Page 1

3GPP TSG SA WG3 Security — S3#27
S3-030056

25 – 28 February 2003

Sophia Antipolis, France

Source:

Siemens

Title:
Security solution for IMS-related HTTP services

Document for:
Discussion and decision

Agenda Item:

6.1

__

Abstract

This contribution discusses possible security alternatives for protecting HTTP-based communication between a UE and an application server for the purpose of administration of IMS-based services. For protecting such communication, two decisions have to be taken, where the first is on the mechanism providing common keying material between the entities, and the second is for the mechanism to protect the HTTP messages.

It is proposed that 3GPP adopts an efficient solution directly based on IMS authentication, for providing common keying material between the UE and HTTP-based application servers. For the HTTP security mechanisms, several options are identified and discussed. For a final decision, further study seems to be required, however.

1. Introduction

A scenario currently under discussion in several 3GPP groups (e.g. SA2, SA3) is to secure HTTP communication between a UE and an IMS-based application server (AS). The idea is to provide a secure means for a mobile user subscribed to the IMS, to manage his or her data on the application server. Examples are:

· Access lists on the presence server

· Buddy lists for chat (IMS messaging)

· IMS Group Management

· Conference Settings: Creation, data, type, participants, …

To address the given scenario’s security needs, two steps have to be taken:

1) First, the two communicating parties, UE and AS, have to be provided with initial keys that are pre-shared secrets or public/private key pairs and public-key certificates (public keys for short). These keys can be provided by a bootstrapping mechanism using an authentication and key exchange (AKA) protocol if the 3G authentication infrastructure is to be leveraged, or they could be provided by other means.

2) Second, a means is required to secure the HTTP messages between UE and AS. These are based on the (authenticated) keys provided in the first step. The most common examples for HTTP security are HTTP Digest Authentication and TLS.

Note: The most obvious interdependence between these steps that affects the decision for both solutions is the type of keying material provided by step one, which has to be suitable for the protocol used for securing HTTP. Pre-shared keys can directly be provided by some bootstrapping mechanism. If public keys are required for the HTTP security protocol, these can be provided by the functionality for the support of subscriber certificates planned for Rel6. For issuing such subscriber certificates a bootstrapping function is required as well. However, subscriber certificates are not considered as a feasible solution for the context of this contribution (see section 3).

This document discusses solutions for both steps described above considering their relation, proposes a solution for the bootstrapping step, and discusses several options for the HTTP security mechanism.

2. Bootstrapping HTTP security

Although there are several options to provide UE and AS with keying material to secure HTTP (step one in the above section), an approach is preferred here which bases key distribution on the existing operator key infrastructure, i.e. long-term secrets shared between the home operator’s HSS and the user’s USIM. It appears that only such an approach will provide an automated way for 3G users to log in to IMS application servers. In the context of this document, the AS is assumed to reside in the home network.

In this section, two different approaches to provide so-called “bootstrapping” for HTTP security mechanisms are discussed. The first is based on the bootstrapping server function (BSF), currently discussed in the process of issuing subscriber certificates, in 3GPP SA3. As an alternative, a way is proposed how keys for HTTP security can be derived from the IMS authentication procedure directly.

Alternative 1: Bootstrapping server function (BSF)

For allowing the secure issuing of subscriber certificates, 3GPP SA3 has taken the working assumption to use a generic bootstrapping server function (BSF). This BSF will be defined to aid in the process of establishing a shared secret between a UE and a NAF (network application function, see also joint Siemens/Nokia contribution on support for subscriber certificates). Both BSF and NAF are assumed to be located in the home domain (at least in a first phase). Establishment of the shared secret will be based on a bootstrapping protocol, which is proposed in the joint Siemens/Nokia contribution to be the Digest-AKA (authentication and key agreement) protocol [DigAKA] over HTTP that is used for IMS authentication over SIP as well.

Although the BSF, as originally described in S3-020636 (Siemens), has been proposed for securing the provision of subscriber certificates, a generic bootstrapping protocol provided by the MNO can be used in the context of initiating secure HTTP communication as well (the definition of the service itself, like the application protocol and the specific authentication mechanism used, should be independent of the generic bootstrapping protocol). In this case the HTTP application on the IMS application server would play the role of a NAF.

[image: image1.wmf]

UE

Home

MNO

BSF

Protected

HTTP

NAF

Establish

Pre

-

shared Secret

Distribute

keys

HSS

Based on

AKA

A

B

C

D

Figure 1: Generic bootstrapping service

If the UE wants to access the HTTP application that requires authentication, it establishes a shared secret between itself and the BSF of its home operator using the bootstrapping protocol. The established shared secret will be used subsequently for authentication between the HTTP-based AS and the UE. The BSF itself needs to interface with the HSS (interface C in figure 1), to receive or fetch AKA authentication vectors. The bootstrapping protocol itself runs between UE and BSF over the A interface.

