................................................................1 

2.1 The handshaking procedure ...........................................................................................................1 
2.2 Negotiation of TLS handshaking ...................................................................................................3 
2.3 Similarity with the TLS 1.0 specification session resumption.........................................................3 

3. The benefit of Shared-Key TLS compared to previous work assumption ...............................................3 
4. Implementation consideration to terminal and server .............................................................................5 
5. How to handle the name-based virtual hosts ..........................................................................................6 
6. Conclusion............................................................................................................................................6 
7. Reference..............................................................................................................................................6 
Annex: AP using TLS with shared secrets.....................................................................................................6 
 

2. Shared key TLS usage in GAA 

2.1 The handshaking procedure 

The current shared key TLS draft is informational explaining how the session ID and master 
key are derived.  Figure 1 depicts the message chart of the shared key TLS in GAA 
environment. 



 

Figure 1. Shared key TLS usage in GAA. 

When UE wants to mutually authenticate towards an application server (NAF) it first runs the 
protocol A with BSF resulting to both having established common TID and bootstrapped 
shared secret key material. 

(1) UE derives a master key from the shared bootstrapped key material, and inserts it and TID 
(as the session ID) to the TLS session cache. 

(2) UE sends ClientHello message with TID as the session ID to the NAF. 

(3) NAF’s TLS implementation queries for the TID from the “active” TLS session cache. 

(4) If “active” TLS session cache does not find the TID from the local cache, it retrieves the 
master key from BSF using protocol D. 

(5) Master key is retrieved from BSF to local cache. 

(6) “Active” TLS session cache return master key to the NAF’s TLS implementation. 

(7) ServerHello, ChangeCipherSpec, and Finished messages are sent to UE. 

(8) UE sends ChangeCipherSpec and Finished message to NAF to complete the TLS 
handshake. 

(9) Shared key based TLS tunnel is established. 

Note: TID is the identifier of a bootstrapping procedure. It could be replace with a ‘session 
identifier’ which identifies the unique association of [TID, UE, NAF]. Discussion in section 5 
gives further detail regarding to the name of NAF. 
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2.2 Negotiation of TLS handshaking  

The selection between shared key TLS and full TLS handshake is possible if the server 
implementation is based on TLS 1.0 [2], i.e. it contains already the certificate handshaking 
support. Or if the shared-key was corrupted so that server would like to require full 
handshaking and also the client certificate would be used for authentication as specified in 
TLS 1.0. In this case, the server would simply skip step 3-6, and sends its own certificate as 
well as the (client) Certificate Request in step 7 of Figure 1. A TLS 1.0 compatible client will 
either continue if it supports a client certificate or abort the session. Note this is standard TLS 
behaviour. 

Note that, this section suggests how the TLS 1.0 and shared-key TLS co-exist in one 
implementation, specifically that TLS standard behaviour is not affected by introducing 
shared-key TLS functionality. But it is not our intention to propose the standard TLS 
behaviour. 

2.3 Similarity with the TLS 1.0 specification session resumption 

TLS 1.0 baseline offers an optimized way of resuming TLS sessions. A server will generate a 
Session ID, and hand it to client in a successfully established TLS session for future 
connection. Server will store the Session_ID, timestamp and the pre-master key agreed during 
that successful session, into local database. Later on when client decides to re-connect to the 
TLS server, it may send the session ID in ClientHello message. Next, 

1. Server side will look up the database indexed with the received Session_ID, 
retrieve the timestamp, and the pre-shared master key; 

2. Based on the local policy and timestamp, the server will decide to resume the 
session or not. 

i. If yes in step 2, the server will pick up the same ciphersuite. But with the 
different random numbers for the new session, the both sides will derive 
common session keys for new connection. 

ii. If no in step 2, the server will reject, and request normal handshaking. 

The shared-key TLS acts the same manner with the resumption of baseline of TLS 1.0 as 
described above.  

3. The benefit of Shared-Key TLS compared to previous work assumption 

Based on the current knowledge using shared key TLS between UE and NAF seems to be the 
most promising way forward. This approach uses native AKA mutual authentication, and thus 
server certificates provided by external infrastructures are not needed. Also this gives wide 
protection against various MitM attacks. For example, it would not be possible for an attacker 
to masquerade as the server towards an UE, since it would not be able to find out the TLS 
session key. It is analysed in more detail of the major benefits of shared/key TLS. 

