3GPP TSG SA WG3 Security — S3#23
May 14-17, 2002
Victoria, Canada

Source: Alcatel

Title: Status on OSA Security
Document for: Discussion
Agendaitem: 6.15

1 Introduction

This document presents the current status with regards to the ongoing discussions on
OSA security, following the contributions presented to SA3 at S3#22 meeting. Please
note that this is in no way an official report of CN5.

Attached to this contribution are four documents that were submitted to the CN5
meeting in April, which were updates of (53-020101, $3-020102, $3-020103, S3-
020104) based on the discussions held during the S3#22 meeting.

In section 2, we provide status information (as known today) on the various issues raised
in each contribution (attached).

2 Status
2.1 Authentication scheme negotiation in OSA

2.1.1 Mechanism for negotiation of authentication scheme

Proposed solution 1 in contribution is the preferred one (use of a new additional method
selectAuthenticationMethod() to negotiate the auth scheme).

2.1.2 Negotiation of the signing algorithm used in terminateAccess()

The proposed solution was not accepted because the terminateAccess() function is
located on a different Framework interface than the (newly defined)
selectAuthenticationMethod() function. Current proposals under discussion are to add a
new parameter in requesAccess() or to define a new function selectSigningAlgorithm() in
the IpAccess interface. Some preference seems to go in favor of the latter.

2.2 Encryption of challenge in CHAP-based OSA authentication

2.2.1 The need for encrypting the challenge

It was agreed that there is no need for it. However, for backwards compatibility
reasons, keeping it is still favoured as it does not harm.

2.2.2 No formatting defined for challenge encryption

Some discussion went on on the need for specifying the padding. Fear was that this
would force the application developer to be aware of the padding method used while
crypto libraries in use today hide this from the programmer. It is however necessary to

S3-020246

specify the padding scheme together with each encryption algorithm used, in order to
avoid implementations making use of different padding schemes.

The suggested list of padding schemes is to use PKCS-7 padding scheme for symmetric
encryption, PKCS-1 and OAEP for assymetric encryption. This should then be reflected
in the definitions of the crypto functions in TS 29.198-3.

More work is still needed to specify the format of the input with the IV.

2.3 Security of terminateAccess() function in OSA

2.3.1 no indication of public key/certificate to be used by verifier
No conclusion reached in CN5 on solution to adopt (new parameter or CMS)

2.3.2 no anti-replay protection
No conclusion reached in CN5 on solution to adopt.

2.3.3 no negotiation of signature algorithm
This is related to 2.1.2 above.

2.3.4 specification of signature algorithm

Proposed solution with new algorithms as introduced in contribution seems to be
accepted.

2.4 Use of one-way hash function for CHAP in OSA

2.4.1 use of RFC 1994 packet formats

Proposed solution to clarify the use of the PPP packet format and the values of the
fields therein seems to be accepted.

2.4.2 weak use of one-way hash function

No final conclusion reached yet due to some confusion around the replacement of MD5
by a MAC/HMAC function and the perception that MAC/HMAC require a symmetric key
while MD5 does not (not forgetting that MD5 is here used in a challenge-based response
scheme).

3 Conclusion

SA3 should review the attached contributions in light of the above status information.
Clear recommendations should be made to CN5 where necessary. It is noted that CN5 is
meeting this week in Europe.

36PP TSG CN5

Apr 8-12, 2002

Sophia Antipolis, FR

Source: Alcatel

Title: Authentication Scheme Negotiation in OSA
Document for: Adoption

Agenda item: T.b.d.

1 Introduction

This contribution discusses the mechanism defined in TS 29.198-3 v4.4.0 to negotiate
the authentication scheme wused between the client application and the
framework/services. A new mechanism is proposed in this contribution to really
implement negotiation of authentication mechanisms between the client and the
framework/service.

This contribution was originally presented to SA3 (meeting #22) where this was
discussed. This contribution is assumed to be in line with the discussions held within
SA3.

2 Current mechanism

As per TS 29.198-3, the negotiation of the authentication mechanism is achieved with
the initiateAuthenticate() method, which enables the client to indicate which (single)
authentication scheme it is willing to use. Currently, two methods have been defined:
P_OSA_AUTHENTICATION indicates the use of CHAP (challenge-based authentication
with MD5) and P_AUTHENTICATION indicates use of an underlying mechanism (eg
CORBA). Other authentication schemes can be defined by service providers and be
identified with prefix "SP_".

New authentication schemes under the SP_ prefix are therefore reserved for service
providers and would therefore not appear in the standard. Two different service
providers may also well assign their own (different) names to the same authentication
scheme. This limits the extensibility of the whole mechanism.

In addition, the current mechanism does not enable negotiation of the authentication
scheme, since the client indicates a single chosen scheme as a parameter to the
initiateAuthentication() method. This limits the scalability of the whole mechanism.

The current specification does not either enable to negotiate the signing algorithm to be
used with the terminateAccess() function. A separate contribution discusses this issue
further but proposes no solution. We are here proposing a solution in the context of the
initial negotiation mechanism.

3 New negotiation mechanism

Several alternative solutions can be designed to solve the above issues. One must be
chosen. The attached CR implements alternative 2.

1. The P_OSA_AUTHENTICATION method is extended to apply to any authentication
method defined in OSA, not only CHAP_with_MD5. A new method,

selectAuthenticationMethod(), is defined that enables to negotiate which mechanism
to use (CHAP_with_MD5, CHAP_with_HMAC_SHAI, digital signature schemes, ..).
This new method is then used after initiateAuthentication(). With this solution, the
selectAuthenticationMethod() function can also be used to negotiate, as a second
parameter, the sighing algorithm for the terminateAccess().

The authType parameter of the initiateAuthentication() method is modified to carry
a list of proposed authentication schemes. The return result must then also contain
the scheme chosen by the framework. New authentication types are then defined in
table TpAuthType to cover other authenticaton schemes such as digital signature-
based schemes, use of HMAC with MD5 or SHA1 in CHAP, ... With this solution, the
signing algorithm for the terminateAccess() function cannot be negotiated except if
the authentication scheme negotiated is always a digital signature scheme, which
would then also apply to the terminateAccess() function. To be able to negotiate the
signing algorithm for terminateAccess() separately, the authType parameter must
be made compound to contain two lists of proposals: one for initial authentication
and one for the signing algorithm of the terminateAccess() function.

3GPP TSG CN WG5 Document

e.g. for 3GPP use the format TP-99xxx
or for SMG, use the format P-99-xxx

CR-Form-v4|

CHANGE REQUEST
3 20.198-3 CR ¥ ev _ # Currentversion: 4.4.0 S

For HELP on using this form, see bottom of this page or look at the pop-up text over the 3 symbols.

Proposed change affects: # (U)SIM[_| ME/E[| Radio Access Network| | Core Network[X]

Title: ¥ Negotiation of Authentication Scheme in OSA
Source: ¥ Alcatel
Work item code: 3 Date: ¥ 06-04-02
Category: ¥ C Release: ¥ Rel-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: 3 Asper TS 29.198-3, the negotiation of the authentication mechanism is achieved with the
initiateAuthenticate() method, which enables the client to indicate which (single)
authentication scheme it is willing to use. Currently, two methods have been defined:
P_OSA_AUTHENTICATION indicates the use of CHAP (challenge-based authentication
with MD5) and P_AUTHENTICATION indicates use of an underlying mechanism (eg
CORBA). Other authentication schemes can be defined by service providers and be
identified with prefix “SP_".

New authentication schemes under the SP_ prefix are therefore reserved for service
providers and would therefore not appear in the standard. Two different service providers
may also well assign their own (different) names to the same authentication scheme. This
limits the extensibility of the whole mechanism.

In addition, the current mechanism does not enable negotiation of the authentication
scheme, since the client indicates a single chosen scheme as a parameter to the
initiateAuthentication() method. This limits the scalability of the whole mechanism.

The current specification does not either enable to negotiate the signing algorithm to be
used with the terminateAccess() function.

Summary of change: 8 The authType parameter of the initiateAuthentication() method is modified to carry alist
of proposed authentication schemes. The return result must then also contain the scheme
chosen by the framework. New authentication types are then defined in table TpAuthType
to cover other authenticaton schemes such as digital signature-based schemes, use of
HMAC with MD5 or SHAL in CHAP, ... With this solution, the signing agorithm for the
terminateAccess() function cannot be negotiated except if the authentication scheme
negotiated is aways a digital signature scheme, which would then also apply to the
terminateAccess() function. To be able to do so, the authType parameter is made
compound to contain two lists of proposals: one for initial authentication and one for the
signing agorithm of the terminateAccess() function.

