
 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

1

3GPP TSG SA WG3 Security — S3#17 S3-010014

27 February - 02 March, 2001

Gothenburg, Sweden

Source: QUALCOMM International

Title: Analysis of Milenage

Document for: Discussion

Agenda Item:

Abstract: This document contains an independent analysis of the Milenage algorithm set for the 3GPP authentication
and key generation functions. While deployment of the Milenage algorithm set in its current form would probably be
adequately secure, weaknesses have been identified.

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

2

Analysis of the Milenage Algorithm Set

Phil Hawkes, Greg Rose, Qualcomm International, Australia,
{phawkes,ggr}@qualcomm.com

Abstract This document contains an independent analysis of the Milenage

algorithm set for the 3GPP authentication and key generation functions. While

deployment of the Milenage algorithm set in its current form would probably

be adequately secure, weaknesses have been identified.

1 Introduction

1.1 Introduction to the Milenage Algorithm Set

The Milenage algorithm set [1] was designed by ETSI SAGE AF TF (hereafter referred to as SAGE), on

request from 3GPP. The Milenage algorithm set is an example set of 3GPP Authentication and Key

Generation functions f1, f1*, f2, f3, f4, f5 and f5*. The algorithm set is based on the block cipher Rijndael

[4], although any other secure 128-bit block cipher would suffice. Rijndael is recommended due to the

standardization of Rijndael as the Advanced Encryption Standard (AES) [3] in the next few months.

1.2 The Scope of this Analysis

This report contains an analysis of the Milenage algorithm set, conducted by the authors. The aim of this

analysis is to determine if there are weaknesses in the structure of the functions. This analysis does not

contain any analysis of the Rijndael cipher.

The authors did not have access to the report on the design and evaluation of the Milenage algorithm set

[2]. Our report may be considered to be an independent analysis.

1.3 Summary of Analysis

The design criteria established by SAGE appear to be satisfactory for the requirements of the authentication

functions. This analysis will consider the extent to which the Milenage algorithm set fulfills these criteria.

Our analysis revealed one significant weakness and one minor weakness. Aside from these weaknesses, it

is the authors’ opinion that any other weaknesses in the Milenage algorithm set are the result of weaknesses

in the kernel.

We must stress that the weaknesses identified do not lead to any practical attacks on AKA should the

Milenage algorithm set be deployed.

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

3

Significant Weakness. We present an attack that requires obtaining values of RAND, OUT1 and OUT2

for a given user. The attacker then observes the values of OUT2* for other values RAND*. By the birthday

paradox, we expect that OUT1 = OUT2* for some pair (RAND, RAND*), and then OUT1* = OUT2. The

attack has a complexity of 265 and obtains a value of OUT1* with 100% accuracy. We note that the attack

is not feasible in practice.

Minor Weakness. If the kernel block cipher should be found susceptible to differential cryptanalysis, then

the Milenage algorithm set is of the form that is likely to be exploited by such a weakness. However, there

is no reason to suspect that this will ever be a problem in practice, as Rijndael has been inspected and is

thought to be safe against differential cryptanalysis.

These weaknesses arise from two sources.

• The use of fixed rotations and constant XOR operations to ensure that the inputs to the final

encryptions are always different.

• The choice of rotations constants r1,…,r5 and XOR constants c1,…,c5. While these constants allow a

quick implementation, they also appear to introduce weaknesses.

1.4 Recommendations

The authors make the following recommendations:

• The Milenage algorithm has weaknesses, however only minor changes are required to eliminate the

observed weaknesses. The authors suspect that the “middle” stage of the algorithm (with the constant

rotations and constant XOR operations) is the only part of the algorithm set that needs changing. We

recommend combining operations to eliminate any self-inverse, commutative or distributive laws in

this “middle” stage. Changes to the constants used might also be considered.

• SAGE recommends that the value of OPC be determined outside the USIM. The authors agree with

this recommendation, with the clarification that OPC is to be calculated when the USIM is provisioned,

not in the ME.

• The block cipher Rijndael is highly recommended as the kernel for the algorithm set.

1.5 Outline

Section 2 describes the Milenage algorithm set in sufficient detail for this analysis and Section 3 contains

the analysis.

2 Description of the Functions

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

4

2.1 List of Symbols

= The assignment operator.

⊕ The bitwise exclusive-or (XOR) operation.

|| The concatenation of the two operands.

E[x]K The result of applying a block cipher encryption of the input value x using the

key K.

rot(x,r) The result of cyclically rotating the 128-bit value x by r positions towards the

most significant bit. If x = x[0] || x[1] || … || x[127], and y = rot(x,r) then y =

x[r] || x[r+1] || … || x[127] || x[0] || x[1] || …|| x[r-1] ||.