1. Dismiss many certificate related issues, e.g. dependence on non-cellular CAs issuing these 
server certificates, the PKI required for certificate verification, server certificate delivery 
to the terminal.  

The previous work assumption for doing server authentication in TLS is by using server 
certificates. This requires server certificates to be issued by a trusted 
authority.  If 3GPP takes this approach, either mobile operators have to set up their own 
PKI or they become dependent on commercial CAs. 
 

2. MitM attack is resolved. Currently we don’t have a solution for this issue in detail. 



Major advantage provided by the shared key TLS draft is that it gives wide protection against 
various MitM attacks (including the Tunneling attack) as the TLS session keys are based on 
AKA. The authentication is achieved by leveraging the mutual authentication built into AKA, 
which is done during protocol A. 

3.  Public-key calculation in server side is unnecessary for pre-master key delivery. Resource 
and computation time are saved.  

There are 2 types of handshaking in TLS 1.0 baseline specification [2], full 
handshaking and abbreviated handshaking. Both of them require server certificate to 
be sent in Server Hello message. The public-key in certificate is then used by client to 
encrypt the pre-master in next message ChangeCipherSpec. Server side then decrypts 
the pre-master, so as to further derive TLS session keys. Finally the both sides send 
MAC of previous messages in Finnished messages (step 7 and 8 in Figure 1), to 
protect against any malicious tampering of the handshaking.  

In Shared-key TLS scenario, based on the TID value the server can retrieve the pre-
master from BSF or pre-stored in local database (step 3-6 in Figure 1). Therefore 
logically there is no need to deliver server’s certificate for pre-master key delivery.  

4. Server authentication with higher efficiency 

In TLS 1.0 [2], the server needs to provide own certificate, where the server identity is 
shown. More importantly, the server must be able to decrypt the pre-master key and 
use the derived TLS session key for MAC, thus proving its procession of the private 
key and the server identity it claimed. In contrast, in shared-key TLS scenario, the 
server can authenticate itself by the shared secret instead of certificate in handshaking 
phase. This is done by MAC value for proving the possession of keys.  

Note that, the association between server identity and the pre-master key is provided 
by certificate and public-key calculation. In 3GPP network, this is achievable by GBA 
infrastructure, since the BSF knows the NAFs identity and the derived keys for each 
NAF (Ks_NAF). In fact the key sent from the BSF to the NAF should be NAF-
specific so as to guarantee the traffic towards to each NAF is not able to eavesdropped 
by any other NAF. The GBA can e.g. derive shared pre-master key from the TLS 
server identity. If a shared-key TLS server is capable of responding with the specific 
key for it, it guarantees sufficiently that server is the expect party.  

These different approaches reflect different business model. In 3GPP solution, there is 
always the specific server in operator network (or enabled by operator’s network) that 
is commonly known by 3GPP operator and end user; while TLS 1.0 serves for 
Internet service, thus the server may be unknown to the end user. 

5. No need to authenticate client in the HTTP layer, thus less round trip required 

The previous working assumption relies client authentication in application layer. 
Since the session keys are generated from randoms and pre-master that is also a 
random, there is no link between the TLS session keys and the client identity. 

In shared-key TLS procedure, client can also prove its possession of shared-key, thus 
convince the server about client’s validity. It is highlighted here, that the shared-key 
are derived from bootstrapped keys and user identity (or perhaps TID), thus it brings 
stronger bind between the TLS and client identity than previous working assumption.  

6. The client key update can be acknowledged in handshaking phase, which is earlier than 
application layer in previous working assumption. This behaviour exists in the standard TLS, 
when the Server does not want to resume a session, it sends the alert message stating that 
session (and the key associated) is too old. 

7. The termination point of TLS 



As a requirement GBA infrastructure must guarantee that UE and BSF derive the 
shared-key based on a server identity common for them, thus guarantee the shared key 
is common for UE and NAF. As long as the NAF gets the proper session key from 
BSF, the TLS connection can always be initiated. In other words, usage of shared-key 
TLS does not have dependency on the end-point of the TLS, whether it’s re-used by 
group of NAFs or uniquely for a NAF, both scenarios can utilize shared-key TLS 
protocol. This was pointed out by Alcatel in their contribution S3-030576 already for 
SA3#30 Povoa meeting. 

