
����

3GPP SA3 #16
28-30 November 2000

John Ioannidis
AT&T

ji@research.att.com

S3-000766

2

Policy for IPsec

• AH and ESP provide mechanism.
• IKE does key agreement.

• IPSP manages policy:
– "How do I use IPsec to talk to another host?"
– "Is it possible to create an SA that conforms to my

policy?"
– "What should the SA parameters be?"
– "Who is my security gateway?"
– "Where do I find my policies?"

3

Design Space

• Runs on anything that runs IPsec.
• Decentralized and heterogeneous administration.

– Two nodes need not trust common admin.
– Remote administration.
– Delegation.

• SA parameters not specified in advance.
• Secure, sound, comprehensible.

– Human-readable policies.
– Compatible with security proofs.
– Correct implementation should be straighforward.

4

Requirements

• Policy model.
• IPsec gateway discovery mechanism.
• Policy language for nodes.
• Means of distributing responsibility.
• Protocol for policy discovery.
• Method for resolving SA parameters.
• Compliance checking.
• No changes to AH/ESP/IKE.

5

Policy Model

• Defines the semantics of IPsec policy.
• Everything (gateway discovery, SA resolution,

compliance checking) implements these semantics.
• Independent of specific details (of language,

distribution protocols, etc.).

6

Gateway Discovery

• How a node finds where to direct IPsec traffic for
another node.

7

IPSP Language

• Standard language for representing a node's policy
externally to other nodes.
– May be different from local policy configuration

mechanisms.
• Output of policy discovery protocol.
• Input to SA resolution and compliance checking

steps.

8

Distributed Policy

• Must be possible to have remote administration of a
node's policy.

• Must be possible to delegate authorization and
responsibility.

• Must have support for security gateways, remote
services, etc.

9

Policy Discovery

• Protocol that provides information (in IPSP language)
about a node's policy to other hosts.

• Node need not reveal its entire policy.
• Just enough to allow others to do SA parameter

resolution.

10

SA Parameter Resolution

• Given output of policy discovery protocol:
– can two nodes communicate at all?
– What set of SA parameters meets both nodes'

policies?
• Must be computationally efficient to be practical.

11

Compliance Checking

• Given a set of proposed SA parameters, a node must
be able to verify:
– Whether parameters meet its own policy.
– Whether gateway is correct.

• This is where policy enforcement is implemented.

12

Security Policy Protocol

• Protocol for discovering SEGs, distributing policies.
• Generic and extensible.
• Initiator sends message to remote end-host.

– SEGs intercept and forward to policy server.
– Policies acquired and forwarded to end-host.

• SEGs can examine acquired policies, changes reqs.
– Avoid redundant IKE operations.
– Main reason for bundling discovery and

distribution in the same protocol.
• Can be initiated by end-host or firewall.
• Policy Server may be local to a host/SEG.
• Policy Server must be configured.

13

KeyNote and Compliance
Checking

• Standard format for policy distribution and
compliance checking.

• Simple, extensible language (RFC 2704).
• Used for expressing policies.

– SPD/SA parameters.
– Trusted peers/third parties.
– Integrity-protected.

• Allows authorization delegation.
– Various types of trust relations between security

domains.

14

KeyNote

• A Trust-Management System.
• Compliance Checking:

– determines if Actions are compatible with Policies.
• Human-readable policies.
• Wide variety of applications:

– IPsec policy
– Workflow.
– Digital Rights Management System
– Micropayments System
– Kernel policy management.

15

Actions

• Actions are activities that have security
considerations.

• In KeyNote, actions are described by a set of
attribute-value pairs called the Action Environment.

• Attribute semantics depend on the application
• An Action is always associated with a Requestor.

Requestor may be a public key, a user name,
etc.

16

Policies

• Policies determine who is trusted to authorize
various actions.

• In KeyNote, Policies are a collection of Assertions.
• Assertions determine whether a Requestor is

authorized to request an Action.
• Two major components to Assertions:

– Licencees: checks who the requestors may be.
– Conditions: checks the Action Environment.