Consequences if 3 Restrictions on possibilities to extend OSA with new standard authentication

not approved: schemes and no negotiation of signature function in terminateAccess().
Clauses affected: 3®
Other specs %8| | Other core specifications %
affected: || Test specifications
O&M Specifications

Other comments: 3

3 3G aa.bbb Version x.y.z(YYYY-MM)

4.1.1.1 Initial Access
The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,
the client has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with
the Framework. The Initial Contact interface supports only the initiateAuthentication method to allow the authentication
process to take place.

Once the client has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This
is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

_ Client . Ipinitial : IpAPILevelAuthentication : IpAccess Framework
IpClientAPILevelAuthentication
1: initiateAuthentication()

T 2: selectEncryptionMethod()

T 3: authenticate()

I 4: authenticationSucgeeded()

5: authenticate()
L‘—I\ 6: authenticationSucceeded()
7: requestAccess()]
8:|obtainInterface()

1: Initiate Authentication

The client invokes initiateA uthentication on the Framework’s "public" (initial contact) interface to initiate the
authentication process. It providesin turn areference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2 Select Encryption Method

The client invokes selectEncryptionMethod on the Framework’s APl Level Authentication interface, identifying the
encryption methods it supports. The Framework prescribes the method to be used.

3: Authenticate
4: The client provides an indication if authentication succeeded.

5: The client and Framework authenticate each other. The sequence diagram illustrates one of a series of one or
more invocations of the authenticate method on the Framework’s API Level Authentication interface. 1n each
invocation, the client supplies a challenge and the Framework returns the correct response. Alternatively or additionally

4 3G aa.bbb Version x.y.z(YYYY-MM)

the Framework may issue its own challenges to the client using the authenti cate method on the client's API Level
Authentication interface.

6: The Framework provides an indication if authentication succeeded.
7 Request Access

Upon successful (mutual) authentication, the client invokes requestA ccess on the Framework’s API Level
Authentication interface, providing in turn areference to its own access interface. The Framework returns areference
to its accessinterface.

8: The client invokes obtainl nterface on the framework’s Access interface to obtain areference to its service
discovery interface.

411.2 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another using an underlying distribution technology mechanism.

Client . Iphnitial Framework . IpAuthentication . IpAccess

T
| 1: initiateAuthentication(...
|

)

|
| 2: requestAccess(...
|

Underlying Distribution
Technology Mechanism is used
for application identification and

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
authentication. |
|

3: obtaininterface,..

u *

!
u

1 The client calsinitiateAuthentication on the OSA Framework Initial interface. This alows the client to specify
the type of authentication process. In this case, the client selects to use the underlying distribution technology
mechanism for identification and authentication.

2 The client invokes the requestA ccess method on the Framework’s Authentication interface. The Framework now
uses the underlying distribution technology mechanism for identification and authentication of the client.

3 If the authentication was successful, the client can now invoke obtainl nterface on the framework’s Access
interface to obtain areference to its service discovery interface.

411.3 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signaturesto ensure integrity. The inclusion of cryptographic processes and

5 3G aa.bbb Version x.y.z(YYYY-MM)

digital signatures in the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1) The client calsinitiateAuthentication on the OSA Framework Initial interface. This alows the client to specify
the type of authentication process. This authentication process may be specific to the provider, or the implementation
technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security).
OSA defines a generic authentication interface (APl Level Authentication), which can be used to perform the
authentication process. The initiateA uthentication method allows the client to pass a reference to its own authentication
interface to the Framework, and receive areference to the authentication interface preferred by the client, in return. In
this case the API Level Authentication interface.

2) The client invokes the selectEncryptionMethod on the Framework’s API Level Authentication interface. This
includes the encryption capabilities of the client. The framework then chooses an encryption method based on the
encryption capabilities of the client and the Framework. If the client is capable of handling more than one encryption
method, then the Framework chooses one option, defined in the prescribedM ethod parameter. In some instances, the
encryption capability of the client may not fulfil the demands of the Framework, in which case, the authentication will
fail.

3) The application and Framework interact to authenticate each other. For an authentication method of
P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response exchanges according to RFC
1994 CHAP specification. This authentication protocol is performed using the authenticate method on the API Level
Authentication interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol.
Mutual authentication is achieved by the framework invoking the authenticate method on the client’s

APILevel Authentication interface.

Note that at any point during the access session, either side can request re-authentication. Re-authentication does not
have to be mutual.

6 3G aa.bbb Version x.y.z(YYYY-MM)

: IpClientAPILevelAuthentication Client . IpInitial Framework : IpAPILevelAuthentication

1:initiateAuthentication()

IpClientAPILevel Authentication
reference i s passed to framework
and IpAP IL evel Auth entication
referenceis returned.

|
2: selectEncryptionMethod()
|

Thisisan example of the AN
sequence of
authentication

| I

3: authenticate()

U operations. Different

. authentication protocols
authenticate() may have different
requirements on the
order of operations.

1
|
|
5: authenticate() |
|

6: authenticate() U

4:

|
|
|
|
|
|
T
|
|
u
1
|
|
|
|
|
|
|
u
1
|
|

7: requestAccess()

| .
|| IpClientAccessreference is
: pased to Framework, and
|| InAccess reference is
|
|
|
|

retumed.

:
!

:
)

4.2 Class Diagrams

7 3G aa.bbb Version x.y.z(YYYY-MM)

<<Interface>> <<Interface>>
IpClientAccess IpClientAPILevelAuthentication
(from Client interfaces) (from Clientinterfaces)
®terminateAccess() ®authenticate()
®abortAuthentication()
/\ ®authenticationSucceeded()

A
/N
|

<<uses>>

I
I
I
I
|
| <<uses>> |
I
I
I
I
I
i

<<Interface>> <<Interface>>
Ipinitial <<Interface>> IpAPILevelAuthentication
(from Framewok interfaces) IpAccess (from Framework interfaces)
(from Frame work interface s)

Finitiat eAuthentication() WselectEncryptionMethod()
®obtaininterface() ®authenticate()
®obtaininterfaceWithCallback() ®abortAuthentication()
WendAccess() WauthenticationSucceeded()
Mistinterfaces()

Wreleaselnterface() \/

<<Interface>>

IpAuthentication
(from Framework interfaces)

®requestAccess()

Figure: Trust and Security Management Package Overview

4.1.1.14.2.1.1 Interface Class Iplnitial

Inherits from: I pInterface.

The Initial Framework interface is used by the client to initiate the mutual authentication with the Framework.

<<Interface>>

Iplnitial

initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthTypeList) :
TpAuthDomainAndAuthType

Method
I nitiateAuthentication()

This method isinvoked by the client to start the process of mutual authentication with the framework, and request the
use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and areference to call the authentication
interface of the framework.

8 3G aa.bbb Version x.y.z(YYYY-MM)

structure TpAuthDomain {
domainlD: TpDomainiD;
authl nterface: I plnterfaceRef;

1

The domainlD parameter isan
identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authinterface parameter is a reference to the authentication
interface of the framework. The type of thisinterface is defined by the authType parameter. The client usesthis
interface to authenticate with the framework.

Parameters

clientDomain : in TpAut hDomai n
Thisidentifies the client domain to the framework, and provides a reference to the domain’s authentication interface.

structure TpAuthDomain {
domainiD: TpDomainiD;
authinterface: IplnterfaceRef;

b

The domainlD parameter isan
identifier either for aclient application (i.e. TpClientApplD) or for an enterprise operator (i.e. TpEntOplI D), or for an
existing registered service (i.e. TpServicel D) or for aservice supplier (i.e. TpServiceSupplierID). It is used to identify
the client domain to the framework, (see authenticate() on IpAPILevel Authentication). If the framework does not
recognise the domainl D, the framework returns an error code (P_INVALID_DOMAIN_ID).

The authinterface parameter is areference to call the authentication interface of the
client. Thetype of thisinterface is defined by the authType parameter. If the interface reference is not of the correct
type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).

aut hType : in TpAut hTypelLi st

Thisidentifies the types of authentication mechanisms requested-supported by the client. It provides operators and
clients with the opportunity to negotiate which authentication method and also to use an alternative to the API level
Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the

I pAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication isthe default
authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the
clientDomain and fwDomain authl nterface parameters are references to interfaces of type

Ip(Client)APILevel Authentication. If P_AUTHENTICATION is selected, the fwDomain authinterface parameter
references to interfaces of type |pAuthentication which is used when an underlying distribution technology
authentication mechanism is used.

