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Policy for IPsec

• AH and ESP provide mechanism.
• IKE does key agreement.

• IPSP manages policy:
– "How do I use IPsec to talk to another host?"
– "Is it possible to create an SA that conforms to my 

policy?"
– "What should the SA parameters be?"
– "Who is my security gateway?"
– "Where do I find my policies?"
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Design Space 

• Runs on anything that runs IPsec.
• Decentralized and heterogeneous administration.

– Two nodes need not trust common admin.
– Remote administration.
– Delegation.

• SA parameters not specified in advance.
• Secure, sound, comprehensible.

– Human-readable policies.
– Compatible with security proofs.
– Correct implementation should be straighforward.
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Requirements

• Policy model.
• IPsec gateway discovery mechanism.
• Policy language for nodes.
• Means of distributing responsibility.
• Protocol for policy discovery.
• Method for resolving SA parameters.
• Compliance checking.
• No changes to AH/ESP/IKE.
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Policy Model

• Defines the semantics of IPsec policy.
• Everything (gateway discovery, SA resolution, 

compliance checking) implements these semantics.
• Independent of specific details (of language, 

distribution protocols, etc.).
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Gateway Discovery

• How a node finds where to direct IPsec traffic for 
another node.
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IPSP Language

• Standard language for representing a node's policy 
externally to other nodes.
– May be different from local policy configuration 

mechanisms.
• Output of policy discovery protocol.
• Input to SA resolution and compliance checking 

steps.
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Distributed Policy

• Must be possible to have remote administration of a 
node's policy.

• Must be possible to delegate authorization and 
responsibility.

• Must have support for security gateways, remote 
services, etc.
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Policy Discovery

• Protocol that provides information (in IPSP language) 
about a node's policy to other hosts.

• Node need not reveal its entire policy.
• Just enough to allow others to do SA parameter 

resolution.
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SA Parameter Resolution

• Given output of policy discovery protocol:
– can two nodes communicate at all?
– What set of SA parameters meets both nodes' 

policies?
• Must be computationally efficient to be practical.
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Compliance Checking

• Given a set of proposed SA parameters, a node must 
be able to verify:
– Whether parameters meet its own policy.
– Whether gateway is correct.

• This is where policy enforcement is implemented.
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Security Policy Protocol

• Protocol for discovering SEGs, distributing policies.
• Generic and extensible.
• Initiator sends message to remote end-host.

– SEGs intercept and forward to policy server.
– Policies acquired and forwarded to end-host.

• SEGs can examine acquired policies, changes reqs.
– Avoid redundant IKE operations.
– Main reason for bundling discovery and 

distribution in the same protocol.
• Can be initiated by end-host or firewall.
• Policy Server may be local to a host/SEG.
• Policy Server must be configured.



13

KeyNote and Compliance 
Checking

• Standard format for policy distribution and 
compliance checking.

• Simple, extensible language (RFC 2704).
• Used for expressing policies.

– SPD/SA parameters.
– Trusted peers/third parties.
– Integrity-protected.

• Allows authorization delegation.
– Various types of trust relations between security 

domains.
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KeyNote

• A  Trust-Management System.
• Compliance Checking:

– determines if Actions are compatible with Policies.
• Human-readable policies.
• Wide variety of applications:

– IPsec policy
– Workflow.
– Digital Rights Management System
– Micropayments System
– Kernel policy management.
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Actions

• Actions are activities that have security 
considerations.

• In KeyNote, actions are described by a set of 
attribute-value pairs called the Action Environment.

• Attribute semantics depend on the application
• An Action is always associated with a Requestor.

Requestor may be a public key, a user name, 
etc.
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Policies

• Policies determine who is trusted to authorize 
various actions.

• In KeyNote, Policies are a collection of Assertions.
• Assertions determine whether a Requestor is 

authorized to request an Action.
• Two major components to Assertions:

– Licencees: checks who the requestors may be.
– Conditions: checks the Action Environment.

• Licencees and Conditions are programmable 
expressions.

• Other components provide additional semantic 
structure (comments, identification, etc.). 
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Sample Assertion

Authorizer: POLICY
Licencees: wendy
Conditions: $file_owner == “stan”

&& $filename ~= “/home/stan/[^/]*”
-> { return TRUE }
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Turning policies into credentials

• We have shown how assertions authorize requestors.
• Assertions may also defer to other assertions.
• An assertion may be signed and used as a 

cryptographic credential.

Authorizer: stan’s public key
Licencees: wendy’s public key
Conditions: $file_owner == “stan”

&& $filename ~= “/home/stan/[^/]*”
-> { return TRUE }

Signature: …..
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Evaluation of a Request

• KeyNote is a compliance checker.
• Determines whether requested action satisfies policy.
• Finds a subgraph of assertions linking action to 

POLICY.
• For precise semantics, see the draft.
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IPsec example

• TM for IPsec paper
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Details

• The Licencees field may contain:
– single identifier.
– A complex expression.

• Expressions are:
– monotonic (important for security proofs).
– Disjunction, conjunction, threshold.
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Observations

• Conditions may return more than just TRUE/FALSE.

• It may also pass back information to the application.

• It can work in conjunction with X.509 and SDSI 
names.
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Pointers

• IP Security Policy IETF Working Group:
http://www.ietf.org/html.charters/ipsp-charter.html

• Trust Management:
http://www.crypto.com/trustmgt



Trust Managementfor IPsec
�

Matt Blaze
AT&T Labs- Research

mab@research.att.com

JohnIoannidis
AT&T Labs- Research

ji@research.att.com

AngelosD. Keromytis
Universityof Pennsylvania

angelos@cis.upenn.edu

Abstract

IPsecis the standardsuite of protocolsfor network-
layer confidentiality and authenticationof Internet traf-
fic. The IPsecprotocols,however, do not addressthe
policies for how protectedtraffic shouldbehandledat se-
curity endpoints.This paperintroducesan efficient pol-
icy managementschemefor IPsec,basedon the princi-
plesof trust management.A compliance check is added
to the IPsecarchitecturethat testspacket filters proposed
when new security associationsare createdfor confor-
mancewith thelocal securitypolicy, basedon credentials
presentedby thepeerhost. Securitypoliciesandcreden-
tials canbequitesophisticated(andspecifiedin thetrust-
managementlanguage),while still allowing veryefficient
packet-filtering for the actualIPsectraffic. We presenta
practical,portableimplementationof thisdesign,basedon
theKeyNotetrust-managementlanguage,thatworkswith
a varietyof Unix-basedIPsecimplementations.

1. Intr oduction

TheIPsecprotocolsuite,whichprovidesnetwork-layer
securityfor theInternet,hasrecentlybeenstandardizedin
the IETF andis beginning to make its way into commer-
cial implementationsof desktop,server, and router op-
eratingsystems. For many applications,securityat the
network layer hasa numberof advantagesover security
provided elsewherein the protocolstack. The detailsof
network semanticsareusuallyhiddenfrom applications,

�
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which thereforeautomaticallyandtransparentlytake ad-
vantageof whatever network-layersecurityservicestheir
environmentprovides. More importantly, IPsecoffers a
remarkableflexibility not possibleat higher- or lower-
layerabstractions:securitycanbeconfiguredend-to-end
(protectingtraffic betweentwo hosts),route-to-route(pro-
tectingtraffic passingovera particularsetof links), edge-
to-edge(protectingtraffic as it passesbetween“trusted”
networksvia an“untrusted”one,subsumingmany of the
currentfunctionsperformedby network firewalls), or in
any other configurationin which network nodescan be
identifiedasappropriatesecurityendpoints.

Despitethis flexibility , IPsecdoesnot itself addressthe
problemof managingthepolicies governingthehandling
of traffic enteringor leaving a hostrunningthe protocol.
By itself, theIPsecprotocolcanprotectpacketsfrom ex-
ternal tamperingandeavesdropping,but doesnothingto
control which hostsare authorizedfor particular kinds
of sessionsor to exchangeparticularkinds of traffic. In
many configurations,especiallywhennetwork-layersecu-
rity is usedto build firewallsandvirtual privatenetworks,
suchpoliciesmaybenecessarilybequitecomplex. There
is no standardinterfaceor protocolfor controlling IPsec
tunnelcreation,andmostIPsecimplementationsprovide
only rudimentary, packet-filter-basedandACL-basedpol-
icy mechanisms.

The crudenessof IPsecpolicy control, in turn, means
that in spiteof the availability of network-layersecurity,
many applicationsare forced to duplicateat the appli-
cationor transportlayer cryptographicfunctionsalready
providedat thenetwork layer.

Therearethreemaincontributionsin this paper:we in-



troducea new policy managementarchitecturefor IPsec,
basedon the principlesof trust management;we present
adesignthatintegratesthisarchitecturewith theKeyNote
Trust Managementsystem;finally, we presenta practi-
cal,portableimplementationof this design,currentlydis-
tributedin open-sourceform in OpenBSD.

1.1. IPsecPacketFilters andSecurityAssociations

IPsecis basedon the conceptof datagram encapsu-
lation. Cryptographicallyprotectednetwork-layerpack-
ets are placedinside, as the payloadof other network
packets,making the encryptiontransparentto any inter-
mediatenodesthatmustprocesspacket headersfor rout-
ing, etc. Outgoingpacketsareencapsulated,encrypted,
andauthenticated(asappropriate)just beforebeingsent
to the network, and incoming packets are verified, de-
crypted,anddecapsulatedimmediatelyuponreceipt[12].
Key managementin sucha protocolis straightforwardin
the simplestcase.Two hostscanuseany key-agreement
protocolto negotiatekeyswith oneanother, andusethose
keysaspartof theencapsulatinganddecapsulatingpacket
transforms.

Let us examinethe securitypolicy decisionsan IPsec
processormustmake. Whenwe discuss“policy” in this
paper, we refer specificallyto the network-layersecurity
policies that govern the flow of traffic amongnetworks,
hosts,andapplications.Observe that policy mustbe en-
forcedwhenever packetsarrive at or areaboutto leave a
network securityendpoint(which couldbeanendhost,a
gateway, a router, or a firewall).

IPsec“connections”are describedin a datastructure
called a security association (SA). Encryption and au-
thenticationkeys are containedin the SA at eachend-
point, and eachIPsec-protectedpacket hasan SA iden-
tifier that indexesthe SA databaseof its destinationhost
(notethatnotall SAsspecifybothencryptionandauthen-
tication;authentication-onlySAsarecommonlyused,and
encryption-onlySAs arepossiblealbeit consideredinse-
cure).

Whenanincomingpacketarrivesfrom thenetwork, the
hostfirst determinestheprocessingit requires:

� If thepacket is not protected,shouldit beaccepted?
This is essentiallythe “traditional” packet filtering
problem,asperformed,e.g., by network firewalls.

� If the packet is encapsulatedunderthesecuritypro-
tocol:

– Is therecorrectkey material(containedin the
specifiedSA) requiredto decapsulateit?

– Should the resulting packet (after decapsula-
tion) be accepted?A secondstageof packet
filtering occursat this point. A packet maybe

successfullydecapsulatedand still not be ac-
ceptable(e.g., a decapsulatedpacket with an
invalid sourceaddress,or a packet attempting
delivery to someport not permittedby the re-
ceiver’spolicy).

A securityendpointmakessimilar decisionswhenan
outgoingpacket is readyto besent:

� Is thereasecurityassociation(SA) thatshouldbeap-
plied to this packet? If thereareseveral applicable
SAs,which oneshouldbeselected?

� If thereis no SA available, how shouldthe packet
be handled?It may be forwardedto somenetwork
interface,dropped,or queueduntil an SA is made
available, possiblyafter triggeringsomeautomated
key managementmechanismsuchasIKE, theInter-
netKey Exchangeprotocol[11].

Observe that becausethese questionsare asked on
packet-by-packetbasis,packet-basedpolicy filtering must
beperformed,andany relatedsecuritytransformsapplied,
quickly enoughto keepup with network datarates.This
implies that in all but the slowestnetwork environments
thereis insufficient time to processelaboratesecuritylan-
guages,performpublic key operations,traverselarge ta-
bles,or resolveruleconflictsin any sophisticatedmanner.

IPsecimplementations(and most other network-layer
entities that enforcesecurity policy, such as firewalls),
therefore,employ simple,filter-basedlanguagesfor con-
figuring their packet-handlingpolicies. In general,these
languagesspecifyrouting rulesfor handlingpacketsthat
matchbit patternsin packet headers,basedon suchpa-
rametersas incomingandoutgoingaddressesandports,
services,packetoptions,etc.[17]

IPsecpolicy controlneednotbelimited to packetfilter-
ing, however. A greatdealof flexibility is availablein the
controlof whensecurityassociationsarecreatedandwhat
packetfilters areassociatedwith them.

Most commonlyhowever, in currentimplementations,
theIPsecuseror administratoris forcedto provide“all or
nothing”access,in whichholdersof asetof keys(or those
certified by a particularauthority) are allowed to create
any kind of securityassociationthey wish,andotherscan
do nothingatall.

A furtherissuewith IPsecpolicy controlis theneedfor
two hoststo discoverandnegotiatethekind of traffic they
are willing to exchange. When two hostsgovernedby
their own policieswant to communicate,they needsome
mechanismfor determiningwhat, if any, kinds of traffic
thecombinedeffectsof oneanother’spoliciesarepermit-
ted. Again, IPsecitself doesnot provide sucha mecha-
nism;whena hostattemptsto createanSA, it mustknow
in advancethat the policy on the remotehostwill accept



it. Theoperationtheneithersucceedsor fails. While this
may be sufficient for small VPNs andotherapplications
wherebothpeersareunderthe sameadministrative con-
trol, it doesnot scaleto larger-scaleapplicationssuchas
publicservers.

1.2. RelatedWork

TheIKE specification[11] makesuseof theSubjectAl-
ternateNamefield in X.509 [8] certificatesto encodethe
packet selectorthecertificateholdermayuseduringIKE
Quick Mode. Beyondthis, no standardway hasyet been
definedfor negotiating,exchanging,andotherwisehan-
dling IPsecsecuritypolicy.

[20] definesa protocol for dynamically discovering,
accessing,and processingsecurity policy information.
Hostsandnetworksbelongto securitydomains,andpol-
icy servers are responsiblefor servicingthesedomains.
The protocol usedis similar in someways to the DNS
protocol.Thisprotocolis servingasthebasisof theIETF
IP SecurityPolicy Working Group.

[9] describesa languagefor specifyingcommunication
securitypolicies,heavily orientedtoward IPsecandIKE.
SPSLis basedon the RoutingPolicy SpecificationLan-
guage(RPSL)[1]. While SPSLoffersconsiderableflexi-
bility in specifyingIPsecsecuritypolicies,it doesnot ad-
dressdelegationof authority, nor is it easilyextensibleto
accommodateothertypesof applications.

A numberof otherInternetDraftshave beenpublished
definingvariousdirectoryschematafor IPsecpolicy. Sim-
ilar directory-basedwork hasalsostartedin thecontext of
theIETF Policy Framework WorkingGroup.It is still too
earlyto determinewhattheresultsof thateffort will be.

COPS [5] defines a simple client/server protocol
whereinaPolicy EnforcementPoint(PEP)communicates
with a Policy DecisionPoint(PDP)in orderto determine
whetherarequestedactionis permissible.COPSis mostly
orientedtowardadmissioncontrol for RSVP[6] or simi-
lar protocols.It is not clearwhatits applicabilityto IPsec
securitypolicy wouldbe.