• Licencees and Conditions are programmable
expressions.

• Other components provide additional semantic
structure (comments, identification, etc.).

17

Sample Assertion

Authorizer: POLICY
Licencees: wendy
Conditions: $file_owner == “stan”

&& $filename ~= “/home/stan/[^/]*”
-> { return TRUE }

18

Turning policies into credentials

• We have shown how assertions authorize requestors.
• Assertions may also defer to other assertions.
• An assertion may be signed and used as a

cryptographic credential.

Authorizer: stan’s public key
Licencees: wendy’s public key
Conditions: $file_owner == “stan”

&& $filename ~= “/home/stan/[^/]*”
-> { return TRUE }

Signature: …..

19

Evaluation of a Request

• KeyNote is a compliance checker.
• Determines whether requested action satisfies policy.
• Finds a subgraph of assertions linking action to

POLICY.
• For precise semantics, see the draft.

20

IPsec example

• TM for IPsec paper

21

Details

• The Licencees field may contain:
– single identifier.
– A complex expression.

• Expressions are:
– monotonic (important for security proofs).
– Disjunction, conjunction, threshold.

22

Observations

• Conditions may return more than just TRUE/FALSE.

• It may also pass back information to the application.

• It can work in conjunction with X.509 and SDSI
names.

23

Pointers

• IP Security Policy IETF Working Group:
http://www.ietf.org/html.charters/ipsp-charter.html

• Trust Management:
http://www.crypto.com/trustmgt

Trust Managementfor IPsec
�

Matt Blaze
AT&T Labs- Research

mab@research.att.com

JohnIoannidis
AT&T Labs- Research

ji@research.att.com

AngelosD. Keromytis
Universityof Pennsylvania

angelos@cis.upenn.edu

Abstract

IPsecis the standardsuite of protocolsfor network-
layer confidentiality and authenticationof Internet traf-
fic. The IPsecprotocols,however, do not addressthe
policies for how protectedtraffic shouldbehandledat se-
curity endpoints.This paperintroducesan efficient pol-
icy managementschemefor IPsec,basedon the princi-
plesof trust management.A compliance check is added
to the IPsecarchitecturethat testspacket filters proposed
when new security associationsare createdfor confor-
mancewith thelocal securitypolicy, basedon credentials
presentedby thepeerhost. Securitypoliciesandcreden-
tials canbequitesophisticated(andspecifiedin thetrust-
managementlanguage),while still allowing veryefficient
packet-filtering for the actualIPsectraffic. We presenta
practical,portableimplementationof thisdesign,basedon
theKeyNotetrust-managementlanguage,thatworkswith
a varietyof Unix-basedIPsecimplementations.

1. Intr oduction

TheIPsecprotocolsuite,whichprovidesnetwork-layer
securityfor theInternet,hasrecentlybeenstandardizedin
the IETF andis beginning to make its way into commer-
cial implementationsof desktop,server, and router op-
eratingsystems. For many applications,securityat the
network layer hasa numberof advantagesover security
provided elsewherein the protocolstack. The detailsof
network semanticsareusuallyhiddenfrom applications,

�
This work wassupportedby DARPA underContractF39502-99-1-

0512-MODP0001.

which thereforeautomaticallyandtransparentlytake ad-
vantageof whatever network-layersecurityservicestheir
environmentprovides. More importantly, IPsecoffers a
remarkableflexibility not possibleat higher- or lower-
layerabstractions:securitycanbeconfiguredend-to-end
(protectingtraffic betweentwo hosts),route-to-route(pro-
tectingtraffic passingovera particularsetof links), edge-
to-edge(protectingtraffic as it passesbetween“trusted”
networksvia an“untrusted”one,subsumingmany of the
currentfunctionsperformedby network firewalls), or in
any other configurationin which network nodescan be
identifiedasappropriatesecurityendpoints.