Returns
TpAut hDormai nAndAut hType

structure TpAuthDomainAndAuthType {

fwDomain: TpAuthDomain;

authType: TpAuthType;

9 3G aa.bbb Version x.y.z(YYYY-MM)
Raises
TpComonExceptions, P_INVALI D DOVAI N I D, P_I NVALI D | NTERFACE TYPE,
P_I NVALI D _AUTH TYPE

4.1.24.2.2 Trust and Security Management State Transition Diagrams

4.1.1.14.2.2.1 State Transition Diagrams for Ipinitial

initiateAuthentication / return new IpAuthentication

Active

AN /

Figure : State Transition Diagram for Iplnitial

‘ 4111342.2.1.1 Active State

‘ 4.1.1.24.2.2.2 State Transition Diagrams for IpAPILevelAuthentication

10 3G aa.bbb Version x.y.z (YYYY-MM)

Ipinitial.initiateAuthentication

Idle
requestAccess
P_ACCESS_DENIE
"no method found"

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY

selectE ng ryptionMethod

Selecting
requestAccess Method
"P_ACCESS_DENIED

"found method" / return prescribedMethod “client.authenticate

All States

7
@

S

authenticate / "Buffer request" authenticate resuft(VALID)| Auth
requestAccess "P_ACCESS_DENIE Incomplete] “client.authenticate

Authenticating result(INVALID)
Client

authenticate result(VALID)[AuthComplete] /
"Process guthenticate requests” “client.authenticationS ucceeded

"re-authenticate”
“client.authenticate

requestAccess / new IpAccess

Client
Authenticated

Figure : State Transition Diagram for IpAPILevelAuthentication

4111142221 Idle State

When the client has invoked the Iplnitial initiateA uthentication method, an object implementing the
IpAPILevel Authentication interface is created. The client now has to provide its encryption capabilities by invoking
sel ectEncryptionM ethod.

41311242222 Selecting Method State

In this state the Framework selects the preferred encryption mechanism within the capability of the client. It isa policy
of the framework (perhaps agreed off-line with the enterprise operator) whether the client has to be authenticated or not.
In case no mechanism can be found the P_NO_ACCEPTABLE_ENCRY PTION_CAPABILITY exception isthrown
and the Authentication object moves back to the IDLE state The client can now revisit its list of supported capabilities
to identify whether it is complete. If it has no more encryption capabilities to use, then it must invoke
abortAuthentication.

41.1.1.34.2.2.2.3 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself by invoking the Authenticate method
on the client. In case the client requests the Framework to authenticate itself by invoking Authenticate on the

I pAPILevel Authentication interface, the Framework will either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the Framework has processed the response
from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication
processis not yet complete, then another Authenticate request is sent to the client. If the responseisvalid and the
authentication process has been completed, then atransition to the state ClientAuthenticated is made, the client is
informed of its success by invoking authenti cationSucceeded, then the framework begins to process any buffered
authenticate requests. In case the response is not valid, the Authentication object is destroyed. Thisimplies that the

11 3G aa.bbb Version x.y.z (YYYY-MM)

client has to re-initiate the authentication by calling once more the initiateA uthentication method on the Iplnitial
interface.

411144.2.2.2.4 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the | pAccess interface. In case
the client requests the Framework to authenticate itself by invoking Authenticate on the IpAPILevel Authentication
interface, the Framework provides the correct response to the challenge. If the framework decides to re-authenticate the
client, then the authenticate request is sent to the client and a transition back to the AuthenticatingClient state occurs.

4.3 Class Diagrams

<<Interface>>
IpAppEventNotification
(from App Interfaces)

®reportNotification()
®notificationTerminated()

A
/:\

<<uses>>

<<Interface>>
IpEventNotification
(from Framework Interfaces)

WcreateNotification()
®destroyNotification()

Figure: Event Notification Class Diagram

<<Interface>>
IpAppHeartBeatMgmt I;;;?gg:ftgz;
enableAppHeartBeat()
disableAppHeartBeat() 1 0..n|pulse()
changelinterval()
‘ A
|
|
weusesm> | <<uses>>

<<Interface>>

IpHeartBeatMgmt <<Interface>>
IpHeartBeat
enableHeartBeat()
disableHeartBeat() | 1 0..n pulse()
changelnterval()

12

<<Interface>>
IpAppLoadManager

queryAppLoadReq()
queryLoadRes()
queryLoadErr()
loadLewelNotification()
resumeNotification()
suspendNotification()

\
I
I
I
<<uses>> |
I
I
I

<<Interface>>
IpAppFaultManager

activityTestRes()
appActivity TestReq()
fwFaultReportind()
fwFaultRecoveryInd()
svcUnavailablelnd()
genFaultStatsRecordRes()
fwUnavailablelnd()

activity TestErr()
genFaultStatsRecordErr()
appUnavailablelnd()
genFaultStatsRecordReq()

3G aa.bbb Version x.y.z(YYYY-MM)

<<Interface>>
IPAppOAM

systemDateTimeQuery()

N

<<uses>>'|
|

<<Interface>>
IpLoadManager

<<Interface>>
IpFaultManager

|
|
|
<<uses>> |
|
|
|

reportLoad()

queryLoadReq()
queryAppLoadRes()
queryAppLoadErr()
createLoadLewelNotification()
destroyLoadLevelNotification()
resumeNotification()
suspendNotification()

activity TestReq()
appActivity TestRes()
svcUnavailablelnd()
genFaultStatsRecordReq()
appActivity TestErr()
appUnavailablelnd()
genFaultStatsRecordRes()
genFaultStatsRecordErr()

<<Interface>>
POAM

systemDateTimeQuery()

Figure: Integrity Management Package Overview

<<|nterface>>

IpSeniceDiscowvery
(from Framewolk interfaces)

WistSeniceTypes()
WdescribeSeniceType()
WdiscoverSenice()
WistSubscribedSenices()

Figure: Service Discovery Package Overview

13 3G aa.bbb Version x.y.z (YYYY-MM)

<<Interface>>
IpClientAccess

(from Client interfaces)

[®terminateAccess()
A\

|
|
<<uses>> ,
|
|
|

<<Interface>>
IpClientAPILevelAuthentication

(from Client interfaces)

[®Wauthenticate()
[®abortAuthentication()
[Wauthentication Succeeded()

<<Interface>>
Iplnitial
(from Framework interfaces)

<<Interface>>
IpAccess

(from Framework interfaces)

i
|
|
|

<<uses>> |
|
|
|
I

<<Interface>>
IpAPILevelAuthentication
(from Framework interfaces)

[initiae Auth entication()

[®obtaininterface()
[®obtaininterfaceWithCallback()

ndAccess()
listinterfaces()
[®releaselnterface()

[®selectEncryptionMethod()
[Mauthenticate()
[®abortAuthentication()
[MauthenticationSucceeded()

v

<<Interface>>
IpAuthentication
(from Framework interfaces)

[®requestAccess()

Figure: Trust and Security Management Package Overview

4.4

14 3G aa.bbb Version x.y.z (YYYY-MM)

<<Interface>>

IpAppSeniceAgreementManagement
(from App Interfaces)

®signSeniceAgreement()
®terminateSeniceAgreement()
/N

<uses>>

<<Interface>>
IpSeniceAgreementManagement
(from Framework Interfaces)

WsignSeniceAgreement()
®erminateSeniceAgreement()
WselectSenice()
WinitiateSignSeniceAgreement()

Figure: Service Agreement Management Package Overview

Class Diagrams

<<Interface>>

IpFwSeniceDiscovery
(from Framework interfaces)

WistSeniceTypes()

®describeSeniceType()

®discoverSenice()

WistRegisteredSenices()

Figure: Service Discovery Package Overview

15 3G aa.bbb Version x.y.z (YYYY-MM)

<<Interface>>

IpFwSeniceRegistration
(from Framewo K interfaces)

®registerSenice()

BunregisterSenice()
®describeSenice()
®unannounceSenvice()

®announceSewice Availability()

Figure: Service Registration Package Overview

<<lInterface>>

IpClientAccess
(from Client interfaces)

#terminateAccess ()

I
I
I
:
<<uses>>
I
I
I
I
I
Il

<<Interface>>

IpClientAPILevelAuthentication
(from Client interfaces)

Wauthenticate()
WabortAuthentication()
WauthenticationSucceeded()

<<lInterface>>
Ipinitial

<<Interface>>
IpAccess
(from Framework interfaces)

|
|
|
l
<<uses>> |
|
|
|
|
|

<<Interface>>
IpPAP ILeel Authentication

(from Framework interfaces)

(from Framework interfaces)

WinitiateAuthentication()

Mobtaininterface()
®obtaininterfaceWithCallback ()
MendAccess()

Mistinterfaces()
Wreleaselnterface()

MselectEncryptionMethod()
MWauthenticate()
®abortAuthentication()
MWauthenticationSucceeded()

<<Interface>>
IpAuthentication
(from Framework interfaces)

WrequestAccess()

Figure: Trust and Security Management Package Overview

16 3G aa.bbb Version x.y.z (YYYY-MM)