RADIUS [19] andits proposedsuccessor, DIAMETER
[7], aresimilar in somewaysto COPS.They requirecom-
municationwith a policy server, which is suppliedwith
all necessaryinformationandis dependeduponto makea
policy-baseddecision.Bothprotocolsareorientedtoward
providing Accounting,Authentication,andAuthorization
servicesfor dial-upandroamingusers.

We first proposedthe notion of usinga trust manage-
mentsystemfor network-layersecuritypolicy control in
[4].

2. Trust Managementfor IPsec
A basicparameterof the packet processingproblems

mentionedin the previous section is the question of

whethera packet falls underthe scopeof someSecurity
Association(SA). SAs containandmanagethe key ma-
terial requiredto performnetwork-layersecurityprotocol
transforms.How then,do SAsgetcreated?

The obvious approachis to trigger the creationof a
new SA whenever communicationwith a new hostis at-
tempted,if thatattemptwould fail the packet-level secu-
rity policy. Theprotocolwould bebasedon a public-key
or Needham-Schroeder[18] scheme.

Unfortunately, protocolsthat merelyarrangefor pack-
ets to be protectedundersecurityassociationsdo noth-
ing to addressthe problemof enforcinga policy regard-
ing the flow of incomingor outgoingtraffic. Recall that
policy control is a centralmotivatingfactorfor theuseof
network-layersecurityprotocolsin thefirst place.

In general,andrathersurprisingly, securityassociation
policy is largely anopenproblem– onewith very impor-
tantpracticalsecurityimplicationsandwith thepotential
to provide a solid framework for analysisof network se-
curity properties.

Fortunately, theproblemof policy managementfor se-
curity associationscanbedistinguishedin several impor-
tantwaysfrom theproblemof filtering individualpackets:

� SAs tendto beratherlong-lived; thereis locality of
referenceinsofar as hoststhat have exchangedone
packet arevery likely to alsoexchangeothersin the
nearfuture.

� It is acceptablethat policy controlson SA creation
should require substantiallymore resourcesthan
couldbeexpendedon processingevery packet (e.g.,
publickey operations,severalpacketexchanges,pol-
icy evaluation,etc.).

� The resultof negotiatingan SA betweentwo hosts
can provide (among other things) parametersfor
more efficient, lower-level packet policy (filtering)
operations.

The trust-management approach[3] for checkingcom-
pliancewith securitypolicy providesexactly theinterface
andabstractionsrequiredhere.

2.1.The KeyNoteTrust ManagementSystem

Becausewe makeextensiveuseof theconceptsof trust
management,and especiallythe KeyNote language,we
provideabrief review of thoseconceptshere.

Thenotionof trust management wasintroducedin [3].
A trust-managementsystemprovidesa standardinterface
that applicationscanuseto testwhetherpotentiallydan-
gerousactionscomplywith local securitypolicies.

More formally, trust-managementsystemsarecharac-
terizedby:



� A methodfor describingactions, which are opera-
tions with securityconsequencesthatareto be con-
trolled by thesystem.

� A mechanismfor identifying principals, which are
entitiesthatcanbeauthorizedto performactions.

� A language for specifying application policies,
which govern the actionsthat principalsare autho-
rizedto perform.

� A languagefor specifyingcredentials, which allow
principalsto delegateauthorizationto other princi-
pals

� A compliance checker, which providesa servicefor
determininghow an action requestedby principals
shouldbe handled,given a policy anda setof cre-
dentials.

KeyNoteis asimpleandflexible trust-managementsys-
temdesignedto work well for avarietyof applications.In
applicationsusingKeyNote, policiesandcredentialsare
written in thesamelanguage.Thebasicunit of KeyNote
programmingis the assertion. Assertionscontain pro-
grammablepredicatesthat operateon the requestedat-
tribute set and limit the actions that principals are al-
lowed to perform. KeyNoteassertionsaresmall, highly-
structuredprograms.Authority canbedelegatedto others;
a digitally signedassertioncanbe sentover anuntrusted
network andservethesameroleastraditionalcertificates.
Unlike traditional policy systems,policy in KeyNote is
expressedasacombinationof unsigned andsigned policy
assertions(signedassertionsarealsocalledcredentials).
Thereis awidespectrumof possiblecombinations;onthe
oneextreme,all systempolicy is expressedin termsof lo-
cal (unsigned)assertions.Ontheotherextreme,all policy
is expressedassignedassertions,with only onerule (the
root of the policy) beinganunsignedassertionthatdele-
gatesto oneor moretrustedentities.Theintegrity of each
signedassertionis guaranteedby its signature;therefore,
thereis no needfor theseto bestoredwithin thesecurity
perimeterof thesystem.

KeyNoteallows thecreationof arbitrarily sophisticated
securitypolicies, in which entities(which canbe identi-
fied by cryptographicpublic keys) canbegrantedlimited
authorizationto performspecifickindsof trustedactions.

Whena “dangerous”actionis requestedof a KeyNote-
basedapplication,theapplicationsubmitsadescriptionof
the actionalongwith a copy of its local securitypolicy
to theKeyNote interpreter. Applicationsdescribeactions
to KeyNote with a setof attribute/valuepairs (calledan
action attribute set in KeyNoteterminology)thatdescribe
the context and consequencesof security-criticalopera-
tions. KeyNote then “approves” or “rejects” the action

accordingto therulesgivenin theapplication’s local pol-
icy.

KeyNoteassertionsarewritten in ASCII andcontaina
collectionof structuredfields that describewhich princi-
pal is beingauthorized(the Licensee), who is doing the
authorizing(theAuthorizer) anda predicatethat teststhe
actionattributes(theConditions). For example:

Authorizer: "POLICY"
Licensees: "Borris Yeltsin"
Conditions:
EmailAddress == "yeltsin@kremvax.ru"

meansthat the “POLICY” principalauthorizesthe “Bor-
ris Yeltsin” principal to do any action in which the
attribute called “EmailAddress” is equal to the string
“yeltsin@kremvax.ru”. An action is authorizedif asser-
tionsthatapprovetheactioncanlink the“POLICY” prin-
cipal with the principal that authorizedthe action. Prin-
cipalscanbe public keys, which providesa naturalway
to useKeyNote to control operationsover untrustworthy
networkssuchastheInternet.

A completedescriptionof theKeyNotelanguagecanbe
foundin [2].

2.2.KeyNoteControl for IPsec

The problemof controlling IPsecSAs is easyto for-
mulateasa trust-managementproblem: the SA creation
process(usuallya daemonrunning IKE) needsto check
for compliancewhenever an SA is to be created. Here,
theactionsrepresentthepacket filtering rulesrequiredto
allow two hoststo conform to eachother’s higher-level
policies.

This leadsnaturally to a framework for trust manage-
mentfor IPsec:

� Eachhosthasits own KeyNote-specifiedpolicy gov-
erningSA creation.Thispolicy describestheclasses
of packets and under what circumstancesthe host
will initiate SA creationwith other hosts,and also
what typesof SAs it is willing to allow otherhosts
to establish(for example,whetherencryptionwill be
usedandif sowhatalgorithmsareacceptable).

� When two hostsdiscover that they requirean SA,
they eachproposeto the other the “least powerful”
packet-filtering rules that would enablethemto ac-
complishtheir communicationobjective. Eachhost
sendsproposedpacketfilter rules,alongwith creden-
tials (certificates)thatsupporttheproposal.Any del-
egationstructurebetweenthesecredentialsis entirely
implementationdependent,and might include the



arbitraryweb-of-trust,globally trustedthird-parties,
suchasCertificationAuthorities(CAs), or anything
in between.

� Eachhost queriesits KeyNote interpreterto deter-
mine whether the proposedpacket filters comply
with localpolicy and,if they do,createstheSA con-
tainingthespecifiedfilters.

Other SA propertiescan also be subjectto KeyNote-
controlledpolicy. For example,theSA policy mayspec-
ify acceptablecryptographicalgorithmsandkey sizes,the
lifetime of theSA, loggingandaccountingrequirements.

Ourarchitecturedividestheproblemof policy manage-
mentinto two components:packetfiltering,basedonrules
appliedto every packet, andtrustmanagement,basedon
negotiatinganddecidingwhichof theserules(andrelated
SA properties,asnotedabove)aretrustworthy enoughto
install.

This distinction makes it possibleto perform the per-
packet policy operationsat high data rateswhile effec-
tively establishingmoresophisticatedtrust-management-
basedpolicy controlsover the traffic passingthrougha
securityendpoint.Having suchcontrolsin placemakesit
easierto specifysecuritypolicy for a largenetwork, and
makesit especiallynaturalto integrateautomatedpolicy
distributionmechanisms.

2.3. Policy Discovery

While theIPseccompliance-checkingmodeldescribed
abovecanbeusedby itself to providesecuritypolicy sup-
port for IPsec,therearetwo additionalissuesthatneedto
beaddressedif suchanarchitectureis to bedeployedand
used.

The first problemis credentialdiscovery and acquisi-
tion. Althoughusersor hostsmaybeexpectedto manage
locally policiesandcredentialsthatdirectly referto them,
they maynotknow of intermediatecredentials(e.g., those
issuedby administrativeentities)thatmayberequiredby
thehostswith whichthey wantto communicate.Consider
thecaseof a largeorganization,with two levelsof admin-
istration;localpolicy on thefirewalls trustsonly the“cor-
poratesecurity” key. Usersobtaintheir credentialsfrom
their local administrators,who authorizethemto connect
to specificfirewalls. Thus,oneor moreintermediatecre-
dentialsdelegating authority from corporatesecurity to
the variousadministratorsis also neededif a user is to
be successfullyauthorized. Naturally, in more complex
network configurations(suchasextranets)multiple levels
of administrationmaybepresent.Somemethodfor deter-
mining what credentialsarerelevant andhow to acquire
themis needed.

Our solutionis straightforward: thehostthat intendsto
initiateanIKE exchangecanuseasimpleprotocol,which

wecall Policy QueryProtocol(PQP),to acquireor update
credentialsrelevant to a specificintendedIKE exchange.
The initiator presentsa public key to the responderand
asksfor any credentialswherethe key appearsin theLi-
censeesfield. By startingfrom theinitiator’s own key (or
from somekey thatdelegatesto theinitiator), it is possible
to acquireall credentialsthattheresponderhasknowledge
of thatmaybeof useto the initiator. Therespondermay
alsoprovide pointersto otherserverswherethe initiator
may find relevant credentials;in fact, the respondermay
just providea pointerto someotherserver thatholdscre-
dentialsfor anadministrativedomain.

Sincethecredentialsthemselvesaresigned,thereis no
needto provide additionalsecurityguaranteesin thepro-
tocol itself. However, any localpoliciesthattheresponder
discloseswould have to be signedprior to beingsentto
the initiator; the fact that a KeyNote policy “becomes”a
credentialsimply by virtue of beingsignedis very useful
here.Also, thePQPserver mayhave its own policy con-
cerningwhich hostsareallowedto queryfor credentials.

Thesecondproblemis determiningourown capabilities
basedon the credentialswe hold. This is in somesense
complementaryto compliancechecking;by analyzingour
credentialsin thecontext of ourpeer’spolicy, it is possible
to determinewhat typesof actionsare acceptedby that
peer. That is, we can discover what kinds of IPsecSA
proposalsare acceptedby a remoteIKE daemon. This
canassistin avoiding unnecessaryIKE exchanges(if it is
known in advancethatno SAsacceptableby bothparties
canbeagreedupon),or narrow down thesetof proposals
we sendto our peer. Note that if a host revealsall the
relevant credentialsandpolicies using the Policy Query
Protocol,anotherhostcandeterminein advanceandoff-
line exactlywhatproposalsthathostwill accept.

Credentialcompositionis afairly straightforward,if po-
tentially expensive, operation:we startby constructinga
graphfrom the peer’s policy to our key. We thenreduce
eachclausein theConditionsfield of eachcredentialto its
DisjunctiveNormalForm(DNF). To determinetheautho-
rizationin achainof two credentials,weneedto compute
the intersectionof their authorizations.This is a linear-
costoperationover the numberof termsin the DNF ex-
pressionsof thetwo credentials.For largerchains(or, in-
deed,arbitrary graphsof credentials),we can apply the
samealgorithmrecursively. At theendof this operation,
wehavealist of acceptableproposals,whichtheIKE dae-
moncanthenuseto constructvalid SA proposalsfor the
remotehost.

Note that this operationis typically doneby the initia-
tor, andthushasnosignificantperformanceimpactonthe
responder, which maybea busysecuritygateway.



3. Implementation

To demonstrateour policy managementscheme,we
implementedthe architecturedescribedin the previ-
ous sectionwithin the OpenBSDIPsecstack [16, 10].
OpenBSD’s IKE implementation(calledisakmpd) sup-
portsbothpassphraseandX.509certificateauthentication.
We modified isakmpd to use KeyNote insteadof the
configuration-filebasedmechanismthatwasusedto vali-
datenew SecurityAssociations.

3.1. The OpenBSDIPsecAr chitecture

In this section we examine how the (unmodified)
OpenBSDIPsecimplementationinteractswith isakmpd
andhow policy decisionsarehandledandimplemented.

Outgoingpacketsareprocessedin theip output()
routine. The Security Policy Database(SPD)1 is con-
sulted, using information retrieved from the packet it-
self (e.g., source/destinationaddresses,transportprotocol,
ports,etc.) to determinewhether, andwhatkind of, IPsec
processingis required. If no IPsecprocessingis neces-
saryor if thenecessarySAsareavailable,theappropriate
courseof actionis taken,ultimatelyresultingin thepacket
being transmitted. If the SPD indicatesthat the packet
shouldbeprotected,but no SAsareavailable,isakmpd
is notified to establishthe relevant SAs with the remote
host(or a securitygateway, dependingon what the SPD
entryspecifies).Theinformationpassedto isakmpd in-
cludestheSPDfilter rule thatmatchedthepacket; this is
usedin theIKE protocolto proposethepacketselectors2,
which describethe classesof packetsthat areacceptable
for transmissionover theSA to beestablished.Thesame
type of processingoccursfor incoming packets that are
not IPsec-protected,to determinewhetherthey shouldbe
admitted;similar to theoutgoingcase,isakmpd maybe
notifiedto establishSAswith theremotehost.

When an IPsec-protectedpacket is received, the rele-
vant SA is locatedusing informationextractedfrom the
packet and the variousprotectionsare peeledoff. The
packet is then processedas if it had just beenreceived.
Note that the resulting,de-IPsec-edpacket may still be
subjectto localpolicy, asdeterminedby packetfilter rules;
that is, just becausea packet arrived secureddoesnot
meanthat it shouldbe accepted.We discussthis issue
furtherbelow.

1TheSPDis partof all IPsecimplementations[15], andis very sim-
ilar in form to packet filters (andis typically implementedasone). The
typical resultsof anSPDlookup areaccept,drop,and“IPsec-needed”.
In the latter case,moreinformationmay be provided,suchaswhat re-
motepeerto establishtheSA with, andwhatlevel of protectionisneeded
(encryption,authentication).

2Thesearea pair of network prefix andnetmasktuplesthatdescribe
thetypesof packetsthatareallowedto usetheSA.

3.2.Adding KeyNotePolicy Control

Becauseof the structureof the OpenBSDIPseccode,
we wereable to addKeyNote policy control entirely by
modifying theisakmpd daemon;nomodificationsto the
kernelwererequired.