Despitethis flexibility , IPsecdoesnot itself addressthe
problemof managingthepolicies governingthehandling
of traffic enteringor leaving a hostrunningthe protocol.
By itself, theIPsecprotocolcanprotectpacketsfrom ex-
ternal tamperingandeavesdropping,but doesnothingto
control which hostsare authorizedfor particular kinds
of sessionsor to exchangeparticularkinds of traffic. In
many configurations,especiallywhennetwork-layersecu-
rity is usedto build firewallsandvirtual privatenetworks,
suchpoliciesmaybenecessarilybequitecomplex. There
is no standardinterfaceor protocolfor controlling IPsec
tunnelcreation,andmostIPsecimplementationsprovide
only rudimentary, packet-filter-basedandACL-basedpol-
icy mechanisms.

The crudenessof IPsecpolicy control, in turn, means
that in spiteof the availability of network-layersecurity,
many applicationsare forced to duplicateat the appli-
cationor transportlayer cryptographicfunctionsalready
providedat thenetwork layer.

Therearethreemaincontributionsin this paper:we in-

troducea new policy managementarchitecturefor IPsec,
basedon the principlesof trust management;we present
adesignthatintegratesthisarchitecturewith theKeyNote
Trust Managementsystem;finally, we presenta practi-
cal,portableimplementationof this design,currentlydis-
tributedin open-sourceform in OpenBSD.

1.1. IPsecPacketFilters andSecurityAssociations

IPsecis basedon the conceptof datagram encapsu-
lation. Cryptographicallyprotectednetwork-layerpack-
ets are placedinside, as the payloadof other network
packets,making the encryptiontransparentto any inter-
mediatenodesthatmustprocesspacket headersfor rout-
ing, etc. Outgoingpacketsareencapsulated,encrypted,
andauthenticated(asappropriate)just beforebeingsent
to the network, and incoming packets are verified, de-
crypted,anddecapsulatedimmediatelyuponreceipt[12].
Key managementin sucha protocolis straightforwardin
the simplestcase.Two hostscanuseany key-agreement
protocolto negotiatekeyswith oneanother, andusethose
keysaspartof theencapsulatinganddecapsulatingpacket
transforms.

Let us examinethe securitypolicy decisionsan IPsec
processormustmake. Whenwe discuss“policy” in this
paper, we refer specificallyto the network-layersecurity
policies that govern the flow of traffic amongnetworks,
hosts,andapplications.Observe that policy mustbe en-
forcedwhenever packetsarrive at or areaboutto leave a
network securityendpoint(which couldbeanendhost,a
gateway, a router, or a firewall).

IPsec“connections”are describedin a datastructure
called a security association (SA). Encryption and au-
thenticationkeys are containedin the SA at eachend-
point, and eachIPsec-protectedpacket hasan SA iden-
tifier that indexesthe SA databaseof its destinationhost
(notethatnotall SAsspecifybothencryptionandauthen-
tication;authentication-onlySAsarecommonlyused,and
encryption-onlySAs arepossiblealbeit consideredinse-
cure).

Whenanincomingpacketarrivesfrom thenetwork, the
hostfirst determinestheprocessingit requires:

� If thepacket is not protected,shouldit beaccepted?
This is essentiallythe “traditional” packet filtering
problem,asperformed,e.g., by network firewalls.

� If the packet is encapsulatedunderthesecuritypro-
tocol:

– Is therecorrectkey material(containedin the
specifiedSA) requiredto decapsulateit?

– Should the resulting packet (after decapsula-
tion) be accepted?A secondstageof packet
filtering occursat this point. A packet maybe

successfullydecapsulatedand still not be ac-
ceptable(e.g., a decapsulatedpacket with an
invalid sourceaddress,or a packet attempting
delivery to someport not permittedby the re-
ceiver’spolicy).

A securityendpointmakessimilar decisionswhenan
outgoingpacket is readyto besent:

� Is thereasecurityassociation(SA) thatshouldbeap-
plied to this packet? If thereareseveral applicable
SAs,which oneshouldbeselected?