In previous working assumption where server authenticates itself by certificate, 
verification of the server identity is a problem if the end point of TLS is transparent to 
client. But in the shared-key TLS certificate is not involved, thus the identity 
ambiguity in server certificate goes away. 

Conclusion: Independent of the termination point of the shared-key TLS in GBA infrastructure, it is 
comparatively better than the solution based on server certificate.  

4.  Implementation consideration to terminal and server 

From discussion in section 2, we see the compatibility of shared-key TLS with TLS 1.0. It is 
only an addition of TLS implementations with the following functions: 

1. Server side needs to have a capability to insert a TLS session ID and master secret 
to the TLS session cache. This is an API required in both sides. Note a 3GPP 
NAF i.e. the TLS server, to enable Ua interface authentication, it must be able to 
talk to BSF (protocol D in GBA) to retrieve secret shared by UE and BSF, as well 
as UE related information, regardless of the TLS version. The structure is shown 
in red part in Figure 2. Note, it is the GBA infrastructure requires dependency 
between the protocol state machines of NAF protocol over Ua interface and 
protocol D. In other words, the dependency nevertheless exists, when the shared-
key TLS is used. 
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Figure 2: NAF TLS implementation 

Obviously any existing TLS implementation does not support the 3GPP specific 
function (the read part). It is in 3GPP vendor’s arena, thus it is not a problem to 
include session ID and key function.  

Note the standard TLS 1.0 has already the cache implementation of session ID and 
master keys, adding similar function should not be a problem here. 

2. Similar scenario is required to client side, thus no web browser would support the 
3GPP specific function.    



5. How to handle the name-based virtual hosts 

Virtual hosts are the server applications that are often co-exist on a server machine. Basically 
it should not be a problem, as long as the UE and BSF derive the shared-key based on a server 
identity common for them, it can guarantee the shared key are common for UE and NAF 
(retrieved from BSF). Certainly it is preferable to use server discovery scheme, as the identity 
of NAF, such as the DNS name. 

The UE can contain the NAF name in the session identifier when contacting the NAF. While 
the NAF contacting the BSF for requesting Ks_NAF, the BSF will also get the information 
what is the intended NAF identity encapsulated in the session identifier, so as to verify from 
the sender of the key requestion. There is a companion contribution from Nokia, explaining 
how to generate the session identifier in detail. 

6. Conclusion 

This contribution described a way of using shared-key TLS between UE and NAF. It provides 
an attractive way to use GBA based shared secret within GAA.  

It is proposed to make a decision to give a priority for the GBA supported shared-key TLS 
over the other possible solution, i.e. the external CA supported server certificate authentication 
and the PKI required for certificate verification. Since the Rel-6 time pressure is increasing, it 
is proposed to make a decision now based on stage 2 works available. 

If the meeting endorses the shared-key TLS as the working assumption, then it is further 
proposed to add this work into dependency list of IETF as done for R5 work. 
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ANNEX: AP USING TLS WITH SHARED SECRETS 

This section describes how GAA can use AP using shared key TLS.  In this scenario, the BSF 
and AP-NAF can be either co-located or separate network elements. Figure 3 depicts the latter 
case. 
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Figure 3. AP-NAF using shared key TLS. 

When the UE wants to access one of the application servers, which are attached to the 
AP-NAF, on the right hand side of the figure, then the sequence of events is as follows: 

1) the UE starts HTTP Digest AKA1 (rfc3310) or HTTP Digest AKAv21 (outside a TLS 
tunnel) with the BSF. The BSF may contact the HSS to fetch authentication vectors 
(protocol C). After step 1), the UE and the BSF share a secret key and transaction ID 
(TID), cf. TS SSC, section 4.3.1. 

2) The UE sends an http request towards an application server. The http request is 
intercepted by the AP-NAF. The AP-NAF instructs the UE to upgrade the HTTP 
connection to TLS/1.0 (see [2]) 

3) The UE establishes TLS tunnel with the AP-NAF to perform client authentication using 
the shared key (see [2]). In the process, the AP fetches the agreed key from the BSF 
(protocol D), as described in TS SSC, section 4.3.2. 

4) The UE runs the application protocol with the application server through the AP-NAF. 