Whenever a new IPsecsecurityassociationis proposed
by a remotehost(with the IKE protocol),our KeyNote-
basedisakmpd first collectssecurity-relatedinformation
aboutthe exchange(from its exchange andsa struc-
tures) and createsKeyNote attributes that describethe
proposedexchange.Theseattributesdescribewhat IPsec
protocolsarepresent,theencryption/authenticationalgo-
rithmsandparameters,theSA lifetime, time of day, spe-
cial SA characteristicssuchas tunneling,PFS,etc., the
addressof the remotehost,andthe packet selectorsthat
generatethefilters thatgoverntheSA’s traffic. All this in-
formationis derivedfrom what theremotehostproposed
to us(or whatwe proposedto theremotehost,depending
on who initiatedtheIKE exchange).

Once passedto KeyNote, theseattributes are avail-
able for useby policies(andcredentials)in determining
whethera particularSA is acceptableor not. Recall that
theConditionsfieldof aKeyNoteassertioncontainsanex-
pressionthatteststheattributespassedwith thequery. The
IPsecKeyNoteattributeswerechosento allow reasonably
natural, intuitive expressionsemantics.For example,to
checkthat theIKE exchangeis beingperformedwith the
peerat IP address192.168.1.1,apolicy would includethe
test:

remote_ike_address == "192.168.001.001"

while a policy that allows only the 3DES algorithm
would testthat

esp_enc_alg == "3des"

TheKeyNotesyntaxprovidestheexpectedcomposition
rulesandbooleanoperatorsfor creatingcomplex expres-
sionsthattestmultiple attributes.

The particularcollectionof attributeswe choseallows
a widerangeof possiblepolicies.We designedtheimple-
mentationto make it easyto addotherattributes,should
that be requiredby the policies of applicationsthat we
failedto anticipate.A partiallist of KeyNoteattributesfor
IPsecis containedin Appendix4. For thefull list, consult
theOpenBSDmanualpages.

3.3.Policiesfor PassphraseAuthentication

If passphrasesare used as the IKE authentication
method,KeyNote policy control may be usedto directly
authorizetheholdersof thepassphrases.Passphrasesare
encodedasKeyNoteprincipalsby takingtheASCII string



correspondingto the passphraseprefixed with the string
“passphrase:”Thus, the following policy would allow
anyoneknowing the passphrase“foobar” to establishan
SA with theESP[14] protocol.

Authorizer: "POLICY"
Licensees: "passphrase:foobar"
Conditions:
app domain == "IPsec Policy"
&& esp present == "yes" ;

Using the passphrase: tag requires policies to
be kept private. To avoid this, a hashedversion of
the passphrasemay be used instead(using for exam-
ple the passphrase-sha1-hex: prefix). In the
previousexample,this would bepassphrase-sha1-
hex:8843d7f92416211de9ebb963ff4ce2812-
5932878).

3.4. Policiesfor X.509-basedAuthentication

More interestingis the interactionbetweenKeyNote
policy and X.509 public-key certificatesfor authentica-
tion. Most IKE implementations(including ours) allow
the useof X.509 certificatesfor authentication.Further-
more, thereexist a numberof commercialtools that let
administratorsmanagelarge collectionsof usersusing
X.509. Allowing for interoperabilitywith theseimple-
mentationsis agoodtestof ourarchitectureandcanmake
transitionto a KeyNote-basedinfrastructureconsiderably
smoother.

Implementingthis interoperability is straightforward:
KeyNote policies may be used to delegate directly to
X.509 certificates. The principalsspecifiedmay be the
certificatesthemselves (in pseudo-MIMEformat, using
the x509-base64: prefix), the subjectpublic key, or
theSubjectCanonicalName.An exampleis givenin Fig-
ure3.4.

For eachX.509 certificatereceivedandverifiedaspart
of anIKE exchange,anad hoc KeyNotecredentialis gen-
erated. This credentialmapsthe Issuer/Subjectkeys of
the X.509 certificate(from the respective fields) to Au-
thorizer/Licenseeskeys in KeyNote. Thus,aschainsof
X.509 certificatesare formed during regular operation,
correspondingchainsof KeyNotecredentialsareformed.
Thisallowspoliciesto delegateto aCA andhavethesame
restrictionsapplyto all userscertifiedby thatCA. Specific
usersmaybegrantedmoreprivilegesby directauthoriza-
tion in thehost’spolicy.

3.5. Policiesfor KeyNoteCredentials

KeyNotecredentialsmaybepasseddirectly during the
IKE exchange,in the samemannerasX.509 certificates.

This methodoffers the mostflexibility in policy specifi-
cation,asit allowsprincipalsto furtherdelegateauthority
to othersthrougharbitrarilycomplex graphsof authoriza-
tion. Any signedKeyNotecredentialsreceivedduringthe
IKE exchangearepassedto the KeyNote interpreterdi-
rectly aspartof thequery.

KeyNotecredentialsareespeciallyusefulin theremote
administrationcase,wherethepoliciesof many IPsecend-
pointsarecontrolledby a centraladministrator. Here,the
policy of eachhost would delegateall authority to the
public key of the centraladministrator. The administra-
tor would thenissuecredentialsthatcontainthedetailsof
thepolicy underwhichthey wereissued.Thesecredentail
arepresentedaspartof eachIKE exchangeby any hostre-
questingaccess.This eliminatestheneedto updatelarge
numbersof machinesasthedetailsof organizationalpoli-
cieschange.Adding a new hostis accomplishedby hav-
ing theadministratorissuea new credentialfor thathost;
thathostmaythenusethenewly-issuedcredentialto com-
municatewith any otherhostthatobeys theabovepolicy.
No policy changesarenecessaryto thesehosts. Revok-
ing accessto a host is implementedthroughshort-lived
credentials.New credentialsaremadeavailableperiodi-
cally througha WWW or FTP server; clientscandown-
load themfrom there,without any securityimplications
(sincethe credentialsare signed,their integrity is guar-
anteed).If credentialconfidentialityis anissue,thesecre-
dentialscouldbeencryptedwith thepublickey of theuser
beforethey aremadeavailable.

Regardless of the authentication method in use,
isakmpd callsKeyNoteto determinewhethereachpro-
posedSA shouldbeestablished.After takinginto consid-
erationpolicies, credentials,and the attributespertinent
to theSA, KeyNotereturnsa positiveor negativeanswer.
In the former case,the protocol exchangeis allowed to
proceedasusual. In the latter, an informationalmessage
is sent to the remoteIKE daemonand the exchangeis
dropped.Note that, if anadministratorwereto manually
establishSPDrules(by directly manipulatingthe SPD),
KeyNoteandtheSPDmightdisagree;in thatcase,no SA
would ever be establishedandno packetswould be sent
out for thatcommunicationflow (sincetheSPDwouldre-
quireanSA).

The basicdataflows for KeyNote-controlledIPsecin-
put andoutput processingaregiven in Figures2 and3,
respectively.

Input processingbeginswith a packet arriving at a net-
work interface (#1 in Figure 2). The Security Policy
Databaseis consulted(#2)andoneof threeactionsis fol-
lowed. If the packet is an IPsecpacket, it is sent(#3a)
to the IPsecprocessingcode,which will consultthe SA
Database(#11) to processthe packet; the decapsulated
packet is then fed back to the IP input queue(#12). If



Authorizer: "POLICY"
Licensees: "DN:/CN=Certification Authority Foo/Email=ca@foo.com"
Conditions: ...

Figure1. Samplecredentialwith X.509DN asLicensee
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Figure2. KeyNote-ControlledIPsecInputProcessing

theSPDsaysthatthepacket shouldjust beaccepted,it is
sent(#3b) to the correspondinghigher-layerprotocol,or
forwarded,asappropriate.If theSPDsaysthatthepacket
shouldbedropped,no furtherprocessingis done.Other-
wise(#3c),theSecurityAssociationsetupprocessis trig-
gered. The SA Databaseis consulted(#4); if an SA is
foundthere,thepacket is droppedbecauseit shouldhave
alreadybeensentasan IPsecpacket (and it wasnot, or
path#3awould have beenfollowed). Next, the Policies
andCredentialsdatabaseis consulted(#5); this is doneby
calling the KeyNote interpreter, supplyingit the relevant
detailsof thepacket(addresses,protocol,ports,etc.). The
KeyNoteinterpreter, in turn,consultsits databaseof poli-
ciesand credentials,anddetermineswhetherthe packet
shouldbe just accepted,dropped,or needsIPsecprotec-
tion. If thelatter is thecase,theIKE daemonis triggered
(#6). It establishesSAs with its peer(#7), during which
processit will alsoneedto consultthepolicy andcreden-
tialsdatabase(#8),andmayalsoupdateit with additional
credentialsacquiredduring the IKE exchange. The SA
and SPD Databasesare then updated(#9, #10) as nec-

essarybasedon the informationnegotiatedby IKE. The
unprotectedpacket that triggeredtheSA establishmentis
dropped.

A host’s local policy is given in a text file
(/etc/isakmpd.policy) thatcontainsKeyNotepol-
icy assertions.

Output processingstartswhen a packet arrives (#1 in
Figure2) at the IP outputcodefrom eithera higher-level
protocolor from the forwardingcode. TheSecurityPol-
icy Databaseis consulted(#2) to determinewhetherthe
packetshouldbeprotectedwith IPsecor not; if noprotec-
tion is needed,the packet is simply sentout (#3a). Oth-
erwise,it is sentto the IPsecprocessingcode(#3b). A
lookup(#4) in theSA databasedetermineswhetheranSA
for this packet alreadyexists; if so, theappropriatetrans-
formsareappliedandtheresultingpacket is output(#5a).
If an SA did not exist, the SA setupprocessis invoked
(#5b).Thesystempolicy (ascontainedin theSPD)is con-
sulted(#6), andif policy relevant to this packet is found,
theIKE exchangeis triggered(#7),otherwisethepacketis
simply dropped.During theIKE exchange(#8), thelocal
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Figure3. KeyNote-ControlledIPsecOutputProcessing

policy andcredentialsareconsulted(#9),andany creden-
tials fetchedfrom thepeerduringtheexchangedaresub-
sequentlystored(#10) in the local database.If the IKE
exchangeresultsin SAs being created,theseare stored
back in the SA database(#11). Finally, the SPD is up-
dated(#12) if necessary, andsubsequentpacketscanbe
processed(theoriginalunprotectedpacket is dropped).

It shouldbeobvious from theabove that, in our archi-
tecture,the SPD hasbecomea policy cache;the “real”
policy is expressedin termsof KeyNote assertionsand
credentials.Therearetwo waysof populatingthecache.
The first, describedabove, is to populateit on-demand.
If a filter rule doesnot exist in the SPD,KeyNote is in-
vokedto determinewhatshouldbedonewith thepacket;
basedon the responsefrom KeyNote, a rule is installed
in the SPD that makes further KeyNote queriesunnec-
essary. The secondapproachis to analyzeall policies
at startuptime andpopulatethe SPDaccordingly. This
avoidsthecostof a cross-domaincall (from thekernelto
a userlandpolicy daemon)per cachemiss, but requires
re-initializationof theSPDeverytimethepolicy changes.

3.6. Policy Updates

Changing policy in the simple case is straightfor-
ward: the new policies are placedin isakmpd.conf.
Whenexisting IPsecSAsexpire andaresubsequentlyre-

negotiated,or when new IPsecSAs are established,the
new policy will automaticallybetakeninto consideration.
If we want to new policy to be appliedto existing IPsec
SAs,we cansimply examinetheexisting SAsin thecon-
text of thenew policy, pretendingwearenow establishing
them.If theupdatedpolicy permitstheoldSAs,nofurther
actionis required;otherwise,they aredeleted.

3.7.Performance

Theoverheadof KeyNotein theIKE exchangesis neg-
ligible comparedto the cost of performing public-key
operations. Assertion evaluation (without any crypto-
graphicverification) is approximately120 microseconds
on a modernPentiumprocessor. Becauseevaluatingthe
baseKeyNote policies themselves doesnot require the
verificationof digital signatures,theKeyNotecompliance
checkis generallyvery fast: with a smallnumberof pol-
icy assertions,initialization and verification overheadis
approximately130microseconds.This numberincreases
linearly with thesizeandthenumberof policy assertions
that are actually evaluated,eachsuch assertionadding
approximately20 microseconds.The generationof the
shadow delegationtreeis alsovery low cost.Whenusing
KeyNote credentialsfor both authenticationand policy
specification,thecostof public-key signatureverification
is incurred. This cost is identical to that of the standard



X.509 case(and indeedto that of any other public-key
authenticationmechanism).Signaturesin KeyNote cre-
dentialsareverifiedasneededandonly thefirst time they
areused— the verification result is cachedand reused.
Credentialexpiration is handledby the generalKeyNote
processing,aspart of the Conditionsfield; thuspolicies
andcredentialsthathave expireddo not contributein au-
thorizinganSA andno specialhandlingis needed.In all
cases,thecostof KeyNotepolicy processingis severalor-
dersof magnitudelower thanthe costof performingthe
public-key operationsthatit is controlling.

KeyNote policy control contributed only a negligible
increasein the codesize of the OpenBSDIPsecimple-
mentation. To addKeyNote supportto isakmpd we had
to addabout1000linesof “glue” codeto isakmpd. Al-
mostall of this codeis relatedto datastructuremanage-
mentandformattingfor communicatingwith theKeyNote
interpreter. For comparison,the rudimentaryconfigura-
tion file-basedsystemthattheKeyNote-basedschemere-
placestook approximately300 lines of code. The entire
original isakmpd itself wasabout27000lines of code
(not including the cryptographiclibraries). The original
isakmpd andtheKeyNoteextensionsto it arewritten in
theC language.

4. Conclusions,Future Work, Availability

We have demonstrateda practicalandusefulapproach
to managingtrust in network-layersecurity. Oneof the
mostvaluablefeaturesof trustmanagementfor IPsecSA
policy managementis its handlingof policy delegation,
which essentiallyunifiesremoteadministrationwith cre-
dentialdistribution.

Perhapsthe most importantcontribution of this work
is our useof a two level policy specificationhierarchyto
control IPsectraffic. At the packet level, we usea spe-
cialized, very efficient, but lessexpressive filtering lan-
guagethatprovidesthebasiccontrolof traffic throughthe
host. The installationof thesepacket filters, in turn, is
controlledby amoreexpressive,generalpurpose,but less
efficient trust-managementlanguage. Our performance
measurementsprovideencouragingevidencethatthis ap-
proachis quite viable, providing a very high degreeof
control over traffic without the performanceimpactnor-
mally associatedwith highly expressive, generalpurpose
mechanisms.It is possiblethat this approachhasmerit in
applicationsbeyondcontrollingnetwork-layersecurity.

Becausethe KeyNote languageon which this work is
basedis application-independent,ourschemecanbeused
asthebasisfor amorecomprehensivepolicy management
architecturethattiestogetherdifferentaspectsof network
securitywith policiesfor IPsecandpacket filtering. For
example,a generalnetwork securitypolicy might specify
theacceptablemechanismsfor remoteaccessto a private

corporatenetwork overtheInternet;suchapolicy may, for
example,allow theuseof clear-text passwordsonly if traf-
fic is protectedwith IPSECor sometransport-layersecu-
rity protocol(e.g., SSH[21]). Multi-applicationpolicies
would, of course,requireembeddingpolicy controlsinto
eitheranintermediatesecurityenforcementnode(suchas
afirewall) or into theendapplicationsandhosts[13]. This
approachis thesubjectof ongoingresearch.

Finally, if trust-managementpoliciesandcredentialsare
built into the network security infrastructure,it may be
possibleto usethem as an “intermediatelanguage”be-
tweenthelower-level protocolandapplicationpolicy lan-
guages(e.g., packet-filteringrules)andhigher-levelpolicy
specificationlanguagesandtools.A translationtool might
convertahigh-level specificationto thetrust-management
system’s language(andperhapsvice-versaaswell). Such
a tool couldmake useof formal methodsto verify or en-
forcethatthegeneratedpolicy hascertainproperties.This
approachis currentlyunderinvestigationin theSTRONG-
MAN DARPA projectat the University of Pennsylvania
andAT&T Labs.

