
3GPP TSG SA WG3 Security — S3#31 S3-030731
18 – 21 November 2003
Munich, Germany

Source: Nokia

Title: Proxy and various HTTP services

Document for: Discussion and Decision

Agenda Item: GAA

1. AP USING TLS WITH SHARED SECRETS

This section describes how GAA can use AP using shared key TLS. In this scenario, the BSF
and AP-NAF can be either co-located or separate network elements. Figure 1 depicts the latter
case.

BSF

UE

HSS

AKA

http based network services

Presence

https (shared key TLS)

Other network services

NAF
(Subsriber cert.s) AS-X

NAF
(HTTP Auth

Proxy)

NAF

Fetching shared secret
via protocol D

Client authentication
via protocol B, using
shared secret

security of links is
user-independent

Protocol A

Protocol C

Figure 1: AP-NAF using shared key TLS.

At the left side of Figure 1, the UE contacts NAF directly; while at the right side, the UE
contacts the Presence and other IMS based SIP services via Authentication Proxy. It was
agreed in SA3 meeting that, for one particular service, there should be only one network
configuration as solution. This is benefitial, not only for UE to reach service in clear manner,
but also it saves the investment to the service. Therefore the principle is reasonable and should
be sustained.

2. CONFIGURATION OF PROXY TO A TERMINAL

There is no problem to use forward proxy. It seems like http stacks do allow the calling
application (service in terminal) to specify a proxy on a per-server or even a per-URL basis.
So it should be pretty straight forward for the Presence client (or a generic Ut client) to
maintain. On the other hand, when a new service does not require Proxy configuration in the
network, the new application over the HTTP stack does not need to be the same with Presence

service. The terminal just needs to maintain the autoconfiguration file; the semantics would be
like:

Function FindProxyForURL (url, host)
{ if (isHostName (host) ||
!dnsDomainIs (host, “Presence.operator.com”)||
!dnsDomainIs (host, “OtherServer.operator.com”))
return “PROXY a.b.c.d”
else
return “DIRECT”
}

Today’s browsers do support this type of autoconfiguration.

In contrast, a reverse proxy handling security function on behalf of a group of SIP servers may
have problems mainly in configuration for service in UE and in network side.

1. The UE does not see Proxy in the middle, thus UE may not understand that the
established TLS session can be re-used for accessing to another Application server.

2. All SIP servers sharing the same DNS name will make ambuguility for S-CSCF to
reach the proper server.

3. A higher-level DNS name stored in a certificate would improve the server identity
problem, but we doubt whether any external CA would like to issue many wildcard
certificate for 3GPP operators. Or 3GPP operator must run CA function themselves,
to generate such self-signed certificate.

It is worth of noting, if the shared-key TLS is used, it does not matter proxy type, whether
forward or reverse one. Basically the (reverse) proxy will acquire the DNS name of all servers
behind, and ‘hijack’ on the connections intended to servers directly.

Conclusion: We see that a forward proxy would reflect the network topology clearly to the terminal
configuration. Then in case shared-key TLS is chosen, the type of proxy really does not matter.

3. AP AND AS INTERFACE

S3-030540 suggests AP and AS to insert cookies, we feel there are few drawbacks on
standardisation and implementation aspects:

1. Current HTTP implementations have own API defined already (for setting and
fetching/comparing a cookie), and having a "special" cookie value would mean an extra
processing step when receiving the cookie. This might also interfere with normal AS session
handling using HTTP cookies.

2. It is requiring ASs to understand a particular token syntax for the cookie, so I don't see there
being much benefit compared to a new (X-something) header, or indeed having the proxy do
URL-rewriting, etc. How about a new 3GPP specific header? E.g., X-HTTP-Asserted-
Identity? This would be totally transparent to the terminal.

3. The sentence seems to suggest that only one IMPU is used: “AS can assume that the AP has
authenticated the client with this identity.” If so, it does not fulfil the requirement that AS
would be contacted with any of the IMS IMPUs.

4. Also, an AS that doesn't care about identity could then ignore this header and do as it
pleases. An out-of-the box AS could not do this if we used cookies, since it would have to
know at least the "special" cookie in order to ignore it (and not think that a cookie is invalid
etc.)

Another contribution from Nokia S3-030555 proposed an alternative, where AP can VERIFY
the HTTP message without further modification. AP contacts BSF based on TID or session
identifier from UE, for the UE identities as well as the session secret Ks_NAF. Here the

procedure can be enhanced, so that only the public identities are fetched over Zn interface. Thus
the UE does not need to insert own private identity into the HTTP message. This is because the
Bootstrapping procedure already authenticates the UE, it is sufficient for it proving its
possession of keys over Ua interface. The AP only needs to check that the public IDs populated
in the URL is allowed (see bold part in below), and drop it if not.

PUT http://Presence.example.com/services/Presence-lists/users/user1_public1/fr.xml HTTP/1.1
Host: Presence.example.com
Content-Type:application/Presence-lists+xml

<?xml version="1.0" encoding="UTF-8"?>
 <Presence-lists xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <list name="friends" uri="sip:friends@example.com" subscribable="true">
 </list>
 </Presence-lists>

Note that since mutual authentication is guaranteed by shared key TLS connection, and
additional AKA-based authentication in application is not needed any more, which simplifies
the procedure significantly. Once the TLS connection is established, the UE can right away
send user data in HTTP message.

Note two, in case of TLS 1.0 for Ua interface, the digest would be required for AP to
authentication the client. Yet it is independent of the choice of the two approaches.

4. CONCLUSION AND PROPOSAL

This meeting is proposed to endorse the S3-030555 solution as working assumption.

	S3-030731_Nokia_ProxyUsage.doc