<<Interface>>

IpSenicelnstancelLifecycleManager
(from Service Interfaces)

®createSeniceManager()
®destroySeniceManager()

Figure: Service Instance Lifecycle Manager Package Overview

<<Interface>>
IpSweFaultManager
<<Interface>>
pSicloadvanagen activity TestRes()
s\wcActivity TestReq()
<<lInterface>> querySvcLoadReq() fwFaultReportind()
IpSvcHeartBeatMgmt <<Interface>> queryLoadRes() fwFaultRecoveryind()

IpSwcHeartBeat queryLoadErr() fwUnavailablelnd() <<Interface>>
enableSwcHeartBeat() |1 o.n loadLevelNotification() svcUnavailablelnd() NISVCOAM
disableSvcHeartBeat() pulse() suspendNotification() appUnavailablelnd()
changelnterval () resumeNotification() genFaultStatsRecordRes() systemDateTimeQuery()

~ : B activity TestErr() ‘
| | | genFaultStatsRecordErr() |
: | : genFaultStatsRecordReq|() !
<<uses>> | <<uses>> : <<uses>> | iy :
| | | <<uses>> | S<uses>>

| | L
L : | <<Interface>> :
<<Interface>> | L IpFwFaultManager |
IpFwHeartBeatMgmt <<Interface>> <<Interface>> !

IpFwHeartBeat IpFwLoadManager activity TestReq() <<Interface>>
enableHeartBeat() 1 0..n s\cActivity TestRes() IPFWOAM
disableHeartBeat() pulse() reportLoad() appUnavailableind()
changeInterval() queryLoadReq() genFaultStatsRecordReq() systemDateTimeQuery()

querySvcLoadRes() svcUnavailablelnd()
querySveLoadErr() svcActivity TestErT()
createLoadLevelNotification() genFaultStatsRecordRes()
destroyLoadLevelNotification() genFaultStatsRecordErr()
suspendNotification()

resumeNotification()

Figure: Integrity Management Package Overview

<<Interface>>

Ip SvcEvent Notification
(from Service Interfaces)

®reportNotification()
®notificationTerminated()

7
/N

<<uses>>

<<Interface>>
IpFwEventNotification
(from Framework Interfaces)

®createNotification()
®destroyNotification()

17

3G aa.bbb Version x.y.z(YYYY-MM)

Figure: Event Notification Package Overview

4.1.14.4.1 TpAuthType

Thisdatatypeisidentical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default
authentication method. Other Network operator specific capabilities may aso be used, but should be preceded by the
string “SP_". The following values are defined:

String Value

Description

P_OSA_AUTHENTICATION

Authenticate using the OSA API Level Authentication Interfaces: IpAPILevel Authentication and
IpClientAPILevel Authentication. Authentication is based on RFC 1994 CHAP mechanism using MD5
hashing algorithm

P_AUTHENTI CATI ON

Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

P_OSA_HVAC SHAL

Authenticate using the OSA API Level Authentication Interfaces:
IpAPILevelAuthentication and IpClientAPILevelAuthentication. Authentication is based
on the use of HMAC-SHA1 hashing algorithm to generate a response based on a shared
secret and a challenge received via authenticate() method.

36PP TS6 CN WGE5- CN5

Sophia Antipolis, FR

Source: Alcatel

Title: Encryption of challenge in CHAP-based OSA authentication
Document for: Adoption

Agenda item: T.b.d.

1 Introduction

This contribution discusses two issues related to a specific functionality in TS 29.198-3
v4.2.0 which makes the challenge used for CHAP-based authentication to be encrypted
when passed from the verifier to the claimant.

This is based on a contribution originally discussed at the last SA3 meeting and is
expected to reflect these discussions.

2 Issue

TS 29.198-3 relies on the use of a challenge-based mechanism (CHAP as per IETF RFC
1994) for authentication of the client application by the framework, and vice-versa.
CHAP is chosen as the authentication scheme when the authentication type in the
initiateAuthenticate() method is set to P_OSA_AUTHENTICATION.

The overall authentication phase works as follows:

- the client first uses the initiateAuthenticate() method to set the
P_OSA_AUTHENTICATION scheme (ie CHAP).

- with the selectEncryption() method, the client application and the framework agree
on a symmetric encryption function to be used to encrypt the challenge sent from
the verifier to the claimant.

- the framework can then use the authenticate() method to pass an encrypted
challenge string to the client, using the encryption algorithm (DES, triple DES)
negotiated in the previous step. Encryption of the challenge string is done thanks to
a secret key which must a priori be shared between the client and the framework
(out of scope). The client must then decrypt the received encrypted challenge and
generate a response based on the decrypted challenge and a secret shared with the
framework. The client can authenticate the framework using the exactly same
mechanism in the other direction.

We hereby discuss two issues related to the above procedure.

2.1 TIssue 1: the need for encrypting the challenge

A fundamental question is whether there is any real security gain in encrypting the
challenge string itself. This indeed requires extra management (shared secret key for
encryption/decryption between the client and the framework) and processing, while no
identified security weakness is solved by this extra encryption process.

We believe that there is no need to have this challenge encryption phase, which should
be removed from the authentication procedure’.

2.2 Issue 2: no formatting defined for challenge encryption.

In the case we still consider the challenge encryption procedure itself, we note that the
specification lacks details which make it unimplementable as is.

Symmetric encryption mechanisms such as DES, 3DES, .. to be used for challenge
encryption require the use of an Initialisation Vector (IV) as input into the
encryption/decryption phases. This IV must be passed from the encryptor to the
decryptor (or at least known by the decryptor).

The length of the challenge string is not necessarily a multiple of the encryption
algorithm block length (eg 8 bytes for DES or 3DES). When it is not the case, padding
bytes must be appended to the input (ie challenge string) of the encryption algorithm.
After decryption, it is obviously necessary to be able to isolate those padding bytes so
as not to use them as part of the challenge string. To avoid potential attacks, it is also
important to provide the length of the challenge string within the encrypted data.

The description of the authenticate() method does not cover those aspects.

3 Solution

As presented above, it is suggested to suppress the requirement for encryption of the
challenge in the authentication phase. The accompanying proposed CR implements the
required modifications to TS 29.198-3 v4.4.0 by removing the selectEncryptionMethod()
from the specification, since its sole purpose is to negotiate the encryption mechanism
used in challenge-based authentication.

Use of public-key based authentication schemes should be specified separately and not
on top of CHAP itself.

! It is noted that this view was shared by SA3 delegates during the joint SA3-CN5
meeting held in Bristol on Feb 25™.

3GPP TSG CN WG5 Document

e.g. for 3GPP use the format TP-99xxx
or for SMG, use the format P-99-xxx

CR-Form-v4|

CHANGE REQUEST
3 20.198-3 CR ¥ ev _ # Currentversion: 4.4.0 S

For HELP on using this form, see bottom of this page or look at the pop-up text over the 3 symbols.

Proposed change affects: # (U)SIM[_| ME/E[| Radio Access Network| | Core Network[X]

Title: ¥ Encryption of challenge in CHAP-based OSA authentication
Source: ¥ Alcatel
Work item code: 3 Date: ¥ 06-04-02
Category: ¥ F Release: ¥ Rel-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: # TS29.198-3 relies on the use of a challenge-based mechanism (CHAP as per IETF RFC
1994) for authentication of the client application by the framework, and vice-versa. CHAP
is chosen as the authentication scheme when the authentication type in the
initiateAuthenticate() method isset to P OSA_AUTHENTICATION.

The overall authentication phase works as follows:

the client first uses the initiateAuthenticate() method to set the
P_OSA_AUTHENTICATION scheme (ie CHAP).

with the selectEncryption() method, the client application and the framework agree on a
symmetric encryption function to be used to encrypt the challenge sent from the verifier to
the claimant.

the framework can then use the authenticate() method to pass an encrypted challenge string
to the client, using the encryption algorithm (DES, triple DES) negotiated in the previous
step. Encryption of the challenge string is done thanks to a secret key which must a priori
be shared between the client and the framework (out of scope). The client must then
decrypt the received encrypted challenge and generate a response based on the decrypted
challenge and a secret shared with the framework. The client can authenticate the
framework using the exactly same mechanism in the other direction.

A fundamental question iswhether thereis any real security gain in encrypting the
challenge string itself. This indeed requires extra management (shared secret key for
encryption/decryption between the client and the framework) and processing, while no
identified security weakness is solved by this extra encryption process. There is no need to
have this challenge encryption phase, which should be removed from the authentication
procedure.

Summary of change: 3 It issuggested to suppress the requirement for encryption of the challengein the
authentication phase. This CR implements the required modificationsto TS 29.198-3
v4.4.0 by removing the selectEncryptionMethod() from the specification, sinceits sole

purpose is to negotiate the encryption mechanism. The TpEncryption tables are also
removed.