The KeyNote trust-managementsystemis available in
anopensourcetoolkit; seetheKeyNotewebpageat

http://www.crypto.com/trustmgt/
for details. The KeyNote IPsectrust-managementarchi-
tectureis distributedwith OpenBSD2.6(andlater),which
is availablefrom

http://www.openbsd.org/
Becausethepolicy managementfunctionalityis imple-

mentedentirelyin theuser-level isakmpd, thesystemis
readilyportableto otherIPsecplatforms(especiallythose
basedon BSD implementations).

References

[1] C. Alaettinoglu, T. Bates, E. Gerich, D. Karrenberg,
D. Meyer, M. Terpstra,andC. Villamizer. Routing Pol-
icy SpecificationLanguage(RPSL). Requestfor Com-
ments (ProposedStandard)2280, Internet Engineering
TaskForce,January1998.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D.
Keromytis. TheKeyNoteTrustManagementSystemVer-
sion2. InternetRFC2704,September1999.

[3] M. Blaze,J.Feigenbaum,andJ.Lacy. DecentralizedTrust
Management. In Proc. of the 17th Symposium on Secu-
rity and Privacy, pages164–173.IEEE ComputerSociety
Press,Los Alamitos,1996.

[4] M. Blaze,J. Ioannidis,andA. Keromytis. TrustManage-
mentandNetwork LayerSecurityProtocols. In Proceed-
ings of the 1999 Cambridge Security Protocols Interna-
tional Workshop, 1999.

[5] J. Boyle, R. Cohen,D. Durham,S. Herzog,R. Rajan,and
A. Sastry. TheCOPS(CommonOpenPolicy Service)Pro-
tocol. Requestfor comments(proposedstandard),Internet
EngineeringTaskForce,January2000.



[6] R. Braden,L. Zhang,S. Berson,S. Herzog,andS. Jamin.
ResourceReSerVationProtocol(RSVP)– Version1 Func-
tionalSpecification.InternetRFC2208,1997.

[7] P. Calhoun,A. Rubens,H. Akhtar, andE.Guttman.DIAM-
ETERBaseProtocol. InternetDraft, InternetEngineering
TaskForce,Dec.1999.Work in progress.

[8] CCITT. X.509: The Directory Authentication Framework.
InternationalTelecommunicationsUnion,Geneva,1989.

[9] M. Condell,C. Lynn, andJ.Zao. SecurityPolicy Specifi-
cationLanguage.Internetdraft, InternetEngineeringTask
Force,July 1999.

[10] N. Hallqvist and A. D. Keromytis. ImplementingInter-
net Key Exchange(IKE). In Proceedings of the Annual
USENIX Technical Conference, Freenix Track, pages201–
214,June2000.

[11] D. Harkins and D. Carrel. The Internet Key Exchange
(IKE). Requestfor Comments(ProposedStandard)2409,
InternetEngineeringTaskForce,Nov. 1998.

[12] J. IoannidisandM. Blaze. The Architectureand Imple-
mentationof Network-Layer Security Under Unix. In
Fourth Usenix Security Symposium Proceedings. USENIX,
October1993.

[13] S. Ioannidis,A. Keromytis,S.Bellovin, andJ.Smith. Im-
plementingaDistributedFirewall. In Proceedings of Com-
puter and Communications Security (CCS) 2000, Novem-
ber2000.

[14] S. KentandR. Atkinson. IP EncapsulatingSecurityPay-
load (ESP). Requestfor Comments(ProposedStandard)
2406,InternetEngineeringTaskForce,Nov. 1998.

[15] S.KentandR. Atkinson. SecurityArchitecturefor theIn-
ternetProtocol. Requestfor Comments(ProposedStan-
dard)2401,InternetEngineeringTaskForce,Nov. 1998.

[16] A. D. Keromytis,J.Ioannidis,andJ.M. Smith.Implement-
ing IPsec. In Proceedings of Global Internet (GlobeCom)
’97, pages1948– 1952,November1997.

[17] S.McCanneandV. Jacobson.A BSDPacketFilter: A New
Architecturefor User-level PacketCapture.In Proceedings
of USENIX Winter Technical Conference, pages259–269,
SanDiego,California,Jan.1993.Usenix.

[18] R. NeedhamandM. Schroeder. UsingEncryptionfor Au-
thenticationin LargeNetworksof Computers.Communi-
cations of the ACM, 21(12):993–998,December1978.

[19] C. Rigney, A. Rubens,W. Simpson,andS. Willens. Re-
moteAuthenticationDial In UserService(RADIUS). Re-
questfor Comments(ProposedStandard)2138, Internet
EngineeringTaskForce,Apr. 1997.

[20] L. SanchezandM. Condell. SecurityPolicy System. In-
ternetdraft, work in progress,InternetEngineeringTask
Force,November1998.

[21] T. Ylonen,T. Kivinen,M. Saarinen,T. Rinne,andS.Lehti-
nen. SSHProtocolArchitecture. InternetDraft, Internet
EngineeringTaskForce,Feb. 1999.Work in progress.

Appendix 1: KeyNote Action Attrib utes for
IPsec

All the datain the fields of IKE packetsarepassedto
KeyNote as action attributes; theseattributesare avail-
able to the Conditions sectionsof the KeyNote asser-
tions. Therearea numberof attributesdefined(thecom-
pletelist appearsin theisakmpd.policy manpagein

Authorizer: "POLICY"
Licensees: "passphrase:pedomellonamino"
Conditions: app_domain == "IPsec policy"

&& doi == "ipsec"
&& pfs == "yes"
&& esp_present == "yes"
&& esp_enc_alg != "null"
&& remote_filter ==

"135.207.000.000-135.207.255.255"
&& local_filter ==

"198.001.004.0-198.001.004.255"
&& remote_ike_address ==

"198.001.004.001" ;

Figure 4. Policy for Firewall of 135.207.0.0/16
Network.

OpenBSD2.6 and later). The most importantattributes
include:

app domain is alwayssetto IPsec policy.

pfs is set to yes if a Diffie-Hellmanexchangewill be
performedduringQuick Mode,otherwiseit is setto
no.

ah present,esppresent,comp present are set to yes
if anAH, ESP, or compressionproposalwasreceived
in IKE (or otherkey managementprotocol),andto
no otherwise.Notethatmorethanoneof thesemay
besetto yes,sinceit is possiblefor anIKE proposal
to specify “SA bundles” (combinationsof ESPand
AH thatmustbeappliedtogether).

esp enc alg is set to one of des, des-iv64,
3des, rc4, idea and so on dependingon the
proposedencryptionalgorithmto beusedin ESP.

local ike address,remote ike address are set to the
IPv4 or IPv6 address(expressedasa dotted-decimal
notationwith three-digit,zero-prefixed octets(e.g.,
010.010.003.045)) of the local interfaceusedin the
IKE exchange,and the addressof the remoteIKE
daemon,respectively.

remotefilter, local filter aresetto the IPv4 or IPv6 ad-
dressesproposedastheremoteandlocal UserIden-
tities in QuickMode.Hostaddresses,subnets,or ad-
dressrangesmay be expressed(andthuscontrolled
by policy).

Appendix 2: Configuration Examples

Example 1: Settingup a VPN

In this example, two sitesare connectedover an en-
crypted tunnel. The authenticationis done by a sim-
ple passphrase.The policy in Figure4 is presentat one



of the firewalls. It specifiesthat packets betweenthe
135.207.0.0/16rangeof addressesand the 198.1.4.0/24
rangeof addresseshave to beprotectedby ESPusingen-
cryption.Theremotegateway, with which IKE will nego-
tiate,is 198.1.4.1.

Example 2: RemoteAccess

Authority to allow remoteaccessthroughthe site fire-
wall is controlledby severalsecurityofficers,eachoneof
whom is identifiedby a public key. A policy entry such
astheoneshown in Figure4 existsfor eachindividualse-
curity officer, andis storedin theisakmpd configuration
file of the firewall. Note the last line in the Conditions
field, which restrictsremoteusersto negotiateonly host-
to-firewall SAs, without placingany restrictionsto their
actualaddressotherwise.

Eachportablemachinethatis to beallowedin musthold
a credentialsimilar to thatshown in Figure4; thecreden-
tial is signedby a securityadministrator. Whenweaken-
cryption is used,theusercanonly readandsende-mail;
whenstrongencryptionis used,all kindsof traffic areal-
lowed. During the IKE exchange,the user’s isakmpd
providesthis credentialto thefirewall, which passesit on
to KeyNote.Thepolicy andthecredential,takentogether,
expresstheoverallaccesspolicy for theholderof key JIK.
A similarpolicy (andacorrespondingcredential)is issued
to theuser(andfirewall), to authorizethereversedirection
(thefirewall needsto proveto theuserthatit is authorized
by theadministratorto handletraffic to the139.91.0.0/16
network).



Authorizer: POLICY
Licensees: RAS_ADMIN_Key
Comment: delegate authority to a Remote Access administrator.
Local-Constants:

RAS_ADMIN_Key_A = "rsa-base64:MDgCMQDMiEBn89VCSR3ajxr0bNRC\
Audlz5724fUaW0uyi4r1oSq8PaSC2v9QGS+phGEahJ8CAwEAAQ=="

Conditions: app_domain == "IPsec policy"
&& doi == "ipsec"
&& pfs == "yes"
&& ah_present == "no"
&& esp_present == "yes"
&& esp_enc_alg == "3des" && esp_auth_alg == "hmac-sha"
&& esp_encapsulation == "tunnel"
&& local_filter == "139.091.000.000-139.91.255.255"
&& remote_ike_address == remote_filter ;

Figure5. Mobile hostlocalpolicy.

Authorizer: RAS_ADMIN_KEY_A
Licensees: JIK
Local-Constants:

RAS_ADMIN_KEY_A = "rsa-base64:MDgCMQDMiEBn89VCSR3ajxr0bNRC\
Audlz5724fUaW0uyi4r1oSq8PaSC2v9QGS+phGEahJ8CAwEAAQ=="

JIK = "x509-base64:MIICGDCCAYGgAwIBAgIBADANBgkqhkiG9w0BAQQ\
FADBSMQswCQYDVQQGEwJHQjEOMAwGA1UEChMFQmVuQ28xETAPBg\
NVBAMTCEJlbkNvIENBMSAwHgYJKoZIhvcNAQkBFhFiZW5AYWxnc\
m91cC5jby51azAeFw05OTEwMTEyMzA2MjJaFw05OTExMTAyMzA2\
MjJaMFIxCzAJBgNVBAYTAkdCMQ4wDAYDVQQKEwVCZW5DbzERMA8\
GA1UEAxMIQmVuQ28gQ0ExIDAeBgkqhkiG9w0BCQEWEWJlbkBhbG\
dyb3VwLmNvLnVrMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBg\
QDaCs+JAB6YRKAVkoi1NkOpE1V3syApjBj0Ahjq5HqYAACo1JhM\
+QsPwuSWCNhBT51HX6G6UzfY3mOUz/vou6MJ/wor8EdeTX4nucx\
NSz/r6XI262aXezAp+GdBviuJZx3Q67ON/IWYrB4QtvihI4bMn5\
E55nF6TKtUMJTdATvs/wIDAQABMA0GCSqGSIb3DQEBBAUAA4GBA\
MaQOSkaiR8id0h6Zo0VSB4HpBnjpWqz1jNG8N4RPN0W8muRA2b9\
85GNP1bkC3fK1ZPpFTB0A76lLn11CfhAf/gV1iz3ELlUHo5J8nx\
Pu6XfsGJm3HsXJOuvOog8Aean4ODo4KInuAsnbLzpGl0d+Jqa5u\
TZUxsyg4QOBwYEU92H"

Conditions: app_domain == "IPsec policy" && doi == "ipsec"
&& pfs == "yes"
&& esp_present == "yes" && ah_present == "no"
&& ( ( esp_enc_alg == "des" && esp_auth_alg == "hmac-md5"
&& remote_filter_proto == "tcp"
&& local_filter_proto == "tcp"
&& ( remote_filter_port == "25"

|| remote_filter_port == "110" ) )
|| ( esp_enc_alg == "3des" && esp_aut_alg == "hmac-sha" ) ) ;

Signature: "sig-rsa-sha1-base64:KhKUeJ6m1zF7kehwHb7W0xAQ8EkPNKbUqNhf/i+f\
ymBqjbzMy13OmH1itijbFLQJ"

Figure6. Mobile hostcredential.
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Status of this Memo 
 
   This memo provides information for the Internet community.  It does 
   not specify an Internet standard of any kind.  Distribution of this 
   memo is unlimited. 
 
Copyright Notice 
 
   Copyright (C) The Internet Society (1999).  All Rights Reserved. 
 
Abstract 
 
   This memo describes version 2 of the KeyNote trust-management system. 
   It specifies the syntax and semantics of KeyNote ‘assertions’, 
   describes ‘action attribute’ processing, and outlines the application 
   architecture into which a KeyNote implementation can be fit.  The 
   KeyNote architecture and language are useful as building blocks for 
   the trust management aspects of a variety of Internet protocols and 
   services. 
 
1.  Introduction 
 
   Trust management, introduced in the PolicyMaker system [BFL96], is a 
   unified approach to specifying and interpreting security policies, 
   credentials, and relationships; it allows direct authorization of 
   security-critical actions.  A trust-management system provides 
   standard, general-purpose mechanisms for specifying application 
   security policies and credentials.  Trust-management credentials 
   describe a specific delegation of trust and subsume the role of 
   public key certificates; unlike traditional certificates, which bind 
   keys to names, credentials can bind keys directly to the 
   authorization to perform specific tasks. 
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   A trust-management system has five basic components: 
 
   *  A language for describing ‘actions’, which are operations with 
      security consequences that are to be controlled by the system. 
 
   *  A mechanism for identifying ‘principals’, which are entities that 
      can be authorized to perform actions. 
 
   *  A language for specifying application ‘policies’, which govern the 
      actions that principals are authorized to perform. 
 
   *  A language for specifying ‘credentials’, which allow principals to 
      delegate authorization to other principals. 
 
   *  A ‘compliance checker’, which provides a service to applications 
      for determining how an action requested by principals should be 
      handled, given a policy and a set of credentials. 
 
   The trust-management approach has a number of advantages over other 
   mechanisms for specifying and controlling authorization, especially 
   when security policy is distributed over a network or is otherwise 
   decentralized. 
 
   Trust management unifies the notions of security policy, credentials, 
   access control, and authorization.  An application that uses a 
   trust-management system can simply ask the compliance checker whether 
   a requested action should be allowed.  Furthermore, policies and 
   credentials are written in standard languages that are shared by all 
   trust-managed applications; the security configuration mechanism for 
   one application carries exactly the same syntactic and semantic 
   structure as that of another, even when the semantics of the 
   applications themselves are quite different. 
 
   Trust-management policies are easy to distribute across networks, 
   helping to avoid the need for application-specific distributed policy 
   configuration mechanisms, access control lists, and certificate 
   parsers and interpreters. 
 
   For a general discussion of the use of trust management in 
   distributed system security, see [Bla99]. 
 
   KeyNote is a simple and flexible trust-management system designed to 
   work well for a variety of large- and small-scale Internet-based 
   applications.  It provides a single, unified language for both local 
   policies and credentials.  KeyNote policies and credentials, called 
   ‘assertions’, contain predicates that describe the trusted actions 
   permitted by the holders of specific public keys.  KeyNote assertions 
   are essentially small, highly-structured programs.  A signed 
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   assertion, which can be sent over an untrusted network, is also 
   called a ‘credential assertion’.  Credential assertions, which also 
   serve the role of certificates, have the same syntax as policy 
   assertions but are also signed by the principal delegating the trust. 
 