The AS (service) in question requires some interaction with the bootstrapping server function issuing the shared secret (interface D), in order to be able to successfully run the authentication process with the UE.

Alternative 2: Bootstrapping based on IMS registration

To register with an IMS domain, the UE registers with the S-CSCF of the IMS provider. As part of the SIP-based registration procedure, the IMS-AKA authentication protocol is executed to authenticate the IMS user and to establish two session keys, IK and CK, for the protection of subsequent messages.

IK is forwarded to the P-CSCF by the S-CSCF and is used to provide integrity between the UE and the P-CSCF. Confidentiality between the UE and the P-CSCF is not provided in Rel5, so the key CK is not used in Rel5. Confidentiality between the UE and the P-CSCF may be provided in Rel6. It is proposed for alternative 2 here that CK is not used directly as a cipher key between the UE and the P-CSCF in Rel6, if confidentiality is required. Rather it is proposed that appropriate key derivation procedure is used to derive further session keys from CK. One of the derived session keys would then be used as the cipher key between the UE and the P-CSCF , other derived session keys could be used between the UE and various IMS-based application servers.

[image: image2.wmf]

UE

Home

MNO

S

-

CSCF

Protected

HTTP

Application

Server

Derive pre

-

shared

keys from CK

Distribute

keys

HSS

IMS

-

AKA

A

B

C

D

Figure 2: HTTP bootstrapping based on IMS flows

The alternative offers the advantage that an additional authentication run for bootstrapping HTTP services security can be avoided. For a solution based on this approach, to provide an adequate security level the following security requirements have to be fulfilled by the derivation of keys from CK:

a) The AS shall not gain any useful knowledge about the key used for the encryption or protection of IMS signalling between UE and P-CSCF. Otherwise an AS would be able to compromise IMS signalling encryption. Nor shall an AS gain any useful knowledge about the key used between the UE and another AS.

b) In turn, the visited network (P-CSCF) shall not gain any useful knowledge about the user’s key for secure HTTP access. Otherwise the visited network operator could become able to access HTTP servers in the name of the user.

Comparison of both alternatives:

Advantages of alternative 2:

· The advantage of using the IMS authentication during IMS registration to bootstrap HTTP protection is that it only requires a single authentication protocol run, namely that of the IMS registration. Therefore the main advantage of this solution is the higher efficiency due to avoiding additional roundtrips for securing HTTP communication.
At least one additional roundtrip is required with the BSF-based alternative 1. But more additional roundtrips may be required when there are several application servers a user wants to access. This is because the keys for communication between the UE and a number of application servers could be derived from the same CK by using alternative 2, whereas it is currently not clear whether the generic bootstrapping functionality as in alternative 1 would allow a similar key derivation procedure or would require a re-run of the bootstrapping protocol for each application.

· As a possible advantage, using IMS authentication to derive keys for secure HTTP allows for synchronization of secure HTTP applications with the IMS registration and profile of a user (e.g. relevant for the lifetime of the pre-shared HTTP keys and re-keying, as well as more general authorisation issues).

Advantages of alternative 1:

· The BSF is originally intended to allow bootstrapping for subscriber certificates. Therefore an IMS user accessing the BSF could easily use the keying material to obtain a subscriber certificate, that can subsequently be used as credential for public key based HTTP security mechanisms. However, here two additional roundtrips would be required, one for the bootstrapping protocol A and one for the certificate request protocol B. Furthermore, a solution for HTTP security which relies on subscriber certificates, e.g. a TLS with client authentication is not considered a viable solution in this context (see section on http security below).

· The BSF could substantially re-use features already available in the IMS. If it is based on Digest-AKA as the bootstrapping protocol on the A interface, this protocol is already available as part of the S-CSCF functionality. The C interface with the HSS could implement the part of the Cx interface functionality required to fetch AKA authentication vectors from the HSS.

Summarizing the above discussion, it seems that, considering IMS-related HTTP services, the most efficient option is alternative 2, i.e. re-using the IMS authentication to bootstrap HTTP protection. The main reason is that no additional authentication runs are required to provide keys for HTTP security. A secondary reason seems to be that the distribution of profile information may be easier.

Open issues:

There are synchronization issues with the IMS-based key derivation itself, that need to be addressed. As soon as keys are derived for several application servers, there has to be a mechanism to ensure that the UE and the AS share the same derived key. To solve this problem it may be useful to include information about the AS in the key derivation procedure. The details are ffs.