When UE wants to access the application servers on the left hand side of the figure, which are 
not attached to the AP-NAF, and if shared key TLS is used between the UE and a NAF, the 
sequence of events is similar to those above: 

1) the UE starts HTTP Digest AKA1 (rfc3310) or HTTP Digest AKAv21 (outside a TLS 
tunnel) with the BSF. The BSF may contact the HSS to fetch authentication vectors 
(protocol C). After step 1), the UE and the BSF share a secret key and transaction ID 
(TID), cf. TS SSC, section 4.3.1. 

2) The UE sends a request (e.g. an http request) towards the application server (NAF). The 
NAF instructs the UE to upgrade the HTTP connection TLS/1.0 (see [2]). 

3) The UE establishes TLS tunnel with the NAF to perform client authentication using the 
shared key TLS (see [2]). 

4) In the process, the NAF fetches the agreed key from the BSF (protocol D), as described in 
TS SSC, section 4.3.2. 

5) The UE runs the application protocol with the NAF. 

                                                
1 With  HTTP Digest AKA or HTTP Digest AKAv2 need to have the added functionality of protocol A: (1) 

transport the identity of the user in the first HTTP request and (2) transport the TID in the last HTTP 
response. 
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1. Abstract 

 

The TLS handshake requires the use of CPU-intensive public-key algorithms with 

a considerable overhead in resource-constrained environments or ones such as 

mainframes where users are charged for CPU time.  This document describes a 

means of employing TLS using symmetric keys or passwords shared in advance 

among communicating parties.  As an additional benefit, this mechanism 

provides cryptographic authentication of both client and server without 



requiring the transmission of passwords or the use of certificates.  No 

modifications or alterations to the TLS protocol are required for this 

process. 

 

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in 

uppercase, as shown) are to be interpreted as described in [RFC 2119]. 

 

2. Problem analysis 

 

TLS is frequently used with devices with little CPU power available, for 

example mobile and embedded devices.  In these situations the initial TLS 

handshake can take as long as half a minute with a 1Kbit RSA key.  In many 

cases a fully general public-key-based handshake is unnecessary, since the 

device is only syncing to a host PC or contacting a fixed base station, which 

would allow a pre-shared symmetric key to be used instead.  An example of this 

kind of use is using 3GPP cellular mechanisms to establish keys used to secure 

a TLS tunnel to a mobile device. 

 

In a slight variation of this case, CPU power is available but is too 

expensive to devote to public-key operations.  This situation is common in 

mainframe environments, where users are charged for CPU time.  As with mobile 

devices, mainframe-to-mainframe or client-to-mainframe communications are 

generally fixed in advance, allowing shared symmetric keys to be employed. 

 

In order to solve these problems, we require a means of eliminating the 

expensive public-key operations in the TLS handshake, while providing an 

equivalent level of security using shared symmetric keys.  The solution is 

fairly straightforward.  Observe that after the initial handshake phase, TLS 

is operating with a quantity of symmetric keying material derived from the 

information exchanged during the initial handshake.  Using shared symmetric 

keys involves explicitly deriving the TLS master secret from the shared key, 

rather than sharing it implicitly via the public-key-based key agreement 

process.  TLS already contains such a mechanism built into the protocol in the 

form of the session cacheing mechanism, which allows a TLS session to be 

resumed without requiring a full public-key-based re-handshake. 

 

The solution to the problem then is obvious: We need to seed the TLS session 

cache with the shared symmetric key.  When the client connects, the session 

cacheing mechanism takes over and the client and server "resume" the phantom 



session created by seeding the cache.  This mechanism requires an absolute 

minimum of code changes to existing TLS implementations (it can be bolted onto 

any existing TLS engine without needing to change the engine itself), and no 

changes to the TLS protocol itself. 

 

2.1 Design considerations 

 

In order to work within the existing TLS protocol design, we require a means 

of identifying a particular session (the session ID in TLS terminology), and 

the keying material required to protect the session.  The { ID, key } 

combination is analogous to the { user name, password } combination 

traditionally used to secure access to computer systems. 

 

In TLS, the session ID is a variable-length value of up to 32 bytes, but is 

typically 32 or less frequently 16 bytes long.  For our use we don't really 

care about its form.  A (somewhat unsound) practice would be to use the user 

name as the session ID.  A more secure alternative would be to employ a value 

derived from the user name in such a way that it can't be directly connected 

to it, for example a MAC of the user name. 