   In KeyNote: 
 
   *  Actions are specified as a collection of name-value pairs. 
 
   *  Principal names can be any convenient string and can directly 
      represent cryptographic public keys. 
 
   *  The same language is used for both policies and credentials. 
 
   *  The policy and credential language is concise, highly expressive, 
      human readable and writable, and compatible with a variety of 
      storage and transmission media, including electronic mail. 
 
   *  The compliance checker returns an application-configured ‘policy 
      compliance value’ that describes how a request should be handled 
      by the application.  Policy compliance values are always 
      positively derived from policy and credentials, facilitating 
      analysis of KeyNote-based systems. 
 
   *  Compliance checking is efficient enough for high-performance and 
      real-time applications. 
 
   This document describes the KeyNote policy and credential assertion 
   language, the structure of KeyNote action descriptions, and the 
   KeyNote model of computation. 
 
   We assume that applications communicate with a locally trusted 
   KeyNote compliance checker via a ‘function call’ style interface, 
   sending a collection of KeyNote policy and credential assertions plus 
   an action description as input and accepting the resulting policy 
   compliance value as output.  However, the requirements of different 
   applications, hosts, and environments may give rise to a variety of 
   different interfaces to KeyNote compliance checkers; this document 
   does not aim to specify a complete compliance checker API. 
 
2.  KeyNote Concepts 
 
   In KeyNote, the authority to perform trusted actions is associated 
   with one or more ‘principals’.  A principal may be a physical entity, 
   a process in an operating system, a public key, or any other 
   convenient abstraction.  KeyNote principals are identified by a 
   string called a ‘Principal Identifier’.  In some cases, a Principal 
   Identifier will contain a cryptographic key interpreted by the 
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   KeyNote system (e.g., for credential signature verification).  In 
   other cases, Principal Identifiers may have a structure that is 
   opaque to KeyNote. 
 
   Principals perform two functions of concern to KeyNote: They request 
   ‘actions’ and they issue ‘assertions’.  Actions are any trusted 
   operations that an application places under KeyNote control. 
   Assertions delegate the authorization to perform actions to other 
   principals. 
 
   Actions are described to the KeyNote compliance checker in terms of a 
   collection of name-value pairs called an ‘action attribute set’.  The 
   action attribute set is created by the invoking application.  Its 
   structure and format are described in detail in Section 3 of this 
   document. 
 
   KeyNote provides advice to applications about the interpretation of 
   policy with regard to specific requested actions.  Applications 
   invoke the KeyNote compliance checker by issuing a ‘query’ containing 
   a proposed action attribute set and identifying the principal(s) 
   requesting it.  The KeyNote system determines and returns an 
   appropriate ‘policy compliance value’ from an ordered set of possible 
   responses. 
 
   The policy compliance value returned from a KeyNote query advises the 
   application how to process the requested action.  In the simplest 
   case, the compliance value is Boolean (e.g., "reject" or "approve"). 
   Assertions can also be written to select from a range of possible 
   compliance values, when appropriate for the application (e.g., "no 
   access", "restricted access", "full access").  Applications can 
   configure the relative ordering (from ‘weakest’ to ‘strongest’) of 
   compliance values at query time. 
 
   Assertions are the basic programming unit for specifying policy and 
   delegating authority.  Assertions describe the conditions under which 
   a principal authorizes actions requested by other principals.  An 
   assertion identifies the principal that made it, which other 
   principals are being authorized, and the conditions under which the 
   authorization applies.  The syntax of assertions is given in Section 
   4. 
 
   A special principal, whose identifier is "POLICY", provides the root 
   of trust in KeyNote.  "POLICY" is therefore considered to be 
   authorized to perform any action. 
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   Assertions issued by the "POLICY" principal are called ‘policy 
   assertions’ and are used to delegate authority to otherwise untrusted 
   principals.  The KeyNote security policy of an application consists 
   of a collection of policy assertions. 
 
   When a principal is identified by a public key, it can digitally sign 
   assertions and distribute them over untrusted networks for use by 
   other KeyNote compliance checkers.  These signed assertions are also 
   called ‘credentials’, and serve a role similar to that of traditional 
   public key certificates.  Policies and credentials share the same 
   syntax and are evaluated according to the same semantics.  A 
   principal can therefore convert its policy assertions into 
   credentials simply by digitally signing them. 
 
   KeyNote is designed to encourage the creation of human-readable 
   policies and credentials that are amenable to transmission and 
   storage over a variety of media.  Its assertion syntax is inspired by 
   the format of RFC822-style message headers [Cro82].  A KeyNote 
   assertion contains a sequence of sections, called ‘fields’, each of 
   which specifies one aspect of the assertion’s semantics.  Fields 
   start with an identifier at the beginning of a line and continue 
   until the next field is encountered.  For example: 
 
      KeyNote-Version: 2 
      Comment: A simple, if contrived, email certificate for user mab 
      Local-Constants:  ATT_CA_key = "RSA:acdfa1df1011bbac" 
                        mab_key = "DSA:deadbeefcafe001a" 
      Authorizer: ATT_CA_key 
      Licensees: mab_key 
      Conditions: ((app_domain == "email")  # valid for email only 
                && (address == "mab@research.att.com")); 
      Signature: "RSA-SHA1:f00f2244" 
 
   The meanings of the various sections are described in Sections 4 and 
   5 of this document. 
 
   KeyNote semantics resolve the relationship between an application’s 
   policy and actions requested by other principals, as supported by 
   credentials.  The KeyNote compliance checker processes the assertions 
   against the action attribute set to determine the policy compliance 
   value of a requested action.  These semantics are defined in Section 
   5. 
 
   An important principle in KeyNote’s design is ‘assertion 
   monotonicity’; the policy compliance value of an action is always 
   positively derived from assertions made by trusted principals. 
   Removing an assertion never results in increasing the compliance 
   value returned by KeyNote for a given query.  The monotonicity 
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   property can simplify the design and analysis of complex network- 
   based security protocols; network failures that prevent the 
   transmission of credentials can never result in spurious 
   authorization of dangerous actions.  A detailed discussion of 
   monotonicity and safety in trust management can be found in [BFL96] 
   and [BFS98]. 
 
3.  Action Attributes 
 
   Trusted actions to be evaluated by KeyNote are described by a 
   collection of name-value pairs called the ‘action attribute set’. 
   Action attributes are the mechanism by which applications communicate 
   requests to KeyNote and are the primary objects on which KeyNote 
   assertions operate.  An action attribute set is passed to the KeyNote 
   compliance checker with each query. 
 
   Each action attribute consists of a name and a value.  The semantics 
   of the names and values are not interpreted by KeyNote itself; they 
   vary from application to application and must be agreed upon by the 
   writers of applications and the writers of the policies and 
   credentials that will be used by them. 
 
   Action attribute names and values are represented by arbitrary-length 
   strings.  KeyNote guarantees support of attribute names and values up 
   to 2048 characters long.  The handling of longer attribute names or 
   values is not specified and is KeyNote-implementation-dependent. 
   Applications and assertions should therefore avoid depending on the 
   the use of attributes with names or values longer than 2048 
   characters.  The length of an attribute value is represented by an 
   implementation-specific mechanism (e.g., NUL-terminated strings, an 
   explicit length field, etc.). 
 
   Attribute values are inherently untyped and are represented as 
   character strings by default.  Attribute values may contain any non- 
   NUL ASCII character.  Numeric attribute values should first be 
   converted to an ASCII text representation by the invoking 
   application, e.g., the value 1234.5 would be represented by the 
   string "1234.5". 
 
   Attribute names are of the form: 
 
       <AttributeID>:: {Any string starting with a-z, A-Z, or the 
                        underscore character, followed by any number of 
                        a-z, A-Z, 0-9, or underscore characters} ; 
 
   That is, an <AttributeID> begins with an alphabetic or underscore 
   character and can be followed by any number of alphanumerics and 
   underscores.  Attribute names are case-sensitive. 
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   The exact mechanism for passing the action attribute set to the 
   compliance checker is determined by the KeyNote implementation. 
   Depending on specific requirements, an implementation may provide a 
   mechanism for including the entire attribute set as an explicit 
   parameter of the query, or it may provide some form of callback 
   mechanism invoked as each attribute is dereferenced, e.g., for access 
   to kernel variables. 
 
   If an action attribute is not defined its value is considered to be 
   the empty string. 
 
   Attribute names beginning with the "_" character are reserved for use 
   by the KeyNote runtime environment and cannot be passed from 
   applications as part of queries.  The following special attribute 
   names are used: 
 
       Name                        Purpose 
       ------------------------    ------------------------------------ 
       _MIN_TRUST                  Lowest-order (minimum) compliance 
                                   value in query; see Section 5.1. 
 
       _MAX_TRUST                  Highest-order (maximum) compliance 
                                   value in query; see Section 5.1. 
 
       _VALUES                     Linearly ordered set of compliance 
                                   values in query; see Section 5.1. 
                                   Comma separated. 
 
       _ACTION_AUTHORIZERS         Names of principals directly 
                                   authorizing action in query. 
                                   Comma separated. 
 
   In addition, attributes with names of the form "_<N>", where <N> is 
   an ASCII-encoded integer, are used by the regular expression matching 
   mechanism described in Section 5. 
 
   The assignment and semantics of any other attribute names beginning 
   with "_" is unspecified and implementation-dependent. 
 
   The names of other attributes in the action attribute set are not 
   specified by KeyNote but must be agreed upon by the writers of any 
   policies and credentials that are to inter-operate in a specific 
   KeyNote query evaluation. 
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   By convention, the name of the application domain over which action 
   attributes should be interpreted is given in the attribute named 
   "app_domain".  The IANA (or some other suitable authority) will 
   provide a registry of reserved app_domain names.  The registry will 
   list the names and meanings of each application’s attributes. 
 
   The app_domain convention helps to ensure that credentials are 
   interpreted as they were intended.  An attribute with any given name 
   may be used in many different application domains but might have 
   different meanings in each of them.  However, the use of a global 
   registry is not always required for small-scale, closed applications; 
   the only requirement is that the policies and credentials made 
   available to the KeyNote compliance checker interpret attributes 
   according to the same semantics assumed by the application that 
   created them. 
 
   For example, an email application might reserve the app_domain 
   "RFC822-EMAIL" and might use the attributes named "address" (the 
   email address of a message’s sender), "name" (the human name of the 
   message sender), and any "organization" headers present (the 
   organization name).  The values of these attributes would be derived 
   in the obvious way from the email message headers.  The public key of 
   the message’s signer would be given in the "_ACTION_AUTHORIZERS" 
   attribute. 
 
   Note that "RFC822-EMAIL" is a hypothetical example; such a name may 
   or may not appear in the actual registry with these or different 
   attributes.  (Indeed, we recognize that the reality of email security 
   is considerably more complex than this example might suggest.) 
 
4.  KeyNote Assertion Syntax 
 
   In the following sections, the notation [X]* means zero or more 
   repetitions of character string X.  The notation [X]+ means one or 
   more repetitions of X.  The notation <X>* means zero or more 
   repetitions of non-terminal <X>.  The notation <X>+ means one or more 
   repetitions of X, whereas <X>? means zero or one repetitions of X. 
   Nonterminal grammar symbols are enclosed in angle brackets.  Quoted 
   strings in grammar productions represent terminals. 
 
4.1  Basic Structure 
 
       <Assertion>:: <VersionField>? <AuthField> <LicenseesField>? 
                     <LocalConstantsField>? <ConditionsField>? 
                     <CommentField>? <SignatureField>? ; 
 
   All KeyNote assertions are encoded in ASCII. 
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   KeyNote assertions are divided into sections, called ‘fields’, that 
   serve various semantic functions.  Each field starts with an 
   identifying label at the beginning of a line, followed by the ":" 
   character and the field’s contents.  There can be at most one field 
   per line. 
 
   A field may be continued over more than one line by indenting 
   subsequent lines with at least one ASCII SPACE or TAB character. 
   Whitespace (a SPACE, TAB, or NEWLINE character) separates tokens but 
   is otherwise ignored outside of quoted strings.  Comments with a 
   leading octothorp character (see Section 4.2) may begin in any 
   column. 
 
   One mandatory field is required in all assertions: 
 
      Authorizer 
 
   Six optional fields may also appear: 
 
      Comment 
      Conditions 
      KeyNote-Version 
      Licensees 
      Local-Constants 
      Signature 
 
   All field names are case-insensitive.  The "KeyNote-Version" field, 
   if present, appears first.  The "Signature" field, if present, 
   appears last.  Otherwise, fields may appear in any order.  Each field 
   may appear at most once in any assertion. 
 
   Blank lines are not permitted in assertions.  Multiple assertions 
   stored in a file (e.g., in application policy configurations), 
   therefore, can be separated from one another unambiguously by the use 
   of blank lines between them. 
 
4.2  Comments 
 
      <Comment>:: "#" {ASCII characters} ; 
 
   The octothorp character ("#", ASCII 35 decimal) can be used to 
   introduce comments.  Outside of quoted strings (see Section 4.3), all 
   characters from the "#" character through the end of the current line 
   are ignored.  However, commented text is included in the computation 
   of assertion signatures (see Section 4.6.7). 
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4.3  Strings 
 
   A ‘string’ is a lexical object containing a sequence of characters. 
   Strings may contain any non-NUL characters, including newlines and 
   nonprintable characters.  Strings may be given as literals, computed 
   from complex expressions, or dereferenced from attribute names. 
 
4.3.1  String Literals 
 
      <StringLiteral>:: "\"" {see description below} "\"" ; 
 
   A string literal directly represents the value of a string.  String 
   literals must be quoted by preceding and following them with the 
   double-quote character (ASCII 34 decimal). 
 
   A printable character may be ‘escaped’ inside a quoted string literal 
   by preceding it with the backslash character (ASCII 92 decimal) 
   (e.g., "like \"this\".").  This permits the inclusion of the double- 
   quote and backslash characters inside string literals. 
 
   A similar escape mechanism is also used to represent non-printable 
   characters.  "\n" represents the newline character (ASCII character 
   10 decimal), "\r" represents the carriage-return character (ASCII 
   character 13 decimal), "\t" represents the tab character (ASCII 
   character 9 decimal), and "\f" represents the form-feed character 
   (ASCII character 12 decimal).  A backslash character followed by a 
   newline suppresses all subsequent whitespace (including the newline) 
   up to the next non-whitespace character (this allows the continuation 
   of long string constants across lines).  Un-escaped newline and 
   return characters are illegal inside string literals. 
 
   The constructs "\0o", "\0oo", and "\ooo" (where o represents any 
   octal digit) may be used to represent any non-NUL ASCII characters 
   with their corresponding octal values (thus, "\012" is the same as 
   "\n", "\101" is "A", and "\377" is the ASCII character 255 decimal). 
   However, the NUL character cannot be encoded in this manner; "\0", 
   "\00", and "\000" are converted to the strings "0", "00", and "000" 
   respectively.  Similarly, all other escaped characters have the 
   leading backslash removed (e.g., "\a" becomes "a", and "\\" becomes 
   "\").  The following four strings are equivalent: 
 
        "this string contains a newline\n followed by one space." 
        "this string contains a newline\n \ 
        followed by one space." 
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        "this str\ 
           ing contains a \ 
             newline\n followed by one space." 
 
        "this string contains a newline\012\040followed by one space." 
 