The fact that public key-based authentication mechanisms could be used is clarified in the
authenticate) function.

Consequences if 3 Unnecessary use of an encryption mechanism complexifies the system without
not approved: any gain. Also, lack of details of encryption procedure will lead to interoperability
issues.

Clauses affected: ¥ 4111,4112,41.13,4.2,63.1.1,6.3.1.5,10.3.3,10.3.4

Other specs %[| Other core specifications %
affected: || Test specifications
O&M Specifications

Other comments: 3

3 3G aa.bbb Version x.y.z(YYYY-MM)

4.1.1.1 Initial Access
The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,
the client has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with
the Framework. The Initial Contact interface supports only the initiateAuthentication method to allow the authentication
process to take place.

Once the client has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This
is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

4 3G aa.bbb Version x.y.z(YYYY-MM)

Client . IpInitial : IPAPILevelAuthentication . IpAccess Framework

InClientAPILevelAuthentication

1: initiateAuthentication()

1

I 2: selectEncryptionMethod()

3: authenticate(

-

4: authenticationSucgeeded()

"
-

5: authenticate()

6: authenticationSucceeded()

;

7: requestAccess()

o

:|obtaininterface()

Client . IpInitial : IPAPILevelAuthentication . IpAccess Framework

InClientAPILevelAuthentication

1: initiateAuthentication()

H 1

3: authenticate(

-

4: authenticationSucgeeded()

5: authenticate()

6: authenticationSucceeded()

;

7: requestAccess()

©

:|obtaininterface()

1: Initiate Authentication

5 3G aa.bbb Version x.y.z(YYYY-MM)

The client invokes initiateAuthentication on the Framework’s "public” (initial contact) interface to initiate the
authentication process. It providesin turn areference to its own authentication interface. The Framework returns a
reference to its authentication interface.

23. Authenticate

34: Theclient provides an indication if authentication succeeded.

45: Theclient and Framework authenticate each other. The sequence diagram illustrates one of a series of one or
more invocations of the authenticate method on the Framework’s API Level Authentication interface. In each
invocation, the client supplies a challenge and the Framework returns the correct response. Alternatively or additionally
the Framework may issue its own challenges to the client using the authenticate method on the client's API Level
Authentication interface.

‘ 56: The Framework provides an indication if authentication succeeded.
‘ 67 Request Access

Upon successful (mutual) authentication, the client invokes requestAccess on the Framework’s API Level
Authentication interface, providing in turn areference to its own access interface. The Framework returns a reference
to its access interface.

| 78 Theclient invokes obtaininterface on the framework’s Access interface to obtain a reference to its service
discovery interface.

4.1.1.2 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another using an underlying distribution technology mechanism.

Client . Iplnitial Framework . IpAuthentication . IpAccess

T T
| 1: initiateAuthentication(... |
| |
|

|
w 2: requestAccess(...
|

Underlying Distribution
Technology Mechanism is used
for application identification and
authentication.

3: obtaininterface,..

u *

!
u

1 The client callsinitiateAuthentication on the OSA Framework Initial interface. This alows the client to specify
the type of authentication process. In this case, the client selects to use the underlying distribution technology
mechanism for identification and authentication.

6 3G aa.bbb Version x.y.z(YYYY-MM)

2 The client invokes the requestAccess method on the Framework’s Authentication interface. The Framework now
uses the underlying distribution technology mechanism for identification and authentication of the client.

3 If the authentication was successful, the client can now invoke obtainlnterface on the framework’s Access
interface to obtain a reference to its service discovery interface.

4.1.1.3 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one ancther.

The OSA API supports multiple authentrcatron techmques The procedure used to select an approprrate technique for a
g|ven srtuat|on is descrrbed bel ow.- . | !

iy The inclusion of cryptographrc processes and(
d|g|tal srgnatures chaIIenqebased methods ..) inthe authent|cat|on procedure depends on the type of authentication
techn|que selected In Some cases strong authent|cat|on may need to be enforced by the Framework to prevent misuse of

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1) The client calsinitiateAuthentication on the OSA Framework Initial interface. This alows the client to specify
the type of authentication process. This authentication process may be specific to the provider, or the implementation
technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security).
OSA defines a generic authentication interface (APl Level Authentication), which can be used to perform the
authentication process. The initiateA uthentication method allows the client to pass a reference to its own authentication
interface to the Framework, and receive areference to the authentication interface preferred by the client, in return. In
this case the API Level Authentication interface.

23) Theapplication and Framework interact to authenticate each other. For an authentication method of
P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response exchanges. This
authentication protocol is performed using the authenticate method on the API Level Authentication interface.
P_OSA_AUTHENTICATION isbased on CHAP, which is primarily a one-way protocol. Mutual authenticationis
achieved by the framework invoking the authenticate method on the client's APIL evel Authentication interface.

Note that at any point during the access session, either side can request re-authentication. Re-authentication does not
have to be mutual.

3G aa.bbb Version x.y.z(YYYY-MM)

: IpClientAPILevelAuthentication

. IpInitial Framework

: IpAPILevelAuthentication

1:initiateAuthentication()

IpClientAPILevel Authentication
reference i s passed to framework
and IpAP IL evel Auth entication
referenceis returned.

|
2: selectEncryptionMethod()
|

3: authenticate()

Thisisan example of the AN
sequence of

authenticate() U

5: authenticate()

4:

6: authenticate() U

authentication
operations. Different
authentication protocols
may have different
requirements on the
order of operations.

|
|
|
|
|
T
T
|
|
u
1
|
|
|
|
|
|
|
u
1
|
|

|
7: requestAccess()

IpClientAccess reference is
pased to Famework, and

retumed.

|

|

|

| q

|| InAccess reference is
|

|

|

|

:
)

8 3G aa.bbb Version x.y.z(YYYY-MM)

: IpClientAPILevelAuthentication Client : IpInitial Framework : IpAPILevelAuthentication

1: initiateAuthentication()

IpClientAPILevelAuthentication
reference is passed to framework
and IpAPILevelAuthentication
reference is returned.

This is an example of the N
sequence of

authentication

U operations. Different

3: authenticate()

authentication protocols
may have different
requirements on the
order of operations.

»
®

ythenticate()

5: authenticate()

6: aythenticate() H

7: requestAccess()

IpClientAccess reference is
passed to Framework, and
IpAccess reference is
returned.

4.2 Class Diagrams

<<lInterface>>
IpInitial

9 3G aa.bbb Version x.y.z(YYYY-MM)

<<Interface>>
IpClientAccess
(from Client interfaces)

FterminateAccess()

|
|
|
l
|
<<uses>> |
|
|
|
|
|
|

<<Interface>>
IpClientAPILevelAuthentication
(from Clientinterfaces)

®authenticate()
®abortAuthentication()
®authenticationSucceeded()

N\

<<uses>>

<<lInterface>>

<<Interface>>
IpAPILevelAuthentication

(from Framewo k interfaces)

Finitiat eAuthentication()

IpAccess
(from Frame work interface s)

(from Framework interfaces)

obtaininterface()
®obtaininterfaceWithCallback()
WendAccess()

Wistinterfaces()
Wreleaselnterface()

WselectEncryptionMethod()
®authenticate()
|abortAuthentication()
WauthenticationSucceeded()

v

<<Interface>>
IpAuthentication
(from Framework interfaces)

®requestAccess()

10 3G aa.bbb Version x.y.z(YYYY-MM)

<<Interface>> <<Interface>>
IpClientAccess IpClientAPILevelAuthentication
(from Client interfaces) (from Client interfaces)

[®authenticate()

[®terminateAccess()

[MabortAuthentication()
[®authenticationSucceeded()
<<uses>> <<uses>>
<<Interface>> <<Interface>>
Iplnitial <<Interface>> IpAPILevelAuthentication
(from Framework interfaces) |pACC€SS (from Framework interfaces)
(from Framework interfaces)
[initiateAuthentication() ‘
btaininterface() uthenticate()
btaininterfaceWithCallback() bortAuthentication()
ndAccess() uthenticationSucceeded()
istinterfaces()
eleaselnterface() v
<<Interface>>
IpAuthentication

(from Framework interfaces)

®requestAccess()

Figure: Trust and Security Management Package Overview

6.3.1.1 Interface Class IpClientAPILevelAuthentication

Inherits from: Iplnterface.