 

Normally the exact format of the session ID is determined explicitly by the 

server and remembered by the client for use during session resumption. 

However, when "resuming" a phantom session in the manner described here, both 

the client and the server must be able to implicitly generate identical 

session ID values in order to identify the phantom session to be resumed.  To 

create a canonical session ID value, we pad the variable-length value out to a 

fixed length by appending zero bytes. 

 

The TLS master secret is a 48-byte value, which is unlikely to correspond to 

the value of the shared symmetric key or password, which would typically be a 

128-bit key or a text password/passphrase.  In order to transform this into 

the type of keying material required by TLS, we need to apply the TLS 

pseudorandom function (PRF) to produce the master secret with which we seed 

the session cache.  The shared secret thus takes the place of the 48-byte 

premaster secret usually used to derive the master secret.  As with the 

variable-length session ID, we need to canonicalise the variable-length 

secret. 

 

The obvious way to do this would be to by zero-pad it to the standard 48-byte 

length usually used for the premaster secret, as for the session ID. 



Unfortunately this straightforward approach doesn't work.  Unlike the SSL PRF, 

which uses the full secret for both the MD5 and SHA-1 halves, the TLS PRF 

isn't a pure black-box design because it splits the secret into two halves 

before using it.  This would result in the second (SHA-1) half in most cases 

end up with only the zero padding bytes as its "secret".  The reasoning behind 

this splitting of the secret was that there might be some interaction between 

the two algorithms that could cause security problems. 

 

As a result, it's necessary to be aware of the PRF's internal structure and 

pre-process the input in a way that negates what the PRF does.  Some of the 

possible options to fix the problem are: 

 

1. Synthesise a new PRF from HMAC to pre-PRF the input to the TLS PRF.  Apart 

   from just being an awful approach, this violates the minimal code-change 

   requirement for TLS implementations that the shared-keys mechanism is 

   supposed to provide.  Instead of simply feeding data in via a standard 

   mechanism, implementors would now need to extend their TLS implementation 

   to introduce new crypto mechanisms. 

 

2. Repeat the input (or some variant thereof) to fill the 48-byte secret 

   value.  This is problematic in that it creates key equivalence classes, 

   for example "ABCD" == "ABCDABCD". 

 

3. Unsplit the input, so that instead of arranaging it as 1 x 48 bytes it's 

   done as 2 x 24 bytes.  This limits the overall key size, and is specific to 

   the PRF being used - a future PRF design may not split the input in this 

   manner, negating the un-splitting step. 

 

The least ugly solution is a variation of 2, prepending a single length byte 

to the secret, then repeating it to fill 48 bytes, to fix the problem of key 

equivalence classes.  This is the approach used here. 

 

Currently the shared-key mechanism always uses the TLS PRF (even if it's used 

with SSL, since this is purely a TLS mechanism).  If in the future a new PRF 

is introduced, it will be necessary to provide some means of switching over to 

the new PRF if both it and the current one are in active use.  Presumably the 

only reason to introduce a new, incompatible PRF would be a successful attack 

on the current one, in which case the point is moot.  However, if for some 

reason it's necessary to keep both PRFs in active use at the same time, then 

some mechanism such as adding the session ID and shared key in the standard 



manner using the TLS PRF and some transformation of the session ID and the 

shared key using the new PRF can be adopted.  Since the details of a possible 

PRF switch are impossible to predict (it may entail a complete protocol 

overhaul for example), this document does not attempt to guess at the details 

beyond providing this implementation hint. 

 

Finally, we need a means of injecting the resulting session ID and master 

secret into the session cache.  This is the only modification required to 

existing TLS implementations.  Once the cache is seeded, all further details 

are handled automatically by the TLS protocol. 

 

It should be noted that this mechanism is best suited for situations where a 

small number of clients/servers are communicating.  While seeding a session 

cache with IDs and keys for 10,000 different users is certainly possible, this 

is rather wasteful of server resources, not to mention the accompanying key 

management nightmare involved in handling such a large number of shared 

symmetric keys. 