4.3.2  String Expressions 
 
   In general, anywhere a quoted string literal is allowed, a ‘string 
   expression’ can be used.  A string expression constructs a string 
   from string constants, dereferenced attributes (described in Section 
   4.4), and a string concatenation operator.  String expressions may be 
   parenthesized. 
 
       <StrEx>:: <StrEx> "." <StrEx>    /* String concatenation */ 
               | <StringLiteral>        /* Quoted string */ 
               | "(" <StrEx> ")" 
               | <DerefAttribute>       /* See Section 4.4 */ 
               | "$" <StrEx> ;          /* See Section 4.4 */ 
 
   The "$" operator has higher precedence than the "." operator. 
 
4.4  Dereferenced Attributes 
 
   Action attributes provide the primary mechanism for applications to 
   pass information to assertions.  Attribute names are strings from a 
   limited character set (<AttributeID> as defined in Section 3), and 
   attribute values are represented internally as strings.  An attribute 
   is dereferenced simply by using its name.  In general, KeyNote allows 
   the use of an attribute anywhere a string literal is permitted. 
 
   Attributes are dereferenced as strings by default.  When required, 
   dereferenced attributes can be converted to integers or floating 
   point numbers with the type conversion operators "@" and "&".  Thus, 
   an attribute named "foo" having the value "1.2" may be interpreted as 
   the string "1.2" (foo), the integer value 1 (@foo), or the floating 
   point value 1.2 (&foo). 
 
   Attributes converted to integer and floating point numbers are 
   represented according to the ANSI C ‘long’ and ‘float’ types, 
   respectively.  In particular, integers range from -2147483648 to 
   2147483647, whilst floats range from 1.17549435E-38F to 
   3.40282347E+38F. 
 
   Any uninitialized attribute has the empty-string value when 
   dereferenced as a string and the value zero when dereferenced as an 
   integer or float. 
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   Attribute names may be given literally or calculated from string 
   expressions and may be recursively dereferenced.  In the simplest 
   case, an attribute is dereferenced simply by using its name outside 
   of quotes; e.g., the string value of the attribute named "foo" is by 
   reference to ‘foo’ (outside of quotes).  The "$<StrEx>" construct 
   dereferences the attribute named in the string expression <StrEx>. 
   For example, if the attribute named "foo" contains the string "bar", 
   the attribute named "bar" contains the string "xyz", and the 
   attribute "xyz" contains the string "qua", the following string 
   comparisons are all true: 
 
    foo == "bar" 
    $("foo") == "bar" 
    $foo == "xyz" 
    $(foo) == "xyz" 
    $$foo == "qua" 
 
   If <StrEx> evaluates to an invalid or uninitialized attribute name, 
   its value is considered to be the empty string (or zero if used as a 
   numeric). 
 
   The <DerefAttribute> token is defined as: 
 
      <DerefAttribute>:: <AttributeID> ; 
 
4.5  Principal Identifiers 
 
   Principals are represented as ASCII strings called ‘Principal 
   Identifiers’.  Principal Identifiers may be arbitrary labels whose 
   structure is not interpreted by the KeyNote system or they may encode 
   cryptographic keys that are used by KeyNote for credential signature 
   verification. 
 
       <PrincipalIdentifier>:: <OpaqueID> 
                             | <KeyID> ; 
 
   4.5.1  Opaque Principal Identifiers 
 
   Principal Identifiers that are used by KeyNote only as labels are 
   said to be ‘opaque’.  Opaque identifiers are encoded in assertions as 
   strings (see Section 4.3): 
 
       <OpaqueID>:: <StrEx> ; 
 
   Opaque identifier strings should not contain the ":" character. 
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4.5.2  Cryptographic Principal Identifiers 
 
   Principal Identifiers that are used by KeyNote as keys, e.g., to 
   verify credential signatures, are said to be ‘cryptographic’. 
   Cryptographic identifiers are also lexically encoded as strings: 
 
       <KeyID>:: <StrEx> ; 
 
   Unlike Opaque Identifiers, however, Cryptographic Identifier strings 
   have a special form.  To be interpreted by KeyNote (for signature 
   verification), an identifier string should be of the form: 
 
      <IDString>:: <ALGORITHM>":"<ENCODEDBITS> ; 
 
   "ALGORITHM" is an ASCII substring that describes the algorithms to be 
   used in interpreting the key’s bits.  The ALGORITHM identifies the 
   major cryptographic algorithm (e.g., RSA [RSA78], DSA [DSA94], etc.), 
   structured format (e.g., PKCS1 [PKCS1]), and key bit encoding (e.g., 
   HEX or BASE64).  By convention, the ALGORITHM substring starts with 
   an alphabetic character and can contain letters, digits, underscores, 
   or dashes (i.e., it should match the regular expression "[a-zA-Z][a- 
   zA-Z0-9_-]*").  The IANA (or some other appropriate authority) will 
   provide a registry of reserved algorithm identifiers. 
 
   "ENCODEDBITS" is a substring of characters representing the key’s 
   bits, the encoding and format of which depends on the ALGORITHM.  By 
   convention, hexadecimal encoded keys use lower-case ASCII characters. 
 
   Cryptographic Principal Identifiers are converted to a normalized 
   canonical form for the purposes of any internal comparisons between 
   them; see Section 5.2. 
 
   Note that the keys used in examples throughout this document are 
   fictitious and generally much shorter than would be required for 
   security in practice. 
 
4.6  KeyNote Fields 
 
4.6.1  The KeyNote-Version Field 
 
   The KeyNote-Version field identifies the version of the KeyNote 
   assertion language under which the assertion was written.  The 
   KeyNote-Version field is of the form 
 
       <VersionField>:: "KeyNote-Version:" <VersionString> ; 
       <VersionString>:: <StringLiteral> 
                       | <IntegerLiteral> ; 
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   where <VersionString> is an ASCII-encoded string.  Assertions in 
   production versions of KeyNote use decimal digits in the version 
   representing the version number of the KeyNote language under which 
   they are to be interpreted.  Assertions written to conform with this 
   document should be identified with the version string "2" (or the 
   integer 2).  The KeyNote-Version field, if included, should appear 
   first. 
 
4.6.2  The Local-Constants Field 
 
   This field adds or overrides action attributes in the current 
   assertion only.  This mechanism allows the use of short names for 
   (frequently lengthy) cryptographic principal identifiers, especially 
   to make the Licensees field more readable.  The Local-Constants field 
   is of the form: 
 
       <LocalConstantsField>:: "Local-Constants:" <Assignments> ; 
       <Assignments>:: /* can be empty */ 
                     | <AttributeID> "=" <StringLiteral> <Assignments> ; 
 
   <AttributeID> is an attribute name from the action attribute 
   namespace as defined in Section 3.  The name is available for use as 
   an attribute in any subsequent field.  If the Local-Constants field 
   defines more than one identifier, it can occupy more than one line 
   and be indented.  <StringLiteral> is a string literal as described in 
   Section 4.3.  Attributes defined in the Local-Constants field 
   override any attributes with the same name passed in with the action 
   attribute set. 
 
   An attribute may be initialized at most once in the Local-Constants 
   field.  If an attribute is initialized more than once in an 
   assertion, the entire assertion is considered invalid and is not 
   considered by the KeyNote compliance checker in evaluating queries. 
 
4.6.3  The Authorizer Field 
 
   The Authorizer identifies the Principal issuing the assertion.  This 
   field is of the form 
 
       <AuthField>:: "Authorizer:" <AuthID> ; 
       <AuthID>:: <PrincipalIdentifier> 
                | <DerefAttribute> ; 
 
   The Principal Identifier may be given directly or by reference to the 
   attribute namespace (as defined in Section 4.4). 
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4.6.4   The Licensees Field 
 
   The Licensees field identifies the principals authorized by the 
   assertion.  More than one principal can be authorized, and 
   authorization can be distributed across several principals through 
   the use of ‘and’ and threshold constructs.  This field is of the form 
 
       <LicenseesField>:: "Licensees:" <LicenseesExpr> ; 
 
       <LicenseesExpr>::      /* can be empty */ 
                         | <PrincExpr> ; 
 
       <PrincExpr>:: "(" <PrincExpr> ")" 
                     | <PrincExpr> "&&" <PrincExpr> 
                     | <PrincExpr> "||" <PrincExpr> 
                     | <K>"-of(" <PrincList> ")"        /* Threshold */ 
                     | <PrincipalIdentifier> 
                     | <DerefAttribute> ; 
 
       <PrincList>:: <PrincipalIdentifier> 
                   | <DerefAttribute> 
                   | <PrincList> "," <PrincList> ; 
 
       <K>:: {Decimal number starting with a digit from 1 to 9} ; 
 
   The "&&" operator has higher precedence than the "||" operator.  <K> 
   is an ASCII-encoded positive decimal integer.  If a <PrincList> 
   contains fewer than <K> principals, the entire assertion is omitted 
   from processing. 
 
4.6.5  The Conditions Field 
 
   This field gives the ‘conditions’ under which the Authorizer trusts 
   the Licensees to perform an action.  ‘Conditions’ are predicates that 
   operate on the action attribute set.  The Conditions field is of the 
   form: 
 
    <ConditionsField>:: "Conditions:" <ConditionsProgram> ; 
 
    <ConditionsProgram>:: /* Can be empty */ 
                          | <Clause> ";" <ConditionsProgram> ; 
 
    <Clause>:: <Test> "->" "{" <ConditionsProgram> "}" 
             | <Test> "->" <Value> 
             | <Test> ; 
 
    <Value>:: <StrEx> ; 
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    <Test>:: <RelExpr> ; 
 
    <RelExpr>:: "(" <RelExpr> ")"        /* Parentheses */ 
              | <RelExpr> "&&" <RelExpr> /* Logical AND */ 
              | <RelExpr> "||" <RelExpr> /* Logical OR */ 
              | "!" <RelExpr>         /* Logical NOT */ 
              | <IntRelExpr> 
              | <FloatRelExpr> 
              | <StringRelExpr> 
              | "true"        /* case insensitive */ 
              | "false" ;     /* case insensitive */ 
 
    <IntRelExpr>:: <IntEx> "==" <IntEx> 
                 | <IntEx> "!=" <IntEx> 
                 | <IntEx> "<" <IntEx> 
                 | <IntEx> ">" <IntEx> 
                 | <IntEx> "<=" <IntEx> 
                 | <IntEx> ">=" <IntEx> ; 
 
    <FloatRelExpr>:: <FloatEx> "<" <FloatEx> 
                   | <FloatEx> ">" <FloatEx> 
                   | <FloatEx> "<=" <FloatEx> 
                   | <FloatEx> ">=" <FloatEx> ; 
 
    <StringRelExpr>:: <StrEx> "==" <StrEx>  /* String equality */ 
                    | <StrEx> "!=" <StrEx>  /* String inequality */ 
                    | <StrEx> "<" <StrEx>   /* Alphanum. comparisons */ 
                    | <StrEx> ">" <StrEx> 
                    | <StrEx> "<=" <StrEx> 
                    | <StrEx> ">=" <StrEx> 
                    | <StrEx> "~=" <RegExpr> ; /* Reg. expr. matching */ 
 
    <IntEx>:: <IntEx> "+" <IntEx>        /* Integer */ 
            | <IntEx> "-" <IntEx> 
            | <IntEx> "*" <IntEx> 
            | <IntEx> "/" <IntEx> 
            | <IntEx> "%" <IntEx> 
            | <IntEx> "^" <IntEx>        /* Exponentiation */ 
            | "-" <IntEx> 
            | "(" <IntEx> ")" 
            | <IntegerLiteral> 
            | "@" <StrEx> ; 
 
    <FloatEx>:: <FloatEx> "+" <FloatEx>  /* Floating point */ 
              | <FloatEx> "-" <FloatEx> 
              | <FloatEx> "*" <FloatEx> 
              | <FloatEx> "/" <FloatEx> 
              | <FloatEx> "^" <FloatEx> /* Exponentiation */ 
 
 
 
Blaze, et al.                Informational                     [Page 16] 



 
RFC 2704          The KeyNote Trust-Management System     September 1999 
 
 
              | "-" <FloatEx> 
              | "(" <FloatEx> ")" 
              | <FloatLiteral> 
              | "&" <StrEx> ; 
 
    <IntegerLiteral>:: {Decimal number of at least one digit} ; 
    <FloatLiteral>:: <IntegerLiteral>"."<IntegerLiteral> ; 
 
    <StringLiteral> is a quoted string as defined in Section 4.3 
    <AttributeID> is defined in Section 3. 
 
   The operation precedence classes are (from highest to lowest): 
        { (, ) } 
        {unary -, @, &, $} 
        {^} 
        {*, /, %} 
        {+, -, .} 
 
   Operators in the same precedence class are evaluated left-to-right. 
 
   Note the inability to test for floating point equality,  as most 
   floating point implementations (hardware or otherwise) do not 
   guarantee accurate equality testing. 
 
   Also note that integer and floating point expressions can only be 
   used within clauses of condition fields, but in no other KeyNote 
   field. 
 
   The keywords "true" and "false" are not reserved; they can be used as 
   attribute or principal identifier names (although this practice makes 
   assertions difficult to understand and is discouraged). 
 
   <RegExpr> is a standard regular expression, conforming to the POSIX 
   1003.2 regular expression syntax and semantics. 
 
   Any string expression (or attribute) containing the ASCII 
   representation of a numeric value can be converted to an integer or 
   float with the use of the "@" and "&" operators, respectively.  Any 
   fractional component of an attribute value dereferenced as an integer 
   is rounded down.  If an attribute dereferenced as a number cannot be 
   properly converted (e.g., it contains invalid characters or is empty) 
   its value is considered to be zero. 
 
 
 
 
 
 
 
 
 
Blaze, et al.                Informational                     [Page 17] 



 
RFC 2704          The KeyNote Trust-Management System     September 1999 
 
 
4.6.6  The Comment Field 
 
   The Comment field allows assertions to be annotated with information 
   describing their purpose.  It is of the form 
 
       <CommentField>:: "Comment:" <text> ; 
 
   No interpretation of the contents of this field is performed by 
   KeyNote.  Note that this is one of two mechanisms for including 
   comments in KeyNote assertions; comments can also be inserted 
   anywhere in an assertion’s body by preceding them with the "#" 
   character (except inside string literals). 
 
4.6.7  The Signature Field 
 
   The Signature field identifies a signed assertion and gives the 
   encoded digital signature of the principal identified in the 
   Authorizer field.  The Signature field is of the form: 
 
       <SignatureField>:: "Signature:" <Signature> ; 
 
       <Signature>:: <StrEx> ; 
 
   The <Signature> string should be of the form: 
 
       <IDString>:: <ALGORITHM>":"<ENCODEDBITS> ; 
 
   The formats of the "ALGORITHM" and "ENCODEDBITS" substrings are as 
   described for Cryptographic Principal Identifiers in Section 4.4.2 
   The algorithm name should be the same as that of the principal 
   appearing in the Authorizer field.  The IANA (or some other suitable 
   authority) will provide a registry of reserved names.  It is not 
   necessary that the encodings of the signature and the authorizer key 
   be the same. 
 
   If the signature field is included, the principal named in the 
   Authorizer field must be a Cryptographic Principal Identifier, the 
   algorithm must be known to the KeyNote implementation, and the 
   signature must be correct for the assertion body and authorizer key. 
 
   The signature is computed over the assertion text, beginning with the 
   first field (including the field identifier string), up to (but not 
   including) the Signature field identifier.  The newline preceding the 
   signature field identifier is the last character included in 
   signature calculation.  The signature is always the last field in a 
   KeyNote assertion.  Text following this field is not considered part 
   of the assertion. 
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   The algorithms for computing and verifying signatures must be 
   configured into each KeyNote implementation and are defined and 
   documented separately. 
 