11 3G aa.bbb Version x.y.z (YYYY-MM)

Method
aut henti cat e()

This method isused by the framework to authenticate the client—Fhe-challenge wit-be-encrypted-using the-mechanism

. The client must respond with the correct responses to the challenges presented
by the framework. When a public key- based authentication scheme is used, the domainiD received in the
initiateA uthentication() can be used by the framework to reference the correct public key for the client (the key
management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the
policies of each side. The whole authentication process is deemed successful when the authenticationSucceeded
method isinvoked. Theinvocation of this method may be interleaved with authenticate() calls by the client on the
I pAPILevel Authentication interface.

Returns <response> : This s the response of the client application to the challenge of the framework in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectEncryptionM ethod().

Parameters

chall enge : in TpCctet Set

The challenge presented by the framework to be responded to by the client. |f the authentication method in use is
CHAP-based, tFhe challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols -

Challenge Handshake Authentlcatlon Protocol [RFC 1994, August1996]. Fhe-challenge will-be-encrypted-with-the

Returns
TpCct et Set

Method
abor t Aut henti cati on()

The framework uses this method to abort the authentication process. This method isinvoked if the framework wishesto
abort the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on

I pAPILevel Authentication will return an error code (P_ACCESS DENIED), until the client has been properly
authenticated.

Parameters
No Parameters were identified for this method

Method
aut henti cati onSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt.

Parameters
No Parameters were identified for this method

6.3.1.5 Interface Class IpAPILevelAuthentication
Inherits from: IpAuthentication.

The API Level Authentication Framework interface is used by client to perform its part of the mutual authentication
process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.

12 3G aa.bbb Version x.y.z (YYYY-MM)

<<Interface>>

IpAPILevelAuthentication

authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void

authenticationSucceeded () : void

Method
aut henti cat e()

This method is used by the client to authenticate the framework. Fhe-challenge wit-be-encrypted-using-the-mechanism

preseribed-by-selectEneryptionMethod--The framework must respond with the correct responses to the challenges
presented by the client. When a public key-based authentication scheme is used, tFhe domainID received in the

initiateAuthentication() can be used by the framework to reference the correct public key for the client (the key
management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the
policies of each side. The whole authentication process is deemed successful when the authenticationSucceeded
method isinvoked. Theinvocation of this method may be interleaved with authenticate() calls by the framework on the
client's APILevel Authentication interface.

Returns <response> : Thisis the response of the framework to the challenge of the client in the current sequence. The
response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionM ethod().

13 3G aa.bbb Version x.y.z (YYYY-MM)

Parameters

chal l enge : in TpCctet Set

The challenge presented by the client to be responded to by the framework. If the authentication method in use is
CHAP-based, tFhe challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols -

Challenge Handshake Authentlcatlon Protocol [RFC 1994, August1996]. Fhe-challenge will-be-encrypted-with-the

Returns
TpOctetSet

Raises
TpComobnExcepti ons, P_ACCESS DEN ED

Method
abor t Aut henti cati on()

The client uses this method to abort the authentication process. This method isinvoked if the client no longer wishesto
continue the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on

I pAPILevel Authentication will return an error code (P_ACCESS DENIED), until the client has been properly
authenticated.

Parameters

No Parameters were identified for this method

Raises

TpComobnExcept i ons, P_ACCESS DENI ED

Method
aut henti cati onSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt.

Parameters
No Parameters were identified for this method

14 3G aa.bbb Version x.y.z (YYYY-MM)

Raises
TpComonExcepti ons, P_ACCESS DEN ED

36PP TS6 CN W65

April 8-12, 2002

Sophia Antipolis, FR

Source: Alcatel

Title: Security of terminateAccess() function in OSA
Document for: Adoption

Agenda item: T.b.d.

1 Introduction

This contribution identifies various issues in TS 29.198-3 v4.4.0 with regards to the
security mechanism used to protect the terminateAccess() function.

This is based on an initial contribution discussed at the last SA3 meeting and is
expected to reflect those discussions.

2 Issues

As specified in TS 29.198-3, the terminateAccess() function is digitally signed by the
framework. To achieve this, two extra parameters are specified as input to the function:
signingAlgorithm which identifies the algorithm used by the framework to produce the
signature, and digitalSignature which contains the signature value itself.

2.1 Issue#1: no indication of public key/certificate to be used by verifier

The framework does not indicate which public key/certificate the client must use to
verify the signature. The assumption to be made in the current specification is that the
client and the framework have some a-priori agreement in which the client obtains a
copy of the public key (embedded in a certificate or not) used by the framework for
sighing.

However, such a solution is not scalable and indication of the public key used is
particularly important as the framework may have several (private/public) key pairs so
that the client knows which one to use. The certificate itself is also important as a basis
for signature verification (so as to validate the public key itself first).

2.2 Issue#2: no anti-replay protection

As currently specified, the signature is calculated solely over the terminationText
string. Because such a string is more of a constant nature (same string is used on many
occasions), ho mechanism is defined to prevent re-use of a digital signature by a third-

party.

2.3 TIssue#3: no negotiation of signature algorithm

The signature algorithm used by the framework is not negotiated as it is a parameter of
the terminateAccess(0 function itself. There is therefore no way for the client
application to indicate which algorithm(s) it supports and it must consequently merely
accept what it receives. If the signing algorithm is not supported, the client cannot
verify the signature and an exception will be generated but the effect will most

probably be that the association with the framework will be considered closed by the
client itself. If the latter is the case, the lack of a priori agreement also opens the door
to denial of service: an attacker can issue a terminateAccess() to the client with a
signature algorithm that it knows is not supported by the client. In such a scenario, the
signature value does not have to be valid since the client will not try and verify it.

2.4 TIssue#4: specification of signature algorithm

The list of signature algorithms is provided in table TpSigningAlgorithm, which lists
P_MD5_RSA_512 and P_MD5_RSA_1024 as possible algorithms. Such a reference to
the use of MD5 with RSA for signing is not sufficient to determine what the exact
mechanism to implement is. Moreover, the use of MD5 as hashing algorithm and
especially a modulus of 512 bits for RSA are not advisable and are deprecated.

3 Solution

With regards to issue #1, a solution could be add a new parameter to the
terminateAccess function, carrying the public key identifier or its certificate. Another
solution is to have the digitalSignature field itself carrying the certificate. This can be
achieved by using an appropriate digital signature format such as the one defined in
Cryptographic Message Syntax (RFC 2630). CMS indeed defines a data structure to
carry a digital signature, the signed data and the signer's certificate.

With regards to issue #2, a fresh value must be generated by the framework for use as
input into the signing algorithm. If adopting CMS to carry the signature, CMS already
contains a field to contain the signing time. The signing time can be used by both parties
to detect replayed signatures, under the condition that the verifier keeps track of the
last verified value.

A separate contribution discusses a proposed mechanism for the negotiation of the
signature algorithm (issue #3).

With regards to issue #4, the list of algorithms must be more precisely defined and can
also be extended to other signing algorithms. Such a list of possible algorithms is given
in IETF draft draft-ietf-pkix-ipki-pkalgs-05.txt, which itself refers to RFC 2437
specifying in detail RSA-based sighing mechanism, to FIPS-186 for DSA signing
mechanism and X9.62 for ECDSA signing mechanism.

The attached CR implements the corresponding changes to TS 29.198-3.

3GPP TSG CN WG5 Document

e.g. for 3GPP use the format TP-99xxx
or for SMG, use the format P-99-xxx

CR-Form-v4|

CHANGE REQUEST
3 20.198-3 CR ¥ ev _ # Currentversion: 4.4.0 S

For HELP on using this form, see bottom of this page or look at the pop-up text over the 3 symbols.

Proposed change affects: # (U)SIM[_| ME/E[| Radio Access Network| | Core Network[X]

Title: ¥ Security of terminateAccess() function
Source: ¥ Alcatel
Work item code: 3 Date: 3 06-04-02
Category: ¥ F Release: ¥ Rel-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: 3 Issuet#l: noindication of public key/certificate to be used by verifier

The framework does not indicate which public key/certificate the client must use to verify
the signature. The assumption to be made in the current specification is that the client and
the framework have some a-priori agreement in which the client obtains a copy of the
public key (embedded in a certificate or not) used by the framework for signing.

However, such a solution is not scalable and indication of the public key used is
particularly important as the framework may have several (private/public) key pairs so that
the client knows which one to use. The certificate itself is also important as a basis for
signature verification (so as to validate the public key itself first).

I ssue#2: no anti-replay protection

As currently specified, the signature is calculated solely over the terminationText string.
Because such a string is more of a constant nature (same string is used on many occasions),
no mechanism is defined to prevent re-use of a digital signature by athird-party.