� If thereis no SA available, how shouldthe packet
be handled?It may be forwardedto somenetwork
interface,dropped,or queueduntil an SA is made
available, possiblyafter triggeringsomeautomated
key managementmechanismsuchasIKE, theInter-
netKey Exchangeprotocol[11].

Observe that becausethese questionsare asked on
packet-by-packetbasis,packet-basedpolicy filtering must
beperformed,andany relatedsecuritytransformsapplied,
quickly enoughto keepup with network datarates.This
implies that in all but the slowestnetwork environments
thereis insufficient time to processelaboratesecuritylan-
guages,performpublic key operations,traverselarge ta-
bles,or resolveruleconflictsin any sophisticatedmanner.

IPsecimplementations(and most other network-layer
entities that enforcesecurity policy, such as firewalls),
therefore,employ simple,filter-basedlanguagesfor con-
figuring their packet-handlingpolicies. In general,these
languagesspecifyrouting rulesfor handlingpacketsthat
matchbit patternsin packet headers,basedon suchpa-
rametersas incomingandoutgoingaddressesandports,
services,packetoptions,etc.[17]

IPsecpolicy controlneednotbelimited to packetfilter-
ing, however. A greatdealof flexibility is availablein the
controlof whensecurityassociationsarecreatedandwhat
packetfilters areassociatedwith them.

Most commonlyhowever, in currentimplementations,
theIPsecuseror administratoris forcedto provide“all or
nothing”access,in whichholdersof asetof keys(or those
certified by a particularauthority) are allowed to create
any kind of securityassociationthey wish,andotherscan
do nothingatall.

A furtherissuewith IPsecpolicy controlis theneedfor
two hoststo discoverandnegotiatethekind of traffic they
are willing to exchange. When two hostsgovernedby
their own policieswant to communicate,they needsome
mechanismfor determiningwhat, if any, kinds of traffic
thecombinedeffectsof oneanother’spoliciesarepermit-
ted. Again, IPsecitself doesnot provide sucha mecha-
nism;whena hostattemptsto createanSA, it mustknow
in advancethat the policy on the remotehostwill accept

it. Theoperationtheneithersucceedsor fails. While this
may be sufficient for small VPNs andotherapplications
wherebothpeersareunderthe sameadministrative con-
trol, it doesnot scaleto larger-scaleapplicationssuchas
publicservers.

1.2. RelatedWork

TheIKE specification[11] makesuseof theSubjectAl-
ternateNamefield in X.509 [8] certificatesto encodethe
packet selectorthecertificateholdermayuseduringIKE
Quick Mode. Beyondthis, no standardway hasyet been
definedfor negotiating,exchanging,andotherwisehan-
dling IPsecsecuritypolicy.

[20] definesa protocol for dynamically discovering,
accessing,and processingsecurity policy information.
Hostsandnetworksbelongto securitydomains,andpol-
icy servers are responsiblefor servicingthesedomains.
The protocol usedis similar in someways to the DNS
protocol.Thisprotocolis servingasthebasisof theIETF
IP SecurityPolicy Working Group.

[9] describesa languagefor specifyingcommunication
securitypolicies,heavily orientedtoward IPsecandIKE.
SPSLis basedon the RoutingPolicy SpecificationLan-
guage(RPSL)[1]. While SPSLoffersconsiderableflexi-
bility in specifyingIPsecsecuritypolicies,it doesnot ad-
dressdelegationof authority, nor is it easilyextensibleto
accommodateothertypesof applications.

A numberof otherInternetDraftshave beenpublished
definingvariousdirectoryschematafor IPsecpolicy. Sim-
ilar directory-basedwork hasalsostartedin thecontext of
theIETF Policy Framework WorkingGroup.It is still too
earlyto determinewhattheresultsof thateffort will be.

COPS [5] defines a simple client/server protocol
whereinaPolicy EnforcementPoint(PEP)communicates
with a Policy DecisionPoint(PDP)in orderto determine
whetherarequestedactionis permissible.COPSis mostly
orientedtowardadmissioncontrol for RSVP[6] or simi-
lar protocols.It is not clearwhatits applicabilityto IPsec
securitypolicy wouldbe.