 

3. TLS using shared keys 

 

[Note: The following is phrased fairly informally, since it's really an 

 application note rather than a standards-track RFC] 

 

Before any exchange takes place, the client and server session caches are 

seeded with a session ID identifying the user/session, and a master secret 

derived from the shared secret key or password/passphrase.  The exact form of 

the data used to create the session ID is application specific (but see the 

comment in the security considerations).  The data used to create the session 

ID is zero-padded to 16 bytes (128 bits) if necessary to meet the requirements 

given in section 2.1.  In C this may be expressed as: 

 

  memset( session_id, 0, 16 ); 

  memcpy( session_id, input_data, min( input_data_length, 16 ) ); 

 

The master secret used to seed the cache is computed in the standard manner 

using the TLS PRF: 

 

  master_secret = PRF(shared_secret, "shared secret", "")[0..47]; 

 

The shared secret or password/passphrase takes the place of the premaster 



secret that is normally used at this point, arranged as follows: First, the 

shared secret/password has a single length byte prepended to it.  The length + 

secret value is then repeated as required to fill the standard 48 bytes.  In C 

this may be expressed as: 

 

  for( premaster_index = 0; premaster_index < 48; ) 

    { 

    int i; 

 

    premaster_secret[ premaster_index++ ] = shared_secret_length; 

    for( i = 0; i < shared_secret_length && premaster_index < 48; i++ ) 

      premaster_secret[ premaster_index++ ] = shared_secret[ i ]; 

    } 

 

This formats the shared secret in a manner that allows it to be used directly 

in place of the standard premaster secret derived from the public-key-based 

key agreement process. 

 

The 'seed' component of the calculation (normally occupied by the client and 

server nonces) is empty in this case, however applications may choose to use 

an application or system-specific value to ensure that the same shared secret 

used with another application or system yields a different master secret. 

When the 'seed' component is non-empty, it should not contain information 

computed from the shared_secret value [SIGMA].  Note that the use of the 

client and server nonces will always produce different keys for each session, 

even if the same master secret is employed. 

 

The final step involves injecting the session ID and master secret into the 

session cache.  This is an implementation-specific issue beyond the scope of 

this document.  All further steps are handled automatically by the TLS 

protocol, which will "resume" the phantom session created by the above steps 

without going through the full public-key-based handshake. 

 

Session cache entries are normally expired after a given amount of time, or 

overwritten on an LRU basis.  In order to prevent shared secret-based entries 

from vanishing after a certain amount of time, these cache entries will need 

to be distinguished from standard cache entries and made more persistent then 

the latter, for example by giving them a longer expiry time when they are 

added or periodically touching them to update their last-access time.  Again, 

this is an implementation issue beyond the scope of this document. 



 

3.1 Use of shared keys with SSLv3 

 

If this key management mechanism is used with an implementation that supports 

SSLv3 alongside TLS (as most do), the TLS PRF must be used for both SSLv3 and 

TLS.  This is required in order to allow the mechanism to function for both 

SSLv3 and TLS, since using different PRFs would require a different session ID 

for each PRF used. 

 

3.2 Test vectors 

 

The following test vectors are derived from the transformation of the password 

"test" into a master_secret value to be added to the session cache: 

 

  Shared secret: 

 

    74 65 73 74   ("test") 

 

  Shared secret expanded to 48-byte premaster secret size: 

 

    04 74 65 73 74 04 74 65 

    73 74 04 74 65 73 74 04 

    ... 

 

  Master secret added to session cache: 

 

    F5 CE 30 92 B8 09 70 D9 

    22 D5 A1 2C EB 7C 43 FA 

    9C 46 A8 83 EA 6E EF 98 

    EB A5 15 12 FD B1 B6 5A 

    5A 47 B8 C4 C5 63 5B 30 

    86 96 F4 FC FB D5 45 78 

 

4. Security considerations 

 

The session ID used to identify sessions is visible to observers.  While using 

a user name as the session ID is the most straightforward option, it may lead 

to problems with traffic analysis, with an attacker being able to track the 

identities of communicating parties.  In addition since the session ID is 

reused over time, traffic analysis may eventually allow an attacker to 



identify parties even if an opaque session ID is used.  [RFC 2246] contains a 

similar warning about the contents of session IDs with TLS in general.  It 

should be noted though that even a worse-case non-opaque session ID results in 

no more exposure than the use of client certificates during a handshake. 

 

As with all schemes involving shared keys, special care should be taken to 

protect the shared values and to limit their exposure over time.  Documents 

covering other shared-key protocols such as Kerberos [RFC 1510] contain 

various security suggestions in this regard. 