Another open issue for the IMS-based approach is that the key CK in the IMS authentication procedure is already sent to the visited IMS network according to the Rel5 specifications (see e.g. TS24.228 section 6.2). However, TS33.203 v5.4.0 states in section 5.1.3 that "Confidentiality protection shall not be applied to SIP signalling messages between the UE and the P-CSCF", which means that it is not used in the P-CSCF. It is considered preferable not to change the Rel5 specifications in a way that the S-CSCF would not transmit CK to the P-CSCF, (although this would be quite a minor change).
The IMS-based bootstrapping method proposed above does not send CK directly to the P-CSCF, but sends a derived key only, for Release 6. It is hence required to indicate to a UE supporting this for Release 6, whether an S-CSCF supports Release 5 (->use CK) or Release 6 (-> use derived key), to allow the UE to generate the correct key. This approach is considered feasible. For example, TS24.228 v530, section 6.2, describes a “server specific data” parameter for Release 5, that is part of the nonce used in the Digest-AKA calculation. This field is exchanged between S-CSCF and UE, and could carry the required information in a way transparent for the P-CSCF.

Key distribution across the D interface

After having established pre-shared keys for securing HTTP, these keys are present in the UE and in the S-CSCF/BSF. Hence, there is a need for a message exchange with one or more application servers. This interaction may happen in different ways:

1) The AS retrieves (downloads) the pre-shared keys in a secure way from the S-CSCF/BSF, after having received the first HTTP message from the UE.

2) The S-CSCF/BSF pushes the keys to the AS in question, in advance to any application protocol messages .

If a standardization of the D interface is required in 3GPP, further study on these methods will be required.

3. Securing HTTP

This section discusses alternatives for securing HTTP communication between UE and AS, based on keying material distributed by an appropriate MNO service (S-CSCF or BSF).

In theory, both classes of client authentication mechanisms (pre-shared secrets or public/private key based) can be supported by the bootstrapping method (by optionally combining it with issuing subscriber certificates). In this document, only those are considered as efficient, however, that are directly based on the bootstrapping key material. The reasons for this are that additional exchanges and overhead for requesting and handling subscriber certificates shall be avoided for secure HTTP access in the IMS context.

There are several options to secure HTTP communication between UE and AS with standard security mechanisms. The following discussion includes alternatives that are considered as feasible in general. However, some additional options are discussed at the end of the section for completeness.

Nokia already contributed to the discussion on HTTP security mechanisms. The below discussion is in-line with the conclusions presented in the Nokia contributions [S3-020528] and [S3-020666] that favour TLS over IPsec for the given scenario.

Mechanisms that are considered as feasible

· TLS/WTLS server-only authentication, client uses HTTP-Digest with the pre-shared key as password.
A common usage model for (W)TLS in the Internet is that only the server side authenticates by using public keys. After having established the secure tunnel, the client authenticates by other means, e.g. by using a pre-shared secret (or password) with HTTP Digest.
The advantage of TLS is that most HTTP servers and browsers should support both HTTP Digest and TLS server authentication. WTLS is supported by most mobile phones, but other mobile devices as e.g. Laptops using standard browsers are not likely to offer WTLS support.
However, WTLS especially reflects the requirements and constraints present in wireless environments and can therefore be considered as a more efficient alternative to TLS in the given environment. TLS comes with a mandatory and relatively costly handshake protocol for authentication that may be quite heavy-weight for some user devices.
For server authentication this approach mandates the server side to use public-keys and certificates, and therefore requires a PKI solution. In addition, the participating terminals are required to know and to securely store the CA’s public key in advance and must be able to verify the application server’s certificate (including revocation).

Note: To protect against the recently discussed Man-in-the-middle (MITM) attacks on tunnelled authentication methods (cf. [Aso], [Put]), the terminal must guarantee that HTTP-Digest with the pre-shared key from the bootstrapping phase is never run outside a server-authenticated (W)TLS tunnel. Otherwise, a malicious server could proxy the HTTP-Digest messages towards a real server, consequently acting as MITM and impersonating the client. Other methods to protect against the MITM attack, such as binding the tunnel key to the shared key used in http digest, would also be conceivable, but would require additional study.

· Anonymous (un-authenticated) TLS with HTTP digest for Client and Server authentication.
TLS allows for anonymous server authentication by either using self-signed certificates on the server side, or by using one of the TLS anonymous cipher-suites. The advantage of this approach is that it would avoid the PKI impact on the MNO and terminal side for TLS server certificates. Mutual authentication is done with http digest through an encrypted TLS tunnel, which would eliminate the disadvantages of HTTP digest.