   Note that all signatures used in examples in this document are 
   fictitious and generally much shorter than would be required for 
   security in practice. 
 
5.   Query Evaluation Semantics 
 
   The KeyNote compliance checker finds and returns the Policy 
   Compliance Value of queries, as defined in Section 5.3, below. 
 
5.1  Query Parameters 
 
   A KeyNote query has four parameters: 
 
   *  The identifier of the principal(s) requesting the action. 
 
   *  The action attribute set describing the action. 
 
   *  The set of compliance values of interest to the application, 
      ordered from _MIN_TRUST to _MAX_TRUST 
 
   *  The policy and credential assertions that should be included in 
      the evaluation. 
 
   The mechanism for passing these parameters to the KeyNote evaluator 
   is application dependent.  In particular, an evaluator might provide 
   for some parameters to be passed explicitly, while others are looked 
   up externally (e.g., credentials might be looked up in a network- 
   based distribution system), while still others might be requested 
   from the application as needed by the evaluator, through a ‘callback’ 
   mechanism (e.g., for attribute values that represent values from 
   among a very large namespace). 
 
5.1.1  Action Requester 
 
   At least one Principal must be identified in each query as the 
   ‘requester’ of the action.  Actions may be requested by several 
   principals, each considered to have individually requested it.  This 
   allows policies that require multiple authorizations, e.g., ‘two 
   person control’.  The set of authorizing principals is made available 
   in the special attribute "_ACTION_AUTHORIZERS"; if several principals 
   are authorizers, their identifiers are separated with commas. 
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5.1.2  Ordered Compliance Value Set 
 
   The set of compliance values of interest to an application (and their 
   relative ranking to one another) is determined by the invoking 
   application and passed to the KeyNote evaluator as a parameter of the 
   query.  In many applications, this will be Boolean, e.g., the ordered 
   sets {FALSE, TRUE} or {REJECT, APPROVE}.  Other applications may 
   require a range of possible values, e.g., {No_Access, Limited_Access, 
   Full_Access}.  Note that applications should include in this set only 
   compliance value names that are actually returned by the assertions. 
 
   The lowest-order and highest-order compliance value strings given in 
   the query are available in the special attributes named "_MIN_TRUST" 
   and "_MAX_TRUST", respectively.  The complete set of query compliance 
   values is made available in ascending order (from _MIN_TRUST to 
   _MAX_TRUST) in the special attribute named "_VALUES".  Values are 
   separated with commas; applications that use assertions that make use 
   of the _VALUES attribute should therefore avoid the use of compliance 
   value strings that themselves contain commas. 
 
5.2  Principal Identifier Normalization 
 
   Principal identifier comparisons among Cryptographic Principal 
   Identifiers (that represent keys) in the Authorizer and Licensees 
   fields or in an action’s direct authorizers are performed after 
   normalizing them by conversion to a canonical form. 
 
   Every cryptographic algorithm used in KeyNote defines a method for 
   converting keys to their canonical form and that specifies how the 
   comparison for equality of two keys is performed.  If the algorithm 
   named in the identifier is unknown to KeyNote, the identifier is 
   treated as opaque. 
 
   Opaque identifiers are compared as case-sensitive strings. 
 
   Notice that use of opaque identifiers in the Authorizer field 
   requires that the assertion’s integrity be locally trusted (since it 
   cannot be cryptographically verified by the compliance checker). 
 
5.3  Policy Compliance Value Calculation 
 
   The Policy Compliance Value of a query is the Principal Compliance 
   Value of the principal named "POLICY".  This value is defined as 
   follows: 
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5.3.1  Principal Compliance Value 
 
   The Compliance Value of a principal <X> is the highest order 
   (maximum) of: 
 
      -  the Direct Authorization Value of principal <X>; and 
 
      -  the Assertion Compliance Values of all assertions identifying 
         <X> in the Authorizer field. 
 
5.3.2  Direct Authorization Value 
 
   The Direct Authorization Value of a principal <X> is _MAX_TRUST if 
   <X> is listed in the query as an authorizer of the action. 
   Otherwise, the Direct Authorization Value of <X> is _MIN_TRUST. 
 
5.3.3  Assertion Compliance Value 
 
   The Assertion Compliance Value of an assertion is the lowest order 
   (minimum) of the assertion’s Conditions Compliance Value and its 
   Licensee Compliance Value. 
 
5.3.4 Conditions Compliance Value 
 
   The Conditions Compliance Value of an assertion is the highest-order 
   (maximum) value among all successful clauses listed in the conditions 
   section. 
 
   If no clause’s test succeeds or the Conditions field is empty, an 
   assertion’s Conditions Compliance Value is considered to be the 
   _MIN_TRUST value, as defined Section 5.1. 
 
   If an assertion’s Conditions field is missing entirely, its 
   Conditions Compliance Value is considered to be the _MAX_TRUST value, 
   as defined in Section 5.1. 
 
   The set of successful test clause values is calculated as follows: 
 
   Recall from the grammar of section 4.6.5 that each clause in the 
   conditions section has two logical parts: a ‘test’ and an optional 
   ‘value’, which, if present, is separated from the test with the "->" 
   token.  The test subclause is a predicate that either succeeds 
   (evaluates to logical ‘true’) or fails (evaluates to logical 
   ‘false’).  The value subclause is a string expression that evaluates 
   to one value from the ordered set of compliance values given with the 
   query.  If the value subclause is missing, it is considered to be 
   _MAX_TRUST.  That is, the clause 
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       foo=="bar"; 
 
   is equivalent to 
 
       foo=="bar" -> _MAX_TRUST; 
 
   If the value component of a clause is present, in the simplest case 
   it contains a string expression representing a possible compliance 
   value.  For example, consider an assertion with the following 
   Conditions field: 
 
       Conditions: 
          @user_id == 0 -> "full_access";             # clause (1) 
          @user_id < 1000 -> "user_access";           # clause (2) 
          @user_id < 10000 -> "guest_access";         # clause (3) 
          user_name == "root" -> "full_access";       # clause (4) 
 
   Here, if the value of the "user_id" attribute is "1073" and the 
   "user_name" attribute is "root", the possible compliance value set 
   would contain the values "guest_access" (by clause (3)) and 
   "full_access" (by clause (4)).  If the ordered set of compliance 
   values given in the query (in ascending order) is {"no_access", 
   "guest_access", "user_access", "full_access"}, the Conditions 
   Compliance Value of the assertion would be "full_access" (because 
   "full_access" has a higher-order value than "guest_access").  If the 
   "user_id" attribute had the value "19283" and the "user_name" 
   attribute had the value "nobody", no clause would succeed and the 
   Conditions Compliance Value would be "no_access", which is the 
   lowest-order possible value (_MIN_TRUST). 
 
   If a clause lists an explicit value, its value string must be named 
   in the query ordered compliance value set.  Values not named in the 
   query compliance value set are considered equivalent to _MIN_TRUST. 
 
   The value component of a clause can also contain recursively-nested 
   clauses.  Recursively-nested clauses are evaluated only if their 
   parent test is true.  That is, 
 
       a=="b" ->  { b=="c" -> "value1"; 
                    d=="e"  -> "value2"; 
                    true -> "value3"; } ; 
 
   is equivalent to 
 
       (a=="b") && (b=="c") -> "value1"; 
       (a=="b") && (d=="e") -> "value2"; 
       (a=="b") -> "value3"; 
 
 
 
 
Blaze, et al.                Informational                     [Page 22] 



 
RFC 2704          The KeyNote Trust-Management System     September 1999 
 
 
   String comparisons are case-sensitive. 
 
   A regular expression comparison ("~=") is considered true if the 
   left-hand-side string expression matches the right-hand-side regular 
   expression.  If the POSIX regular expression group matching scheme is 
   used, the number of groups matched is placed in the temporary meta- 
   attribute "_0" (dereferenced as _0), and each match is placed in 
   sequence in the temporary attributes (_1, _2, ..., _N).  These 
   match-attributes’ values are valid only within subsequent references 
   made within the same clause.  Regular expression evaluation is case- 
   sensitive. 
 
   A runtime error occurring in the evaluation of a test, such as 
   division by zero or an invalid regular expression, causes the test to 
   be considered false.  For example: 
 
      foo == "bar" -> { 
                        @a == 1/0 -> "oneval";    # subclause 1 
                        @a == 2 -> "anotherval";  # subclause 2 
                      }; 
 
   Here, subclause 1 triggers a runtime error.  Subclause 1 is therefore 
   false (and has the value _MIN_TRUST).  Subclause 2, however, would be 
   evaluated normally. 
 
   An invalid <RegExpr> is considered a runtime error and causes the 
   test in which it occurs to be considered false. 
 
5.3.5  Licensee Compliance Value 
 
   The Licensee Compliance Value of an assertion is calculated by 
   evaluating the expression in the Licensees field, based on the 
   Principal Compliance Value of the principals named there. 
 
   If an assertion’s Licensees field is empty, its Licensee Compliance 
   Value is considered to be _MIN_TRUST.  If an assertion’s Licensees 
   field is missing altogether, its Licensee Compliance Value is 
   considered to be _MAX_TRUST. 
 
   For each principal named in the Licensees field, its Principal 
   Compliance Value is substituted for its name.  If no Principal 
   Compliance Value can be found for some named principal, its name is 
   substituted with the _MIN_TRUST value. 
 
   The licensees expression (as defined in Section 4.6.4) is evaluated 
   as follows: 
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   *  A "(...)" expression has the value of the enclosed subexpression. 
 
   *  A "&&" expression has the lower-order (minimum) of its two 
        subexpression values. 
 
   *  A "||" expression has the higher-order (maximum) of its two 
      subexpression values. 
 
   *  A "<K>-of(<List>)" expression has the K-th highest order 
      compliance value listed in <list>.  Values that appear multiple 
      times are counted with multiplicity.  For example, if K = 3 and 
      the orders of the listed compliance values are (0, 1, 2, 2, 3), 
      the value of the expression is the compliance value of order 2. 
 
   For example, consider the following Licensees field: 
 
        Licensees: ("alice" && "bob") || "eve" 
 
   If the Principal Compliance Value is "yes" for principal "alice", 
   "no" for principal "bob", and "no" for principal "eve", and "yes" is 
   higher order than "no" in the query’s Compliance Value Set, then the 
   resulting Licensee Compliance Value is "no". 
 
   Observe that if there are exactly two possible compliance values 
   (e.g., "false" and "true"), the rules of Licensee Compliance Value 
   resolution reduce exactly to standard Boolean logic. 
 
5.4  Assertion Management 
 
   Assertions may be either signed or unsigned.  Only signed assertions 
   should be used as credentials or transmitted or stored on untrusted 
   media.  Unsigned assertions should be used only to specify policy and 
   for assertions whose integrity has already been verified as 
   conforming to local policy by some mechanism external to the KeyNote 
   system itself (e.g., X.509 certificates converted to KeyNote 
   assertions by a trusted conversion program). 
 
   Implementations that permit signed credentials to be verified by the 
   KeyNote compliance checker generally provide two ‘channels’ through 
   which applications can make assertions available.  Unsigned, 
   locally-trusted assertions are provided over a ‘trusted’ interface, 
   while signed credentials are provided over an ‘untrusted’ interface. 
   The KeyNote compliance checker verifies correct signatures for all 
   assertions submitted over the untrusted interface.  The integrity of 
   KeyNote evaluation requires that only assertions trusted as 
   reflecting local policy are submitted to KeyNote via the trusted 
   interface. 
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   Note that applications that use KeyNote exclusively as a local policy 
   specification mechanism need use only trusted assertions.  Other 
   applications might need only a small number of infrequently changed 
   trusted assertions to ‘bootstrap’ a policy whose details are 
   specified in signed credentials issued by others and submitted over 
   the untrusted interface. 
 
5.5  Implementation Issues 
 
   Informally, the semantics of KeyNote evaluation can be thought of as 
   involving the construction a directed graph of KeyNote assertions 
   rooted at a POLICY assertion that connects with at least one of the 
   principals that requested the action. 
 
   Delegation of some authorization from principal <A> to a set of 
   principals <B> is expressed as an assertion with principal <A> given 
   in the Authorizer field, principal set <B> given in the Licensees 
   field, and the authorization to be delegated encoded in the 
   Conditions field.  How the expression digraph is constructed is 
   implementation-dependent and implementations may use different 
   algorithms for optimizing the graph’s construction.  Some 
   implementations might use a ‘bottom up’ traversal starting at the 
   principals that requested the action, others might follow a ‘top 
   down’ approach starting at the POLICY assertions, and still others 
   might employ other heuristics entirely. 
 
   Implementations are encouraged to employ mechanisms for recording 
   exceptions (such as division by zero or syntax error), and reporting 
   them to the invoking application if requested.  Such mechanisms are 
   outside the scope of this document. 
 
6.  Examples 
 
   In this section, we give examples of KeyNote assertions that might be 
   used in hypothetical applications.  These examples are intended 
   primarily to illustrate features of KeyNote assertion syntax and 
   semantics, and do not necessarily represent the best way to integrate 
   KeyNote into applications. 
 
   In the interest of readability, we use much shorter keys than would 
   ordinarily be used in practice.  Note that the Signature fields in 
   these examples do not represent the result of any real signature 
   calculation. 
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   1. TRADITIONAL CA / EMAIL 
 
      A. A policy unconditionally authorizing RSA key abc123 for all 
         actions.  This essentially defers the ability to specify 
         policy to the holder of the secret key corresponding to 
         abc123: 
 
           Authorizer: "POLICY" 
           Licensees: "RSA:abc123" 
 
      B. A credential assertion in which RSA Key abc123 trusts either 
         RSA key 4401ff92 (called ‘Alice’) or DSA key d1234f (called 
         ‘Bob’) to perform actions in which the "app_domain" is 
         "RFC822-EMAIL", where the "address" matches the regular 
         expression "^.*@keynote\.research\.att\.com$".  In other 
         words, abc123 trusts Alice and Bob as certification 
         authorities for the keynote.research.att.com domain. 
 