RADIUS [19] andits proposedsuccessor, DIAMETER
[7], aresimilar in somewaysto COPS.They requirecom-
municationwith a policy server, which is suppliedwith
all necessaryinformationandis dependeduponto makea
policy-baseddecision.Bothprotocolsareorientedtoward
providing Accounting,Authentication,andAuthorization
servicesfor dial-upandroamingusers.

We first proposedthe notion of usinga trust manage-
mentsystemfor network-layersecuritypolicy control in
[4].

2. Trust Managementfor IPsec
A basicparameterof the packet processingproblems

mentionedin the previous section is the question of

whethera packet falls underthe scopeof someSecurity
Association(SA). SAs containandmanagethe key ma-
terial requiredto performnetwork-layersecurityprotocol
transforms.How then,do SAsgetcreated?

The obvious approachis to trigger the creationof a
new SA whenever communicationwith a new hostis at-
tempted,if thatattemptwould fail the packet-level secu-
rity policy. Theprotocolwould bebasedon a public-key
or Needham-Schroeder[18] scheme.

Unfortunately, protocolsthat merelyarrangefor pack-
ets to be protectedundersecurityassociationsdo noth-
ing to addressthe problemof enforcinga policy regard-
ing the flow of incomingor outgoingtraffic. Recall that
policy control is a centralmotivatingfactorfor theuseof
network-layersecurityprotocolsin thefirst place.

In general,andrathersurprisingly, securityassociation
policy is largely anopenproblem– onewith very impor-
tantpracticalsecurityimplicationsandwith thepotential
to provide a solid framework for analysisof network se-
curity properties.

Fortunately, theproblemof policy managementfor se-
curity associationscanbedistinguishedin several impor-
tantwaysfrom theproblemof filtering individualpackets:

� SAs tendto beratherlong-lived; thereis locality of
referenceinsofar as hoststhat have exchangedone
packet arevery likely to alsoexchangeothersin the
nearfuture.

� It is acceptablethat policy controlson SA creation
should require substantiallymore resourcesthan
couldbeexpendedon processingevery packet (e.g.,
publickey operations,severalpacketexchanges,pol-
icy evaluation,etc.).

� The resultof negotiatingan SA betweentwo hosts
can provide (among other things) parametersfor
more efficient, lower-level packet policy (filtering)
operations.

The trust-management approach[3] for checkingcom-
pliancewith securitypolicy providesexactly theinterface
andabstractionsrequiredhere.

2.1.The KeyNoteTrust ManagementSystem

Becausewe makeextensiveuseof theconceptsof trust
management,and especiallythe KeyNote language,we
provideabrief review of thoseconceptshere.

Thenotionof trust management wasintroducedin [3].
A trust-managementsystemprovidesa standardinterface
that applicationscanuseto testwhetherpotentiallydan-
gerousactionscomplywith local securitypolicies.

More formally, trust-managementsystemsarecharac-
terizedby:

� A methodfor describingactions, which are opera-
tions with securityconsequencesthatareto be con-
trolled by thesystem.

� A mechanismfor identifying principals, which are
entitiesthatcanbeauthorizedto performactions.

� A language for specifying application policies,
which govern the actionsthat principalsare autho-
rizedto perform.

� A languagefor specifyingcredentials, which allow
principalsto delegateauthorizationto other princi-
pals

� A compliance checker, which providesa servicefor
determininghow an action requestedby principals
shouldbe handled,given a policy anda setof cre-
dentials.