I ssue#3: no negotiation of signature algorithm

The signature algorithm used by the framework is not negotiated asit is a parameter of the
terminateAccess(0 function itself. There is therefore no way for the client application to
indicate which algorithm(s) it supports and it must consequently merely accept what it
receives. If the signing algorithm is not supported, the client cannot verify the signature
and an exception will be generated but the effect will most probably be that the association
with the framework will be considered closed by the client itself. If the latter is the case,
the lack of a priori agreement also opens the door to denial of service: an attacker can issue
aterminateAccess() to the client with a signature algorithm that it knows is not supported
by the client. In such a scenario, the signature value does not have to be valid since the
client will not try and verify it.

I ssuet4: specification of signature algorithm

Thelist of signature algorithmsis provided in table TpSigningAlgorithm, which lists

Summary of change: 3

P_MD5 RSA 512 and P_MD5 RSA 1024 as possible algorithms. Such areference to the
use of MD5 with RSA for signing is not sufficient to determine what the exact mechanism
to implement is. Moreover, the use of MD5 as hashing algorithm and especially a modulus
of 512 bitsfor RSA are not advisable and are deprecated.

With regards to issue #1, the solution is to have the digital Signature field carrying the
certificate. Thisis achieved by using an appropriate digital signature format : the one
defined in Cryptographic Message Syntax (RFC 2630). CM S indeed defines a data
structure to carry a digital signature, the signed data and the signer’s certificate.

With regards to issue #2, a fresh value must be generated by the framework for use as input
into the signing algorithm. CM S already contains afield to contain the signing time. The
signing time can be used by both parties to detect replayed signatures, under the condition
that the verifier keeps track of the last verified value.

A separate contribution discusses a proposed mechanism for the negotiation of the
signature algorithm (issue #3).

With regards to issue #4, the list of algorithms is more precisely defined and can aso be
extended to other signing algorithms. Such alist of possible agorithmsisgivenin IETF
draft draft-ietf-pkix-ipki-pkal gs-05.txt, which itself refersto RFC 2437 specifying in detail
RSA-based signing mechanism, to FIPS-186 for DSA signing mechanism and X9.62 for
ECDSA signing mechanism.

Consequences if 3 Security weaknesses in terminateAccess() function and insufficient details for
not approved: correct interoperable implementations.
Clauses affected: ¥ 6.3.1.2,10.3.11

Other specs
affected:

Other comments:

*

*

|| Other core specifications 3
Test specifications

| | 0&M Specifications

3 3G aa.bbb Version x.y.z(YYYY-MM)
6.3.1.2

6.3.1.2 Interface Class IpClientAccess
Inherits from: I pInterface.

IpClientAccessinterface is offered by the client to the framework to alow it to initiate interactions during the access
session.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :
in TpOctetSet) : void

Method
t erm nat eAccess()

The terminateAccess operation is used by the framework to end the client’s access session.

After terminateAccess() isinvoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any calls to these
interfaces will fail. If at any point the framework’s level of confidence in the identity of the client becomes too low,
perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that
client, and should take steps to terminate the client’s access session WITHOUT invoking terminateAccess() on the
client. Thisfollowsagenerally accepted security model where the framework has decided that it can no longer trust the
client and will therefore sever ALL contact with it.

Parameters

termnationText : in TpString
Thisisthe termination text describes the reason for the termination of the access session.

signhingAl gorithm: in TpSigningAl gorithm

Thisis the algorithm used to compute the digital signature. If the signingAlgorithmisinvalid, or unknown to the client,
the P_INVALID_SIGNING_ALGORITHM exception will be thrown._The list of possible algorithmsis as specified in
the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and
signatureAlgorithm fieldsin the Signerinfo field in the digital Signature (see below).

digital Signature : in TpCctet Set

This contains a CM S (Cryptographic Message Syntax) object (as defined in [RFC 2630]) with content type Signed-
data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text.
The "external signature” construct shall not be used (ie the eContent field in the Encapsul atedContentinfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention.

Fhisisasighed-version-of-a-hash-of-the terminationtext-The framework uses this to confirm itsidentity to the client.

The client can check that the terminationText has been signed by the framework. |f a match is made, the access session
isterminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises
TpComonExcepti ons, P_I NVALI D_SI GNI NG_ALGORI THM P_I NVALI D_SI GNATURE

4 3G aa.bbb Version x.y.z(YYYY-MM)

10.3.11 TpSigningAlgorithm

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that identify the signing algorithm that
shall be used. Other Network operator specific capabilities may a so be used, but should be preceded by the string
"SP_". Thefollowing values are defined.

String Value Description

NULL An empty (NULL) string indicates no signing algorithm is required

P_MD5_RSA 512 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input.
This is then encrypted with the private key under the RSA public-key cryptography system using a 512-bit
keymodulus. The signature generation follows the process and format defined in RFC 2313 (PKCS#1 v1.5). The
use of this signing method is deprecated.

P_MD5_RSA 1024 MDS5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input.
This is then encrypted with the private key under the RSA public- key cryptography system using a 1024-bit
keymodulus. .The signature generation follows the process and format defined in RFC 2313 (PKCS#1 v1.5). The
use of this signing method is deprecated.

El—«:gf% SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. RSA is then used to
vl 5 SHAL 1024 generate the signature value, following the process defined in section 8 of RFC 2437 and format defined in
- - - section 9.2.1 of RFC 2437. The RSA private/public key pair is using a 1024-bit modulus.

P_SHA1_DSA SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. DSA is then used to

generate the signature value. The signature generation follows the process and format defined in section 7.2.2 of
RFC 2459.

36PP TSG CN WG5

Apr 8-12, 2002

Sophia Antipolis, FR

Source: Alcatel

Title: Use of one-way hash function for CHAP in OSA
Document for: Adoption

Agenda item: T.b.d.

1 Introduction

This contribution identifies an issue in TS 29.198-3 v4.4.0 with regards to the one-way
hash function (MD5) to be used to realize CHAP-based authentication. This is based on
an initial contribution discussed at the last SA3 meeting and is expected to reflect
these discussions.

2 Issue

TS 29.198-3 relies on the use of a challenge-based mechanism (CHAP as per IETF RFC
1994) for authentication of the client application by the framework, and vice-versa.
CHAP is chosen as the authentication scheme when the authentication type in the
initiateAuthenticate() method is set to P_OSA_AUTHENTICATION.

As it currently stands, the text merely states that, when using CHAP for authentication,
a CHAP mechanism as per IETF RFC 1994 is to be used. RFC 1994 describes on one hand
the format of packets for exchanging the challenge and the response and one the other
hand specifies the use of MD5 for CHAP, in which the input into the MD5 function (or
any other one-way function for that purpose) is made of the concatenation of the
Identifier, the shared secret and the challenge string.

2.1 TIssue#l: use of RFC 1994 packet formats

Because of the lack of detailed reference to RFC 1994 in TS 29.198-3, it is not clear
whether CHAP-based OSA authentication must format the challenge and response in
packets as described in RFC 1994 or must merely follow the rule given for MD5
processing.

If the Challenge and Response packets as defined in RFC 1994 must be used to format
the challenge and the response values, then it is not clear as to what the Name field of
the Challenge packet must contain. The Name field must indeed be used to identify the
sending system. There is no information in the TS as to which value must be put in there.

If RFC1994 must only be followed for the MD5 processing rule it provides, then it
should be clearly specified in the TS.

2.2 Issue#2: weak use of one-way hash function

The mechanism described in RFC 1994, and hence inherited in OSA authentication, for
calculating the input into the one-way hash function MD5 has since then (1996) been
shown to present some weaknesses wrt the level of security. New constructions for one-
way hash functions, such as HMAC, have since then been developed to cope with such

issues. The use of MD5 alone as described in RFC1994 is no longer safe. Alternatives
based on HMAC (HMAC-MD5 or HMAC-SHA1) must be put in place for challenge-based
authentication.

However, as it currently stands, P_OSA_AUTHENTICATION is only associated to the
RFC 1994 CHAP mechanism. There is therefore no means to make use of another
authentication mechanism in the context of P_OSA_AUTHENTICATION. A separate
contribution discusses a proposed solution to enable the smooth negotiation of the
authentication mechanism to be used between the client and the framework.

3 Solution

With regards to issue#1 above, it is suggested that the use of the packet format
defined in RFC 1994 is clarified. In particular, the value to be used for the Name field
of the Challenge and Response packets must be clarified.

With regards to issue#2, two new challenge-based authentication mechanisms are
proposed: HMAC_MD5_96 and HMAC_SHA1_96. These are defined resp. in RFC 2403
and 2404. A separate contribution discusses a proposed mechanism to enable the
definition of such new authentication schemes and their negotiation.

The attached proposed CR implements modifications to TS 29.198-3 in order to solve
issue#!.

3GPP TSG CN WG5 Document

e.g. for 3GPP use the format TP-99xxx
or for SMG, use the format P-99-xxx

CR-Form-v4|

CHANGE REQUEST
3 20.198-3 CR ¥ ev _ # Currentversion: 4.4.0 S

For HELP on using this form, see bottom of this page or look at the pop-up text over the 3 symbols.

