
3GPP TSG SA WG3 Security – S3#23 S3-020189

14 - 17 May 2002

Victoria, BC, Canada

Source: Gemplus Card International, Oberthur Card Systems

Title: Role of UICC in secure PKI architectures

Document for: Discussion

Agenda Item: T.B.D

Abstract

This input paper aims at proposing a pertinent way of defining a PKI architecture and exploiting it in a
secure manner with the help of the UICC.

1. Technical Proposal

In order to ensure a reasonable level of security for end-to-end transaction, public key based
signature schemes have to be used; to ensure the validity of the differents keys, we need
the support of a PKI infrastructure.

Requirements:

• To ensure a high level of security, the secret (symmetric and asymmetric) keys have to
be stored in the UICC; this implies that signature has to be performed in the UICC.

• To sign a document requires a high level of confidence in the authenticity of the other
actors, which is achieved by certification using the PKI. In order to keep this high level of
security throughout the chain, we need to check the complete chain of certification in the
signing entity, which is the UICC. Furthermore, the link between the actors and the
certified and checked public keys has to be kept in the UICC.

• There has to be no size constraints on the depth of the PKI hierarchy.

We propose to achieve this by implementing the following functions:

Reset_current_key ():
initializes the current_key object to the root Certification Authority public key.

Update_current_key (certificate):
checks, with the current_key, the certificate given as input. If OK, replaces current_key by
the public key contained in the certificate.

Store_validated_certificate ():
stores, in the certificate database of the UICC, the current_key (and additional info to be
defined) associated with a validity date which is the nearest date in the PKI chain, and which
might be shorten by specific operator policy.

The UICC certificate database is of fixed size. The storage and access policy has to be
defined (keeps last n certificates stored, or fills up until full and provides a means to delete
certificates).

Set_current_key (cert_number):
checks a certificate stored in the card (identified by the cert_number) in regard with the
validity date associated by the card (see store_validated_certificate() function). If OK, the
current_key is the stored public key of this certificate.

Before the execution of following commands dealing with signatures or certificates, the
Setup_key function is performed to indicate the public key involved.
Setup_key (pubkey):
- If pubkey field is empty then the public key to use for following commands will be the

current_key.
- Else the public key will be the pubkey value provided as input.
The case “pubkey field empty” is more secure because the chain of certification was
checked.

Verify_certificate (certificate, time):
checks the validity of the certificate in regard with the signature (using the key defined in
setup_key) and the time.

Sign_text (text):
returns the signature of the text given as input.

Verify_signature (signed_text):
verifies the signed_text (using the key defined in setup_key)

Sign_verified_text (strip, signed_text):
first verifies the signed_text using the current_key, then

if the verification is OK,
- if strip is no, formats and signs the whole signed_text message (including the

signature) and return the newly signed message.
- if strip is yes, formats and signs the signed_text message after having

removed the signature information and return the newly signed message
If the verification is not OK, returns an error message.

Get_card_certificate ():
 returns the certificate of the public key of the card signed by the CA.

Additionally, the UICC can provide functionalities to manage certificate life cycle. These
functionalities are the following:

GenerateKeyPair():
generates a key pair (public key, private key) for a public key scheme on board the card,
keeping the private key securely stored in the card.

SetUpCertificate():
stores securely a certificate in the UICC memory.

RevokeCertificate():
flags a certificate as no longer usable.

UpGradeCertificate():

replaces an existing certificate by a new version (equivalent to a DeleteCertificate followed
up by a SetUpCertificate).

DeleteCertificate():
removes the certificate from memory

An example of process is:

2. Advantages

����������	
�
��
��
��
��������	��
����
�	��	����
�����	��	
�������	��	���	
����	
	

����������	
���
������

6LJQB9HULILHGB7H[W�QRBVWULS�

GRF���

8SGDWHB&XUUHQWB.H\�&HUWB3.

��3.B&Q���

6HWB8SB.H\�YRLG��

&HUWB1XPEHU�

6WRUHB9DOLGDWHGB&HUWLILFDWH����

8SGDWHB&XUUHQWB.H\�&HUWB3.

B&$�3.�����

���
�����
�
�
�
�
����
����
��������
�
�
����
����
������
�
�
����
����
��������
�
�
�
�
�
��������
��������
����� ��
�
�����
��
�
�
�
�
�!�"#��
�����
����
�#�
�
�
�
$����%�"��%�
��&����'�
�

5HVHWB&XUUHQWB.H\�

'RF��

�����	 �������������	 ��	
�����
������
�����	 ���	 ���������������
�	 ���
�	 �����	 ��	 ��	
����������	��	���	����	��	���	����	

��(�������	
��
�)��
����)��
��
���
	��	���	
��������	�
	��
	���������	
	
	

3. Arguments

 We focus on the advantages of proposing security services in the UICC.

- Tamper-resistance: UICC is clearly identified as the privileged tamper-resistant part of
the mobile client. Therefore, we find it mindful to generate asymmetric key pairs on board
the card, to keep their private part on board, and to export a properly signed copy of their
public part to an external entity ;

- Coherency with other works: such functions as SignText are in line with the Wap
Forum working assumptions ;

- EMV compatibility for m-commerce:

- Maturity of on board asymmetric key pair generation (OBKG): this technology is
mature and can be deployed on a large scale ;

- UICC as an active cryptographic device: public key signature production and
verification algorithms have been available on board smart cards for quite a long time;

- High storage reliability: due to smart card high quality memory management, there
exists active integrity checks in the card memory. It turns out that smart card operations
are naturally atomic.

- Strong USIM-Operator link: the AKA is an obvious operator-USIM link. There, the
operator is responsible for the management of the PKI, especially the CA part; to ensure
end-to-end security in the system, the keys have to be generated and authenticated in
the security domain of the operator. The obvious candidate on the client side is then the
USIM.

	

	S3-020189_3G_PKI_proposal.doc