X[i] The i-th bit of the variable X. (X = X[0] || X[1] || X[2] || …).

2.2 The Value OPC

The 128-bit value OPC is derived from OP and K as follows:

 OPC = OP ⊕ E[OP]K.

The value OP is unique to each operator and may be secret. SAGE recommends that the value of OPC be

determined outside the USIM, so that even if OPC is determined, then this does not reveal OP. The authors

agree with this recommendation, with the clarification that OPC is to be calculated when the USIM is

provisioned, not in the ME. This is obvious to people aware of the security requirements, but not

necessarily to all implementers.

2.3 The Milenage Algorithm Set

An intermediate 128-bit value TEMP is computed as follows:

 TEMP = E[RAND ⊕ OPC]K.

A 128-bit value IN1 is constructed as follows:

IN1[0] .. IN1[47] = SQN[0] .. SQN[47]

IN1[48] .. IN1[63] = AMF[0] .. AMF[15]

IN1[64] .. IN1[111] = SQN[0] .. SQN[47]

IN1[112] .. IN1[127] = AMF[0] .. AMF[15]

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

5

Five 128-bit constants c1, c2, c3, c4, c5 (the XOR constants) are defined as follows:

c1[i] = 0 for 0 ≤ i ≤ 127

c2[i] = 0 for 0 ≤ i ≤ 127, except that c2[127] = 1

c3[i] = 0 for 0 ≤ i ≤ 127, except that c2[126] = 1

c4[i] = 0 for 0 ≤ i ≤ 127, except that c2[125] = 1

c5[i] = 0 for 0 ≤ i ≤ 127, except that c2[124] = 1

Five integers r1, r2, r3, r4, r5 (the rotation constants) are defined as follows:

r1 = 64; r2 = 0; r3 = 32; r4 = 64; r5 = 96

Note that IN1 == rot(IN1, r1).

Five 128-bit quantities OUT1, OUT2, OUT3, OUT4, OUT5 are computed as follows:

OUT1 = E[TEMP ⊕ rot(IN1 ⊕ OPC, r1) ⊕ c1]K ⊕ OPC

OUT2 = E[rot(TEMP ⊕ OPC, r2) ⊕ c2]K ⊕ OPC

OUT3 = E[rot(TEMP ⊕ OPC, r3) ⊕ c3]K ⊕ OPC

OUT4 = E[rot(TEMP ⊕ OPC, r4) ⊕ c4]K ⊕ OPC

OUT5 = E[rot(TEMP ⊕ OPC, r5) ⊕ c5]K ⊕ OPC

The outputs of the various functions are then defined as follows:

Output of f1 = MAC-A, where MAC-A[0] .. MAC-A[63] = OUT1[0] .. OUT1[63]

Output of f1* = MAC-S, where MAC-S[0] .. MAC-S[63] = OUT1[64] .. OUT1[127]

Output of f2 = RES, where RES[0] .. RES[63] = OUT2[64] .. OUT2[127]

Output of f3 = CK, where CK[0] .. CK[127] = OUT3[0] .. OUT3[127]

Output of f4 = IK, where IK[0] .. IK[127] = OUT4[0] .. OUT4[127]

Output of f5 = AK, where AK[0] .. AK[47] = OUT2[0] .. OUT2[47]

Output of f5* = AK, where AK[0] .. AK[47] = OUT5[0] .. OUT5[47]

3 Analysis

Our analysis is based on the following assumptions.

3.1 Assumptions

Observation 1 For any block cipher, E[P]K = E[P*]K if and only if P = P*.

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

6

Secure Block Cipher Assumption Suppose an attacker has a set of plaintexts {P1,…,Pn} for which she

knows the encrypted values Ci=E[Pi]K, 1≤ i ≤ n. If an attacker is given a plaintext P, then either

• P = Pi, for some i ∈ [1,n] and the attacker knows that E[P]K = Ci, or

• P ∉ {P1,…,Pn}, and the attacker knows only that E[P]K ∉ {C1,…,Cn}. In this case, we assume that the

attacker obtains no information about E[P]K.

That is, unless two inputs (or outputs) are the same, an attacker cannot predict the relationship between the

outputs (or inputs respectively).

We shall also assume that the value of RAND is never repeated, although if RAND is truly random, such a

repetition is likely to be observed after about 264 values.