Proposed change affects: # (U)SIM[_| ME/E[| Radio Access Network| | Core Network[X]

Title: ¥ Use of one-way hash function for CHAP
Source: ¥ Alcatel
Work item code: 3 Date: ¥ 06-04-02
Category: ¥ F Release: ¥ Rel-4
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: # TS29.198-3 relies on the use of a challenge-based mechanism (CHAP as per IETF RFC
1994) for authentication of the client application by the framework, and vice-versa. CHAP
is chosen as the authentication scheme when the authentication type in the
initiateAuthenticate() method isset to P OSA_AUTHENTICATION.

Asit currently stands, the text merely states that, when using CHAP for authentication, a
CHAP mechanism as per IETF RFC 1994 is to be used. RFC 1994 describes on one hand
the format of packets for exchanging the challenge and the response and one the other hand
specifies the use of MD5 for CHAP, in which the input into the MD5 function (or any
other one-way function for that purpose) is made of the concatenation of the Identifier, the
shared secret and the challenge string.

Issuetl: use of RFC 1994 packet formats

Because of the lack of detailed reference to RFC 1994 in TS 29.198-3, it is not clear
whether CHAP-based OSA authentication must format the challenge and response in
packets as described in RFC 1994 or must merely follow the rule given for MD5
processing.

If the Challenge and Response packets as defined in RFC 1994 must be used to format the
challenge and the response values, then it is not clear as to what the Name field of the
Challenge packet must contain. The Name field must indeed be used to identify the
sending system. Thereis no information in the TS as to which value must be put in there.

If RFC1994 must only be followed for the MD5 processing rule it provides, then it should
be clearly specified inthe TS.

| ssuett2: weak use of one-way hash function

The mechanism described in RFC 1994, and hence inherited in OSA authentication, for
calculating the input into the one-way hash function MD5 has since then (1996) been
shown to present some weaknesses wrt the level of security. New constructions for one-
way hash functions, such as HMAC, have since then been devel oped to cope with such
issues. The use of MD5 aone as described in RFC1994 is no longer safe. Alternatives

Summary of change: 3

based on HMAC (HMAC-MD5 or HMAC-SHA1) must be put in place for challenge-
based authentication.

However, asit currently stands, P OSA_AUTHENTICATION is only associated to the
RFC 1994 CHAP mechanism. There is therefore no means to make use of another
authentication mechanism in the context of P_OSA_AUTHENTICATION. A separate
contribution discusses a proposed solution to enable the smooth negotiation of the
authentication mechanism to be used between the client and the framework.

With regards to issuettl above, the actual use of the packet format defined in RFC 1994 is
clarified. In particular, the value to be used for the Name field of the Challenge and
Response packets are also be clarified.

With regards to issue#2, two new challenge-based authentication mechanisms are
proposed: HMAC_MD5 96 and HMAC_SHA1 96. These are defined resp. in RFC 2403
and 2404. A separate contribution discusses a proposed mechanism to enable the definition
of such new authentication schemes and their negotiation.

Consequences if #¥ Lack of detailed specification can lead to interoperability issues. Other hashing

not approved: mechanisms must be provided to avoid potential security weaknesses in MD5
itself.

Clauses affected: ¥ 6.3.1.1,6.315

Other specs ¥

affected:

Other comments:

*

|| Other core specifications 3
| | Test specifications
| | 0&M Specifications

3 3G aa.bbb Version x.y.z(YYYY-MM)

6.3.1.5 Interface Class IpClientAPILevelAuthentication

Inherits from: I pInterface.

<<Interface>>

IpClientAPILevelAuthentication

authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void

authenticationSucceeded () : void

Method
aut henti cat e()

This method is used by the framework to authenticate the client. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The client must respond with the correct responses to the challenges presented
by the framework. The number of exchanges is dependent on the policies of each side. The whole authentication
processis deemed successful when the authenti cationSucceeded method isinvoked. The invocation of this method may
be interleaved with authenticate() calls by the client on the |pAPILevel Authentication interface.

Returns <response> : This s the response of the client application to the challenge of the framework in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectEncryptionM ethod().

Parameters

chall enge : in TpCctet Set

The challenge presented by the framework to be responded to by the client. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().

The formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet
shall be used to carry the challenge string. The Request packet shall make the contents of this function parameter. The
Name field of the CHAP Request packet shall be present but not contain any useful value.

Returns

TpCct et Set

The formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet
shall be used to carry the response string. The Response packet shall make the contents of this returned parameter. The
Name field of the CHAP Response packet shall be present but not contain any useful value.

When an authentication algorithm different from M D5 has been negotiated, the algorithm that has been agreed upon
shall be used to generate the response value.

4 3G aa.bbb Version x.y.z(YYYY-MM)

Method
abor t Aut henti cati on()

The framework uses this method to abort the authentication process. This method isinvoked if the framework wishesto
abort the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on

I pAPILevel Authentication will return an error code (P_ACCESS DENIED), until the client has been properly
authenticated.

Parameters
No Parameters were identified for this method

Method
aut henti cati onSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt.

Parameters
No Parameters were identified for this method

6.3.1.5 Interface Class IpAPILevelAuthentication
Inherits from: IpAuthentication.

The API Level Authentication Framework interface is used by client to perform its part of the mutual authentication
process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : TpEncryptionCapability
authenticate (challenge : in TpOctetSet) : TpOctetSet
abortAuthentication () : void

authenticationSucceeded () : void

Method
sel ect Encrypti onMet hod()

The client uses this method to initiate the authentication process. The framework returnsits preferred mechanism. This
should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the
client cannot be found, the framework throwsthe P NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception.
Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the
client’s authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the
prescribed encryption method).

Returns <prescribedMethod> : Thisis returned by the framework to indicate the mechanism preferred by the
framework for the encryption process. If the value of the prescribedM ethod returned by the framework is not
understood by the client, it is considered a catastrophic error and the client must abort.

5 3G aa.bbb Version x.y.z(YYYY-MM)

Parameters
encryptionCaps : in TpEncryptionCapabilitylLi st
Thisisthe means by which the encryption mechanisms supported by the client are conveyed to the framework.

Returns

TpEncryptionCapability

Raises

TpComonExcepti ons, P_ACCESS_ DEN ED,
P_NO_ACCEPTABLE_ENCRYPTI ON_CAPABI LI TY

Method
aut henti cat e()

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges
presented by the client. The domainID received in the initiateAuthentication() can be used by the framework to
reference the correct public key for the client (the key management system is currently outside of the scope of the OSA
APIs). The number of exchangesis dependent on the policies of each side. The whole authentication process is deemed
successful when the authenticationSucceeded method isinvoked. The invocation of this method may be interleaved
with authenticate() calls by the framework on the client’'s APILevel Authentication interface.

Returns <response> : Thisis the response of the framework to the challenge of the client in the current sequence. The
response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionM ethod().

Parameters

chall enge : in TpCctet Set

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().

The formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet
shall be used to carry the challenge string. The Request packet shall make the contents of this function parameter. The
Name field of the CHAP Request packet shall be present but not contain any useful value.

Returns

TpCct et Set

The formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet
shall be used to carry the response string. The Response packet shall make the contents of this returned parameter. The
Name field of the CHAP Response packet shall be present but not contain any useful value.

When an authentication algorithm different from M D5 has been negotiated, the algorithm that has been agreed upon
shall be used to generate the response value.

Raises
TpComobnExcepti ons, P_ACCESS DEN ED

6 3G aa.bbb Version x.y.z(YYYY-MM)

Method
abor t Aut henti cati on()

The client uses this method to abort the authentication process. This method isinvoked if the client no longer wishesto
continue the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on

I pAPILevel Authentication will return an error code (P_ACCESS DENIED), until the client has been properly
authenticated.

Parameters

No Parameters were identified for this method

Raises

TpComobnExcept i ons, P_ACCESS DEN ED

Method
aut henti cati onSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt.

Parameters
No Parameters were identified for this method

Raises
TpComonExcepti ons, P_ACCESS DEN ED

	S3-020246_OSA Security Status.doc
	1 Authentication Scheme Negotiation in OSA.doc
	2 Authentication Scheme Negotiation in OSA CR2.doc
	3 Encryption of challenge in CHAP-based OSA authentication.doc
	4 Encryption of challenge in CHAP-based OSA authentication CR.doc
	5 Security of terminateAccess() function in OSA.doc
	6 Security of terminateAccess() function in OSA CR.doc
	7 Use of one-way hash function for CHAP in OSA.doc
	8 Use of one-way hash function for CHAP in OSA CR.doc