 

Use of a fixed shared secret of limited entropy (for example a password) 

allows an attacker to perform an online password-guessing attack by trying to 

resume a session with a master secret derived from each possible password. 

This results in a fatal decrypt_error alert (or some equivalent such as 

handshake_failure or bad_record_mac) which makes the session non-resumable 

(that is, it clears the phantom session from the session cache). 

Implementations should limit the enthusiasm with which they re-seed the 

session cache after such an event; standard precautions against online 

password-guessing attacks apply. 

 

This mechanism is purely a shared-key session establishment mechanism and does 

not provide perfect forward secrecy (PFS) by negotiating additional new keying 

material for each session.  Users requiring PFS can either use a shared-key 

mechanism that also provides PFS such as SRP [SRP], or perform a rehandshake 

using a standard PFS-providing mechanism over the shared key-protected 

channel.  Note though that both of these mechanisms negate the two main 

advantages of the shared-key mechanism, requiring both considerable re- 

engineering of an existing TLS implementation and considerable CPU time to 

perform the PFS cryptographic operations. 

 

Since it does not contain an innate cryptographic mechanism to provide PFS, 

the shared-key mechanism is vulnerable to an offline password-guessing attack 

as follows: An attacker who records all of the handshake messages and knows 

the plaintext for at least one encrypted message can perform the TLS key- 

derivation using a selection of guessed passwords, perform the cryptographic 

operations required to process the TLS handshake exchange, and then apply the 

resulting cryptographic keys to the known-plaintext message.  Such an attack 

consumes considerable time and CPU resources, but is nevertheless possible. 

 

There are three possible defences against this type of attack, the first two 



of which are standard defences against password-guessing attacks: 

 

1. Don't use weak, easily-guess passwords or keys. 

 

2. Perform iterated pre-processing of the password/key before adding it to the 

   session cache.  This has the disadvantage that it negates the shared-key 

   advantage of low CPU consumption during the handshake phase, however the 

   preprocessing can be performed offline on a one-off basis and only the 

   preprocessed key stored by the two communicating parties.  An attacker can, 

   however, also generate a dictionary of pre-processed keys offline, given 

   sufficient CPU and storage space.  The use of a per-server diversifier 

   ('seed' in the PRF process) makes use of a precomputed dictionary 

   impractical, and a secret diversifier makes a general offline attack 

   considerably more difficult through to impossible depending on the 

   circumstances. 

 

3. Use a mechanism that allows for the use of shared keys but also provides 

   PFS, with the advantages and disadvantages described earlier. 

 

Note that the two password-guessing attacks possible against the shared-key 

mechanism, while superficially similar, have quite different requirements on 

the attacker's side.  An online attack merely requires that the attacker know 

the URL of the server that they wish to attack.  An offline attack requires 

that an attacker both know the URL of the server that they wish to attack and 

be able to record complete sessions between the client and the server in order 

to provide the material required for the offline attack. 

 

The TLS specification requires that when a session is resumed, the resumed 

session use the same cipher suite as the original one.  Since with a shared- 

secret session there is no actual session being resumed, it's not possible to 

meet this requirement.  Two approaches are possible to resolve this: 

 

1. When the session cache is seeded on the server, a cipher suite acceptable 

   to the server is specified for the resumed session.  This complies with the 

   requirements, but requires that the server know that the client is capable 

   of supporting this particular suite.  In closed environments (for example 

   syncing to a host PC or a fixed base station, or in a mainframe 

   environment) this is likely to be the case. 

 

2. The requirements are relaxed to allow the client and server to negotiate a 



   cipher suite in the usual manner.  In order to subvert this, an attacker 

   would have to be able to perform a real-time simultaneous break of both 

   HMAC-MD5 and HMAC-SHA1.  In particular the attacker would need to be able 

   to subvert: 

 

     HMAC( secret, PRF( secret, MD5+SHA1 hash ) ) 

 

   in the Finished message, which expands to: 

 

     HMAC( secret, HMAC-MD5^HMAC-SHA1( secret, MD5+SHA1 hash ) ) 

 

   Because of the unlikeliness of this occurring (an attacker capable of doing 

   this can subvert any TLS session, with or without shared secrets), it 

   appears safe to relax the requirement for resuming with the same cipher 

   suite. 
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