3.2 Basis of Analysis

The first encryption in the Milenage algorithm:

TEMP = E[RAND ⊕ OPC]K,

results in a value TEMP that cannot be predicted with probability greater than 2-128. No two values of

RAND will ever be the same, and thus (for a given user) no two values of TEMP will ever be the same

(see Observation 1).

An attacker is presumed to know the relationship between the five inputs to the final encryptions deriving

OUT1, OUT2, OUT3, OUT4, OUT5, although the attacker cannot predict any of the inputs. Thus, unless

the attacker can find where two or more inputs are equal, then attacker cannot predict any useful

information. We only consider situations where inputs or outputs are equal, examining whether any of the

following events occurs in the Milenage algorithm set.

• Two outputs of the same function (for example, OUT1 and OUT1*) are equal for two values RAND

and RAND*.

• Two outputs of the different functions (for example, OUT1 and OUT2) are equal for a single value

RAND.

• There are four outputs (OUTa, OUTa*, OUTb and OUTb*), with OUTa and OUTb obtained using

RAND and OUTa* and OUTb* obtained using RAND*, such that OUTa* = OUTb* if OUTa =

OUTb.

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

7

The analysis in Section 3.3 shows that the first event only occurs for values of OUT1 and OUT1* derived

from different values of RAND and different values of (SQN||AMF). The attacker cannot predict when

OUT1 = OUT1* if the kernel block cipher is secure. The analysis in Section 3.4 shows that the second

event never occurs. However, Section 3.5 shows that the third event occurs with non-negligible probability,

regardless of the choice of kernel block cipher.

In the last part of this analysis (Section 3.6) we discuss the effect of a differential-like weakness in the

kernel block cipher.

3.3 Comparing Outputs of the Same Function for Different Values of RAND

The first two results follow from Observation 1 .

Observation 2 For fixed K, OPC, SQN and AMF, the output OUT1 is obtained as a one-to-one function

of RAND. Suppose OUT1 and OUT1* are derived from (RAND||SQN||AMF) and (RAND||SQN*||

AMF*) respectively, where (SQN||AMF) ≠ (SQN*||AMF*). An attacker cannot predict any relationship

between OUT1 and OUT1* if the block cipher is secure.

It is possible for two values OUT1 and OUT1* to be equal provided RAND ≠ RAND and (SQN||AMF) ≠

(SQN*||AMF*). However, the attacker will be unable to predict when this occurs unless there is a

weakness in the kernel block cipher.

Observation 3 For fixed K and OPC, each output OUT2, OUT3, OUT4, OUT5, is obtained as a one-to-

one function of RAND. That is, if OUT2 = OUT2’, then this implies that RAND = RAND’.

In summary, with the exception of OUT1, no two outputs of the same function are equal for two different

values RAND and RAND’. The attacker cannot predict when OUT1 and OUT1* when the block cipher is

secure.

3.4 Comparing Outputs of Different Functions for the Same Value of RAND

To compare outputs from different functions for the same value of RAND, it is useful to re-write the

outputs in a common form

OUT = E[rot(TEMP,x) ⊕ y]K ⊕ OPC,

where the values of x and y used to derive the outputs are as follows:

 OUT1: x1 = 0, y1 = rot(IN1⊕ OPC, 64) ⊕ c1.

 OUT2: x2 = 0, y2 = OPC ⊕ c2.

 OUT3: x3 = 32, y3 = rot(OPC,32) ⊕ c3.

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

8

 OUT4: x4 = 64, y4 = rot(OPC,64) ⊕ c4.

 OUT5: x5 = 96, y5 = rot(OPC,96) ⊕ c5.

Lemma 1 For any fixed values of SQN, AMF and RAND it is impossible for any two of the outputs

OUT1, OUT2, OUT3 OUT4, OUT5 to be equal.

Proof. If two outputs OUTa and OUTb are equal (a ≠ b), then this implies that the inputs to the last

encryption are equal. That is,

rot(TEMP,xa) ⊕ ya = rot(TEMP,xb) ⊕ yb

which in turn implies that

rot(TEMP,xa) ⊕ rot(TEMP,xb) = ya ⊕ yb.

Note that the values of xa and xb are always multiples of 32. Suppose we divide the 128-bit block TEMP

into 32-bit blocks TEMP = (T4||T3||T2||T1) and divide the 128-bit block

A= rot(TEMP,xa) ⊕ rot(TEMP,xb)

into 32-bit blocks A = (A4,A3,A2,A1). We also divide the 128-bit block B = ya ⊕ yb, into 32-bit blocks B

= (B4||B3||B2||B1).