KeyNoteis asimpleandflexible trust-managementsys-
temdesignedto work well for avarietyof applications.In
applicationsusingKeyNote, policiesandcredentialsare
written in thesamelanguage.Thebasicunit of KeyNote
programmingis the assertion. Assertionscontain pro-
grammablepredicatesthat operateon the requestedat-
tribute set and limit the actions that principals are al-
lowed to perform. KeyNoteassertionsaresmall, highly-
structuredprograms.Authority canbedelegatedto others;
a digitally signedassertioncanbe sentover anuntrusted
network andservethesameroleastraditionalcertificates.
Unlike traditional policy systems,policy in KeyNote is
expressedasacombinationof unsigned andsigned policy
assertions(signedassertionsarealsocalledcredentials).
Thereis awidespectrumof possiblecombinations;onthe
oneextreme,all systempolicy is expressedin termsof lo-
cal (unsigned)assertions.Ontheotherextreme,all policy
is expressedassignedassertions,with only onerule (the
root of the policy) beinganunsignedassertionthatdele-
gatesto oneor moretrustedentities.Theintegrity of each
signedassertionis guaranteedby its signature;therefore,
thereis no needfor theseto bestoredwithin thesecurity
perimeterof thesystem.

KeyNoteallows thecreationof arbitrarily sophisticated
securitypolicies, in which entities(which canbe identi-
fied by cryptographicpublic keys) canbegrantedlimited
authorizationto performspecifickindsof trustedactions.

Whena “dangerous”actionis requestedof a KeyNote-
basedapplication,theapplicationsubmitsadescriptionof
the actionalongwith a copy of its local securitypolicy
to theKeyNote interpreter. Applicationsdescribeactions
to KeyNote with a setof attribute/valuepairs (calledan
action attribute set in KeyNoteterminology)thatdescribe
the context and consequencesof security-criticalopera-
tions. KeyNote then “approves” or “rejects” the action

accordingto therulesgivenin theapplication’s local pol-
icy.

KeyNoteassertionsarewritten in ASCII andcontaina
collectionof structuredfields that describewhich princi-
pal is beingauthorized(the Licensee), who is doing the
authorizing(theAuthorizer) anda predicatethat teststhe
actionattributes(theConditions). For example:

Authorizer: "POLICY"
Licensees: "Borris Yeltsin"
Conditions:
EmailAddress == "yeltsin@kremvax.ru"

meansthat the “POLICY” principalauthorizesthe “Bor-
ris Yeltsin” principal to do any action in which the
attribute called “EmailAddress” is equal to the string
“yeltsin@kremvax.ru”. An action is authorizedif asser-
tionsthatapprovetheactioncanlink the“POLICY” prin-
cipal with the principal that authorizedthe action. Prin-
cipalscanbe public keys, which providesa naturalway
to useKeyNote to control operationsover untrustworthy
networkssuchastheInternet.

A completedescriptionof theKeyNotelanguagecanbe
foundin [2].

2.2.KeyNoteControl for IPsec

The problemof controlling IPsecSAs is easyto for-
mulateasa trust-managementproblem: the SA creation
process(usuallya daemonrunning IKE) needsto check
for compliancewhenever an SA is to be created. Here,
theactionsrepresentthepacket filtering rulesrequiredto
allow two hoststo conform to eachother’s higher-level
policies.

This leadsnaturally to a framework for trust manage-
mentfor IPsec:

� Eachhosthasits own KeyNote-specifiedpolicy gov-
erningSA creation.Thispolicy describestheclasses
of packets and under what circumstancesthe host
will initiate SA creationwith other hosts,and also
what typesof SAs it is willing to allow otherhosts
to establish(for example,whetherencryptionwill be
usedandif sowhatalgorithmsareacceptable).

� When two hostsdiscover that they requirean SA,
they eachproposeto the other the “least powerful”
packet-filtering rules that would enablethemto ac-
complishtheir communicationobjective. Eachhost
sendsproposedpacketfilter rules,alongwith creden-
tials (certificates)thatsupporttheproposal.Any del-
egationstructurebetweenthesecredentialsis entirely
implementationdependent,and might include the

arbitraryweb-of-trust,globally trustedthird-parties,
suchasCertificationAuthorities(CAs), or anything
in between.

� Eachhost queriesits KeyNote interpreterto deter-
mine whether the proposedpacket filters comply
with localpolicy and,if they do,createstheSA con-
tainingthespecifiedfilters.