Note that this method, without additional precautions, is vulnerable to the MITM attack discussed above for tunnelled authentication methods. Therefore, an additional step is required that cryptographically binds the TLS server authentication to the client authentication by HTTP digest. A possible solution is to use the key material generated during the TLS handshake as an additional input parameter to the key used in HTTP digest. But this would require careful further study.

· WTLS with pre-shared keys
WTLS, in contrast to TLS, allows for mutual authentication based on pre-shared keys instead of public keys. The according “shared-secret handshake” mode of WTLS (see [WTLS] section 10.3) could be used to enable WTLS protection for HTTP communication. Note that the MITM attacks possible for tunnelled authentication do not apply here.

Mechanisms that are not considered as feasible (and should not be further studied)
· HTTP-Digest using the pre-shared key as password without any additional protection
This is usually considered as a mechanism providing basic security against MITM (man in the middle) attacks aiming at malicious modification or injection of messages. HTTP-Digest does not provide any means for encryption, and is therefore unlikely to meet the security requirements of the HTTP-based applications considered in the context of this document.

· HTTP payload protection
In addition to the standard HTTP security mechanisms discussed above, there is the further option to just secure the payload carried over HTTP, not the HTTP protocol itself. Depending on the application scenario, HTTP may only be relevant for transporting data, e.g. XML. As soon as all security-relevant data elements are in the message payload, it may be sufficient to provide security above http by an appropriate payload encapsulation.
As long as standard HTTP protection mechanisms are already available in client or server implementations, it should be the goal to use these instead of any upper-layer encapsulation. Furthermore, it should be avoided to end up with different security solutions for different HTTP-based applications.

Conclusions

Step 1: Bootstrapping

Considering the first step of generating key material for securing HTTP-based applications between UE and AS, it is proposed to take the IMS-based (2nd) alternative as the way forward. The main reason to follow this alternative is its efficiency.

With choosing this alternative, an appropriate key derivation method based on the key CK provided by the IMS authentication needs to be defined. This could be done by agreeing on requirements (initially given in section 2 above) to such a method, and to ask for support by ETSI SAGE for defining an appropriate solution if considered appropriate by SA3. Such a solution may not require a substantial amount of work provided it can be based on an existing key derivation method.

Step 2: http security mechanisms

Reflecting the above discussion on mechanisms, the feasible options seem to be the following:

· hybrid authentication using TLS/WTLS for server authentication and HTTP Digest authentication using the pre-shared secret provided by the bootstrapping phase

· anonymous TLS with mutual HTTP Digest authentication using the pre-shared secret provided by the bootstrapping phase

· WTLS based on the pre-shared secret provided by the bootstrapping phase

The first of these options would require a server-side PKI, which could be handled MNO-internally and does not span a high number of PKI clients (AS). WTLS with authentication based on pre-shared keys would likely provide the most efficient solution; however, the feasibility of this approach should be studied in more detail before a decision can be taken.

To take a decision for one of them, further investigation is required. Open issues seen in this context are:

· Is a server-side PKI solution for (W)TLS (server certificates, Root CA) expected to be easily feasible?

· Can the terminals easily support certificate-based server authentication for TLS (e.g. securely installing and storing root certificates; verifying server certificates)

· Is WTLS considered as a valid (available) alternative to TLS?

· How can man-in-the-middle attacks be prevented?

References
[DigAKA]

http digest aka (rfc3310)

[Aso]
N. Asokan, V. Niemi, K. Nyberg: "Man-in-the-Middle in Tunnelled Authentication", Draft, October 2002, http://eprint.iacr.org/2002/163/ ”

[Put]

“The Compound Authentication Binding Problem ”, INTERNET-DRAFT, <draft-puthenkulam-eap-binding-01.txt>”, www.ietf.org, October 2002.

[WTLS]

“Wireless transport layer security, version 06-Apr-2001”, WAP-261-WTLS-20010406-a, www.openmobilealliance.org, April 2001.

 page 7

_1106985076.doc
[image: image1.wmf]Home

MNO

[image: image2.wmf]

Distribute keys

C

UE

�

Protected

HTTP

NAF

HSS

B

D

Establish

Pre-shared Secret

Based on AKA

A

BSF

_1106985843.doc
[image: image1.wmf]Home

MNO

[image: image2.wmf]

Distribute keys

C

UE

�

Protected

HTTP

Application

Server

HSS

B

D

Derive pre-shared keys from CK

IMS-AKA

A

S-CSCF