We can show that A1 ⊕ A2 ⊕ A3 ⊕ A4 = 0 for all choices of a and b. For example, if a=3 and b=4, then

A = (T3 ⊕ T4, T2 ⊕ T3, T1 ⊕ T2, T4 ⊕ T1),

and

A1 ⊕ A2 ⊕ A3 ⊕ A4 = (T4 ⊕ T1) ⊕ (T1 ⊕ T2) ⊕ (T2 ⊕ T3) ⊕ (T3 ⊕ T4) = 0.

If OUTa = OUTb then this would imply that B1 ⊕ B2 ⊕ B3 ⊕ B4 = 0. However, we now show that it is

impossible for B1 ⊕ B2 ⊕ B3 ⊕ B4 to be equal to zero, which in turn implies that OUTa and OUTb

cannot be equal (proof by contradiction).

Consider dividing ya (or yb) into 32-bit blocks ya = (ya4, ya3, ya2, ya1). When we XOR these 32-bit

blocks we obtain the following values:

y1’= y11 ⊕ y12 ⊕ y13 ⊕ y14 = (SQN ⊕ OPC3) ⊕ (AMF ⊕ OPC4) ⊕ (SQN ⊕ OPC1) ⊕ (AMF ⊕ OPC2)

 = OPC1 ⊕ OPC2 ⊕ OPC3 ⊕ OPC4 = OP’C,

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

9

y2’= y21 ⊕ y22 ⊕ y23 ⊕ y24 = OPC1 ⊕ OPC2 ⊕ OPC3 ⊕ (OPC2 ⊕ (0…01)) = OP’C ⊕ (0…01),

y3’= y31 ⊕ y32 ⊕ y33 ⊕ y34 = OPC4 ⊕ OPC1 ⊕ OPC2 ⊕ (OPC3 ⊕ (0…010)) = OP’C ⊕ (0…010),

y4’= y41 ⊕ y42 ⊕ y43 ⊕ y44 = OPC3 ⊕ OPC4 ⊕ OPC1 ⊕ (OPC2 ⊕ (0…0100)) = OP’C ⊕ (0…0100),

y5’= y51 ⊕ y52 ⊕ y53 ⊕ y54 = OPC2 ⊕ OPC3 ⊕ OPC4 ⊕ (OPC1 ⊕ (0…01000)) = OP’C ⊕ (0…01000).

Note that no two of these 32-bit XOR sums are equal. Therefore, it is impossible for the 32-bit value

B1 ⊕ B2 ⊕ B3 ⊕ B4 = ya’ ⊕ yb’,

to be zero. This means that it is impossible for OUTa = OUTb when the value of RAND is fixed. Thus, for

any fixed values of SQN, AMF and RAND it is impossible for any two of the outputs OUT1, OUT2,

OUT3, OUT4, OUT5 to be equal. Q.E.D.

3.5 Relating Outputs of Different Functions for Values of RAND

The authors believe that the following attack presents a significant weakness in the Milenage algorithm set.

Consider the situation where OUT1 = OUT2*, with OUT1 obtained from (RAND||SQN||AMF) and

OUT2* obtained from (RAND*||SQN||AMF), that is, IN1* = IN1. This implies that

TEMP ⊕ rot(IN1 ⊕ OPC, r1) ⊕ c1= rot(TEMP* ⊕ OPC, r2) ⊕ c2.

Note that r2 = 0, and thus

TEMP ⊕ rot(IN1 ⊕ OPC, r1) ⊕ c1 = TEMP* ⊕ OPC ⊕ c2,

� TEMP* ⊕ rot(IN1 ⊕ OPC, r1) ⊕ c1 = TEMP ⊕ OPC ⊕ c2,

� OUT1* = E[TEMP* ⊕ rot(IN1 ⊕ OPC, r1) ⊕ c1]K = E[rot(TEMP ⊕ OPC, r2) ⊕ c2]K = OUT2.

That is, if OUT1 = OUT2*, then OUT1* = OUT2 provided the same values of SQN and AMF are used in

each case. (Note: since SQN is a monotonic sequence number, this attack can never occur in practice.)

The following examples demonstrate how this property can be exploited.

Example 1 Suppose that an attacker observes the values of OUT1 and OUT2 for 264 random values of

RAND where the same values of SQN and AMF are used. Suppose that the attacker also observes the

values of OUT2* for another 264 random values of RAND*, where the same values of SQN and AMF as

before are used here. There is expected to be a value of RAND from the first set and a value of RAND*

from the second set such that OUT1 = OUT2*, (this is a result of the well known “birthday paradox”). The

attacker can predict (with 100% accuracy) that OUT1* = OUT2. The complexity of this attack is only 265.