Other SA propertiescan also be subjectto KeyNote-
controlledpolicy. For example,theSA policy mayspec-
ify acceptablecryptographicalgorithmsandkey sizes,the
lifetime of theSA, loggingandaccountingrequirements.

Ourarchitecturedividestheproblemof policy manage-
mentinto two components:packetfiltering,basedonrules
appliedto every packet, andtrustmanagement,basedon
negotiatinganddecidingwhichof theserules(andrelated
SA properties,asnotedabove)aretrustworthy enoughto
install.

This distinction makes it possibleto perform the per-
packet policy operationsat high data rateswhile effec-
tively establishingmoresophisticatedtrust-management-
basedpolicy controlsover the traffic passingthrougha
securityendpoint.Having suchcontrolsin placemakesit
easierto specifysecuritypolicy for a largenetwork, and
makesit especiallynaturalto integrateautomatedpolicy
distributionmechanisms.

2.3. Policy Discovery

While theIPseccompliance-checkingmodeldescribed
abovecanbeusedby itself to providesecuritypolicy sup-
port for IPsec,therearetwo additionalissuesthatneedto
beaddressedif suchanarchitectureis to bedeployedand
used.

The first problemis credentialdiscovery and acquisi-
tion. Althoughusersor hostsmaybeexpectedto manage
locally policiesandcredentialsthatdirectly referto them,
they maynotknow of intermediatecredentials(e.g., those
issuedby administrativeentities)thatmayberequiredby
thehostswith whichthey wantto communicate.Consider
thecaseof a largeorganization,with two levelsof admin-
istration;localpolicy on thefirewalls trustsonly the“cor-
poratesecurity” key. Usersobtaintheir credentialsfrom
their local administrators,who authorizethemto connect
to specificfirewalls. Thus,oneor moreintermediatecre-
dentialsdelegating authority from corporatesecurity to
the variousadministratorsis also neededif a user is to
be successfullyauthorized. Naturally, in more complex
network configurations(suchasextranets)multiple levels
of administrationmaybepresent.Somemethodfor deter-
mining what credentialsarerelevant andhow to acquire
themis needed.

Our solutionis straightforward: thehostthat intendsto
initiateanIKE exchangecanuseasimpleprotocol,which

wecall Policy QueryProtocol(PQP),to acquireor update
credentialsrelevant to a specificintendedIKE exchange.
The initiator presentsa public key to the responderand
asksfor any credentialswherethe key appearsin theLi-
censeesfield. By startingfrom theinitiator’s own key (or
from somekey thatdelegatesto theinitiator), it is possible
to acquireall credentialsthattheresponderhasknowledge
of thatmaybeof useto the initiator. Therespondermay
alsoprovide pointersto otherserverswherethe initiator
may find relevant credentials;in fact, the respondermay
just providea pointerto someotherserver thatholdscre-
dentialsfor anadministrativedomain.

Sincethecredentialsthemselvesaresigned,thereis no
needto provide additionalsecurityguaranteesin thepro-
tocol itself. However, any localpoliciesthattheresponder
discloseswould have to be signedprior to beingsentto
the initiator; the fact that a KeyNote policy “becomes”a
credentialsimply by virtue of beingsignedis very useful
here.Also, thePQPserver mayhave its own policy con-
cerningwhich hostsareallowedto queryfor credentials.

Thesecondproblemis determiningourown capabilities
basedon the credentialswe hold. This is in somesense
complementaryto compliancechecking;by analyzingour
credentialsin thecontext of ourpeer’spolicy, it is possible
to determinewhat typesof actionsare acceptedby that
peer. That is, we can discover what kinds of IPsecSA
proposalsare acceptedby a remoteIKE daemon. This
canassistin avoiding unnecessaryIKE exchanges(if it is
known in advancethatno SAsacceptableby bothparties
canbeagreedupon),or narrow down thesetof proposals
we sendto our peer. Note that if a host revealsall the
relevant credentialsandpolicies using the Policy Query
Protocol,anotherhostcandeterminein advanceandoff-
line exactlywhatproposalsthathostwill accept.