           KeyNote-Version: 2 
           Local-Constants: Alice="DSA:4401ff92"  # Alice’s key 
                            Bob="RSA:d1234f"      # Bob’s key 
           Authorizer: "RSA:abc123" 
           Licensees: Alice || Bob 
           Conditions: (app_domain == "RFC822-EMAIL") && 
                       (address ~=   # only applies to one domain 
                         "^.*@keynote\\.research\\.att\\.com$"); 
           Signature: "RSA-SHA1:213354f9" 
 
      C. A certificate credential for a specific user whose email 
         address is mab@keynote.research.att.com and whose name, if 
         present, must be "M. Blaze". The credential was issued by the 
         ‘Alice’ authority (whose key is certified in Example B 
         above): 
 
           KeyNote-Version: 2 
           Authorizer: "DSA:4401ff92"  # the Alice CA 
           Licensees: "DSA:12340987"   # mab’s key 
           Conditions: ((app_domain == "RFC822-EMAIL") && 
                        (name == "M. Blaze" || name == "") && 
                        (address == "mab@keynote.research.att.com")); 
           Signature: "DSA-SHA1:ab23487" 
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      D. Another certificate credential for a specific user, also 
         issued by the ‘Alice’ authority.  This example allows three 
         different keys to sign as jf@keynote.research.att.com (each 
         for a different cryptographic algorithm).  This is, in 
         effect, three credentials in one: 
 
           KeyNote-Version: "2" 
           Authorizer: "DSA:4401ff92"   # the Alice CA 
           Licensees: "DSA:abc991" ||   # jf’s DSA key 
                      "RSA:cde773" ||   # jf’s RSA key 
                      "BFIK:fd091a"     # jf’s BFIK key 
           Conditions: ((app_domain == "RFC822-EMAIL") && 
                        (name == "J. Feigenbaum" || name == "") && 
                        (address == "jf@keynote.research.att.com")); 
           Signature: "DSA-SHA1:8912aa" 
 
         Observe that under policy A and credentials B, C and D, the 
         following action attribute sets are accepted (they return 
         _MAX_TRUST): 
 
             _ACTION_AUTHORIZERS = "dsa:12340987" 
             app_domain = "RFC822-EMAIL" 
             address = "mab@keynote.research.att.com" 
          and 
             _ACTION_AUTHORIZERS = "dsa:12340987" 
             app_domain = "RFC822-EMAIL" 
             address = "mab@keynote.research.att.com" 
             name = "M. Blaze" 
 
         while the following are not accepted (they return 
         _MIN_TRUST): 
 
             _ACTION_AUTHORIZERS = "dsa:12340987" 
             app_domain = "RFC822-EMAIL" 
             address = "angelos@dsl.cis.upenn.edu" 
          and 
             _ACTION_AUTHORIZERS = "dsa:abc991" 
             app_domain = "RFC822-EMAIL" 
             address = "mab@keynote.research.att.com" 
             name = "M. Blaze" 
          and 
             _ACTION_AUTHORIZERS = "dsa:12340987" 
             app_domain = "RFC822-EMAIL" 
             address = "mab@keynote.research.att.com" 
             name = "J. Feigenbaum" 
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   2. WORKFLOW/ELECTRONIC COMMERCE 
 
      E. A policy that delegates authority for the "SPEND" application 
         domain to RSA key dab212 when the amount given in the 
         "dollars" attribute is less than 10000. 
 
           Authorizer: "POLICY" 
           Licensees: "RSA:dab212"  # the CFO’s key 
           Conditions: (app_domain=="SPEND") && (@dollars < 10000); 
 
      F. RSA key dab212 delegates authorization to any two signers, 
         from a list, one of which must be DSA key feed1234 in the 
         "SPEND" application when @dollars < 7500.  If the amount in 
         @dollars is 2500 or greater, the request is approved but 
         logged. 
 
           KeyNote-Version: 2 
           Comment: This credential specifies a spending policy 
           Authorizer: "RSA:dab212"        # the CFO 
           Licensees: "DSA:feed1234" &&    # The vice president 
                          ("RSA:abc123" || # middle manager #1 
                           "DSA:bcd987" || # middle manager #2 
                           "DSA:cde333" || # middle manager #3 
                           "DSA:def975" || # middle manager #4 
                           "DSA:978add")   # middle manager #5 
           Conditions: (app_domain=="SPEND")  # note nested clauses 
                         -> { (@(dollars) < 2500) 
                                -> _MAX_TRUST; 
                              (@(dollars) < 7500) 
                                -> "ApproveAndLog"; 
                            }; 
           Signature: "RSA-SHA1:9867a1" 
 
      G. According to this policy, any two signers from the list of 
         managers will do if @(dollars) < 1000: 
 
           KeyNote-Version: 2 
           Authorizer: "POLICY" 
           Licensees: 2-of("DSA:feed1234", # The VP 
                           "RSA:abc123",   # Middle management clones 
                           "DSA:bcd987", 
                           "DSA:cde333", 
                           "DSA:def975", 
                           "DSA:978add") 
           Conditions: (app_domain=="SPEND") && 
                       (@(dollars) < 1000); 
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      H. A credential from dab212 with a similar policy, but only one 
         signer is required if @(dollars) < 500.  A log entry is made if 
         the amount is at least 100. 
 
           KeyNote-Version: 2 
           Comment: This one credential is equivalent to six separate 
                    credentials, one for each VP and middle manager. 
                    Individually, they can spend up to $500, but if 
                    it’s $100 or more, we log it. 
           Authorizer: "RSA:dab212"      # From the CFO 
           Licensees: "DSA:feed1234" ||  # The VP 
                      "RSA:abc123" ||    # The middle management clones 
                      "DSA:bcd987" || 
                      "DSA:cde333" || 
                      "DSA:def975" || 
                      "DSA:978add" 
           Conditions: (app_domain="SPEND")  # nested clauses 
                         -> { (@(dollars) < 100) -> _MAX_TRUST; 
                              (@(dollars) < 500) -> "ApproveAndLog"; 
                            }; 
           Signature: "RSA-SHA1:186123" 
 
      Assume a query in which the ordered set of Compliance Values is 
      {"Reject", "ApproveAndLog", "Approve"}.  Under policies E and G, 
      and credentials F and H, the Policy Compliance Value is 
      "Approve" (_MAX_TRUST) when: 
 
           _ACTION_AUTHORIZERS = "DSA:978add" 
           app_domain = "SPEND" 
           dollars = "45" 
           unmentioned_attribute = "whatever" 
       and 
           _ACTION_AUTHORIZERS = "RSA:abc123,DSA:cde333" 
           app_domain = "SPEND" 
           dollars = "550" 
 
      The following return "ApproveAndLog": 
 
           _ACTION_AUTHORIZERS = "DSA:feed1234,DSA:cde333" 
           app_domain = "SPEND" 
           dollars = "5500" 
       and 
           _ACTION_AUTHORIZERS = "DSA:cde333" 
           app_domain = "SPEND" 
           dollars = "150" 
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      However, the following return "Reject" (_MIN_TRUST): 
 
           _ACTION_AUTHORIZERS = "DSA:def975" 
           app_domain = "SPEND" 
           dollars = "550" 
       and 
           _ACTION_AUTHORIZERS = "DSA:cde333,DSA:978add" 
           app_domain = "SPEND" 
           dollars = "5500" 
 
7.  Trust-Management Architecture 
 
   KeyNote provides a simple mechanism for describing security policy 
   and representing credentials.  It differs from traditional 
   certification systems in that the security model is based on binding 
   keys to predicates that describe what the key is authorized by policy 
   to do, rather than on resolving names.  The infrastructure and 
   architecture to support a KeyNote system is therefore rather 
   different from that required for a name-based certification scheme. 
   The KeyNote trust-management architecture is based on that of 
   PolicyMaker [BFL96,BFS98]. 
 
   It is important to understand the separation between the 
   responsibilities of the KeyNote system and those of the application 
   and other support infrastructure.  A KeyNote compliance checker will 
   determine, based on policy and credential assertions, whether a 
   proposed action is permitted according to policy.  The usefulness of 
   KeyNote output as a policy enforcement mechanism depends on a number 
   of factors: 
 
   *  The action attributes and the assignment of their values must 
      reflect accurately the security requirements of the application. 
      Identifying the attributes to include in the action attribute set 
      is perhaps the most important task in integrating KeyNote into new 
      applications. 
 
   *  The policy of the application must be correct and well-formed.  In 
      particular, trust must be deferred only to principals that should, 
      in fact, be trusted by the application. 
 
   *  The application itself must be trustworthy.  KeyNote does not 
      directly enforce policy; it only provides advice to the 
      applications that call it.  In other words, KeyNote assumes that 
      the application itself is trusted and that the policy assertions 
      it specifies are correct.  Nothing prevents an application from 
      submitting misleading or incorrect assertions to KeyNote or from 
      ignoring KeyNote altogether. 
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   It is also up to the application (or some service outside KeyNote) to 
   select the appropriate credentials and policy assertions with which 
   to run a particular query.  Note, however, that even if inappropriate 
   credentials are provided to KeyNote, this cannot result in the 
   approval of an illegal action (as long as the policy assertions are 
   correct and the the action attribute set itself is correctly passed 
   to KeyNote). 
 
   KeyNote is monotonic; adding an assertion to a query can never result 
   in a query’s having a lower compliance value that it would have had 
   without the assertion.  Omitting credentials may, of course, result 
   in legal actions being disallowed.  Selecting appropriate credentials 
   (e.g., from a distributed database or ‘key server’) is outside the 
   scope of the KeyNote language and may properly be handled by a remote 
   client making a request, by the local application receiving the 
   request, or by a network-based service, depending on the application. 
 
   In addition, KeyNote does not itself provide credential revocation 
   services, although credentials can be written to expire after some 
   date by including a date test in the predicate.  Applications that 
   require credential revocation can use KeyNote to help specify and 
   implement revocation policies.  A future document will address 
   expiration and revocation services in KeyNote. 
 
   Because KeyNote is designed to support a variety of applications, 
   several different application interfaces to a KeyNote implementation 
   are possible.  In its simplest form, a KeyNote compliance checker 
   would exist as a stand-alone application, with other applications 
   calling it as needed.  KeyNote might also be implemented as a library 
   to which applications are linked.  Finally, a KeyNote implementation 
   might run as a local trusted service, with local applications 
   communicating their queries via some interprocess communication 
   mechanism. 
 
8.  Security Considerations 
 
   Trust management is itself a security service.  Bugs in or incorrect 
   use of a KeyNote compliance checker implementation could have 
   security implications for any applications in which it is used. 
 
9. IANA Considerations 
 
   This document contains three identifiers to be maintained by the 
   IANA.  This section explains the criteria to be used by the IANA to 
   assign additional identifiers in each of these lists. 
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9.1  app_domain Identifiers 
 
   The only thing required of IANA on allocation of these identifiers is 
   that they be unique strings.  These strings are case-sensitive for 
   KeyNote purposes, however it is strongly recommended that IANA assign 
   different capitalizations of the same string only to the same 
   organization. 
 
9.2  Public Key Format Identifiers 
 
   These strings uniquely identify a public key algorithm as used in the 
   KeyNote system for representing keys.  Requests for assignment of new 
   identifiers must be accompanied by an RFC-style document that 
   describes the details of this encoding.  Example strings are "rsa- 
   hex:" and "dsa-base64:".  These strings are case-insensitive. 
 
9.3  Signature Algorithm Identifiers 
 
   These strings uniquely identify a public key algorithm as used in the 
   KeyNote system for representing public key signatures.  Requests for 
   assignment of new identifiers must be accompanied by an RFC-style 
   document that describes the details of this encoding. Example strings 
   are "sig-rsa-md5-hex:" and "sig-dsa-sha1-base64:".  Note that all 
   such strings must begin with the prefix "sig-".  These strings are 
   case-insensitive. 
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B.  Full BNF (alphabetical order) 
 
   <ALGORITHM>:: {see section 4.4.2} ; 
 
   <Assertion>:: <VersionField>? <AuthField> <LicenseesField>? 
                 <LocalConstantsField>? <ConditionsField>? 
                 <CommentField>? <SignatureField>? ; 
 
   <Assignments>:: "" | <AttributeID> "=" <StringLiteral> <Assignments> 
   ; 
 
   <AttributeID>:: {Any string starting with a-z, A-Z, or the 
                    underscore character, followed by any number of 
                    a-z, A-Z, 0-9, or underscore characters} ; 
 
   <AuthField>:: "Authorizer:" <AuthID> ; 
 
   <AuthID>:: <PrincipalIdentifier> | <DerefAttribute> ; 
 
   <Clause>:: <Test> "->" "{" <ConditionsProgram> "}" 
            | <Test> "->" <Value> | <Test> ; 
 
   <Comment>:: "#" {ASCII characters} ; 
 
   <CommentField>:: "Comment:" {Free-form text} ; 
 
   <ConditionsField>:: "Conditions:" <ConditionsProgram> ; 
 
   <ConditionsProgram>:: "" | <Clause> ";" <ConditionsProgram> ; 
 
   <DerefAttribute>:: <AttributeID> ; 
 
   <ENCODEDBITS>:: {see section 4.4.2} ; 
 
   <FloatEx>:: <FloatEx> "+" <FloatEx> | <FloatEx> "-" <FloatEx> 
             | <FloatEx> "*" <FloatEx> | <FloatEx> "/" <FloatEx> 
             | <FloatEx> "^" <FloatEx> | "-" <FloatEx> 
             | "(" <FloatEx> ")" | <FloatLiteral> | "&" <StrEx> ; 
 
   <FloatRelExpr>:: <FloatEx> "<" <FloatEx> | <FloatEx> ">" <FloatEx> 
                  | <FloatEx> "<=" <FloatEx> 
                  | <FloatEx> ">=" <FloatEx> ; 
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   <FloatLiteral>:: <IntegerLiteral>"."<IntegerLiteral> ; 
 
   <IDString>:: <ALGORITHM>":"<ENCODEDBITS> ; 
 
   <IntegerLiteral>:: {Decimal number of at least one digit} ; 
 
   <IntEx>:: <IntEx> "+" <IntEx> | <IntEx> "-" <IntEx> 
           | <IntEx> "*" <IntEx> | <IntEx> "/" <IntEx> 
           | <IntEx> "%" <IntEx> | <IntEx> "^" <IntEx> 
           | "-" <IntEx> | "(" <IntEx> ")" | <IntegerLiteral> 
           | "@" <StrEx> ; 
 
   <IntRelExpr>:: <IntEx> "==" <IntEx> | <IntEx> "!=" <IntEx> 
                | <IntEx> "<" <IntEx>  | <IntEx> ">" <IntEx> 
                | <IntEx> "<=" <IntEx> | <IntEx> ">=" <IntEx> ; 
 
   <K>:: {Decimal number starting with a digit from 1 to 9} ; 
 
   <KeyID>:: <StrEx> ; 
 
   <LicenseesExpr>:: "" | <PrincExpr> ; 
 
   <LicenseesField>:: "Licensees:" <LicenseesExpr> ; 
 
   <LocalConstantsField>:: "Local-Constants:" <Assignments> ; 
 
   <OpaqueID>:: <StrEx> ; 
 
   <PrincExpr>:: "(" <PrincExpr> ")" | <PrincExpr> "&&" <PrincExpr> 
               | <PrincExpr> "||" <PrincExpr> 
               | <K>"-of(" <PrincList> ")" | <PrincipalIdentifier> 
               | <DerefAttribute> ; 
 
   <PrincipalIdentifier>:: <OpaqueID> | <KeyID> ; 
 
   <PrincList>:: <PrincipalIdentifier> | <DerefAttribute> 
               | <PrincList> "," <PrincList> ; 
 
   <RegExpr>:: {POSIX 1003.2 Regular Expression} 
 
   <RelExpr>:: "(" <RelExpr> ")" | <RelExpr> "&&" <RelExpr> 
             | <RelExpr> "||" <RelExpr> | "!" <RelExpr> 
             | <IntRelExpr> | <FloatRelExpr> | <StringRelExpr> 
             | "true" | "false" ; 
 
   <Signature>:: <StrEx> ; 
 
   <SignatureField>:: "Signature:" <Signature> ; 
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   <StrEx>:: <StrEx> "." <StrEx> | <StringLiteral> | "(" <StrEx> ")" 
           | <DerefAttribute> | "$" <StrEx> ; 
 
   <StringLiteral>:: {see section 4.3.1} ; 
 
   <StringRelExpr>:: <StrEx> "==" <StrEx> | <StrEx> "!=" <StrEx> 
                   | <StrEx> "<" <StrEx> | <StrEx> ">" <StrEx> 
                   | <StrEx> "<=" <StrEx> | <StrEx> ">=" <StrEx> 
                   | <StrEx> "~=" <RegExpr> ; 
 
   <Test>:: <RelExpr> ; 
 
   <Value>:: <StrEx> ; 
 
   <VersionField>:: "KeyNote-Version:" <VersionString> ; 
 
   <VersionString>:: <StringLiteral> | <IntegerLiteral> ; 
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