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

10

Example 2 To allow for the value of SQN changing at random, the attack observes the values of OUT1

and OUT2 for 280 random values of RAND and the values of OUT2* for another 280 random values of

RAND*. There are expected to be 232 pairs (RAND, RAND*) such that OUT1 = OUT2*. With high

probability, SQN = SQN*, for one such pair. The attacker has now found OUT1* = OUT2, for this pair of

(RAND, RAND*). The complexity of this attack is only 281.

There may be other combinations of outputs that can be exploited to determine other outputs.

Such an attack is unrealistic, but the existence of such attacks is undesirable. Therefore, the authors

recommend changing the algorithm set. This weakness appears to result from the “middle” part of the

construction that obtains the five inputs (to the final encryptions) from the value of TEMP. The remainder

of the construction appears to be secure. We make no specific recommendations regarding changes to

Milenage, but we suspect that it is sufficient to change the middle part of the construction. We recommend

combining operations to eliminate any commutative or distributive laws. For example, two consecutive

XOR operations are commutative (that is the order of values XORed can be reversed). We mention as a

possibility (which we have not studied in detail) that using addition instead of some of the XOR operations

might be sufficient to address this weakness.

3.6 Resistance to Differential Cryptanalysis

Differential cryptanalysis (DC) is based on predicting differences in the outputs of a block cipher, given

that the inputs are known to differ in some way. For many block ciphers, the highest probability predictions

are expected to occur when the inputs to differ in a small number of bits. Rijndael would be an example of

one such cipher. Other high probability predictions may occur if the first input is related to a cyclic rotation

of the other input. However for any reputable block cipher, the highest probabilities in each case are still

negligible. DC may only be possible if the probabilities are large enough.

The use of bit rotations and constant XORs in the middle part of Milenage means that if the kernel cipher is

susceptible to DC, then an attacker is likely to be able to perform a variety of attacks on Milenage. We

provide one such example.

Example 3 Suppose the attacker can find pairs of inputs (RAND, RAND*) and a 64-bit block C such that

E[RAND]K ⊕ E[RAND*]K = (C||C) with high probability. Then TEMP ⊕ TEMP*= (C||C) with high

probability. Suppose that the attacker observes that OUT1 is obtained from (RAND||SQN||AMF). If

OUT1* is obtained from (RAND*||SQN||AMF) where (SQN*||AMF*) = (SQN||AMF) ⊕ C, then the

attack can predict that OUT1* = OUT1, and be correct with high probability. This high probability partly

stems from the fact that (SQN||AMF) is repeated to form a block, but the 64 bit rotation constant r1 has no

effect on this quantity.

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

 Analysis of ETSI SAGE AF TF Proposal, QUALCOMM

11

There is no reason to suspect that this will ever be a problem in practice. All reputable ciphers have been

well studied with respect to DC, and are only accepted if there are no input-output predictions of high

probability. The authors consider this only a minor weakness.

The weakness could be remedied by changing the middle part of Milenage. A different choice of rotation

constants that are not divisible by eight would result in rotations that did not map whole bytes of the input

to whole bytes of the output. We believe this would offer better resistance to DC-based attacks. We believe

that r1 in particular should not be 64. In addition to this, XOR constants with many non-zero bits, and/or

using a combining function other than XOR, should further resist DC-based attacks. Changes made to

resist the attacks in Section 3.5 are likely to increase the resistance to DC-based attacks.

4 References

[1] ETSI SAGE Task Force for 3GPP Authentication Function Algorithms, “General Report on the

Design, Specification and Evaluation of the MILENAGE algorithm Set: An Example Algorithm Set

for the 3GPP Authentication and Key Generation Functions”, 22 November 2000, European

Telecommunications Standards Institute, F-06921 Sophia Antipolis Cedex- FRANCE.

[2] ETSI SAGE Task Force for 3GPP Authentication Function Algorithms, “Report on the Design,

Specification and Evaluation of 3GPP Authentication and Key Generation Functions”, European

Telecommunications Standards Institute, F-06921 Sophia Antipolis Cedex- FRANCE.

[3] National Institute of Standards and Technology, “Advanced Encryption Standard (AES)

Development Effort”, see http://csrc.nist.gov/encryption/aes/.

[4] National Institute of Standards and Technology, “Rijndael: NIST's Selection for the AES

Advanced Encryption Standard (AES) Development Effort”, see

http://csrc.nist.gov/encryption/aes/rijndael.