Credentialcompositionis afairly straightforward,if po-
tentially expensive, operation:we startby constructinga
graphfrom the peer’s policy to our key. We thenreduce
eachclausein theConditionsfield of eachcredentialto its
DisjunctiveNormalForm(DNF). To determinetheautho-
rizationin achainof two credentials,weneedto compute
the intersectionof their authorizations.This is a linear-
costoperationover the numberof termsin the DNF ex-
pressionsof thetwo credentials.For largerchains(or, in-
deed,arbitrary graphsof credentials),we can apply the
samealgorithmrecursively. At theendof this operation,
wehavealist of acceptableproposals,whichtheIKE dae-
moncanthenuseto constructvalid SA proposalsfor the
remotehost.

Note that this operationis typically doneby the initia-
tor, andthushasnosignificantperformanceimpactonthe
responder, which maybea busysecuritygateway.

3. Implementation

To demonstrateour policy managementscheme,we
implementedthe architecturedescribedin the previ-
ous sectionwithin the OpenBSDIPsecstack [16, 10].
OpenBSD’s IKE implementation(calledisakmpd) sup-
portsbothpassphraseandX.509certificateauthentication.
We modified isakmpd to use KeyNote insteadof the
configuration-filebasedmechanismthatwasusedto vali-
datenew SecurityAssociations.

3.1. The OpenBSDIPsecAr chitecture

In this section we examine how the (unmodified)
OpenBSDIPsecimplementationinteractswith isakmpd
andhow policy decisionsarehandledandimplemented.

Outgoingpacketsareprocessedin theip output()
routine. The Security Policy Database(SPD)1 is con-
sulted, using information retrieved from the packet it-
self (e.g., source/destinationaddresses,transportprotocol,
ports,etc.) to determinewhether, andwhatkind of, IPsec
processingis required. If no IPsecprocessingis neces-
saryor if thenecessarySAsareavailable,theappropriate
courseof actionis taken,ultimatelyresultingin thepacket
being transmitted. If the SPD indicatesthat the packet
shouldbeprotected,but no SAsareavailable,isakmpd
is notified to establishthe relevant SAs with the remote
host(or a securitygateway, dependingon what the SPD
entryspecifies).Theinformationpassedto isakmpd in-
cludestheSPDfilter rule thatmatchedthepacket; this is
usedin theIKE protocolto proposethepacketselectors2,
which describethe classesof packetsthat areacceptable
for transmissionover theSA to beestablished.Thesame
type of processingoccursfor incoming packets that are
not IPsec-protected,to determinewhetherthey shouldbe
admitted;similar to theoutgoingcase,isakmpd maybe
notifiedto establishSAswith theremotehost.

When an IPsec-protectedpacket is received, the rele-
vant SA is locatedusing informationextractedfrom the
packet and the variousprotectionsare peeledoff. The
packet is then processedas if it had just beenreceived.
Note that the resulting,de-IPsec-edpacket may still be
subjectto localpolicy, asdeterminedby packetfilter rules;
that is, just becausea packet arrived secureddoesnot
meanthat it shouldbe accepted.We discussthis issue
furtherbelow.

1TheSPDis partof all IPsecimplementations[15], andis very sim-
ilar in form to packet filters (andis typically implementedasone). The
typical resultsof anSPDlookup areaccept,drop,and“IPsec-needed”.
In the latter case,moreinformationmay be provided,suchaswhat re-
motepeerto establishtheSA with, andwhatlevel of protectionisneeded
(encryption,authentication).

2Thesearea pair of network prefix andnetmasktuplesthatdescribe
thetypesof packetsthatareallowedto usetheSA.

3.2.Adding KeyNotePolicy Control

Becauseof the structureof the OpenBSDIPseccode,
we wereable to addKeyNote policy control entirely by
modifying theisakmpd daemon;nomodificationsto the
kernelwererequired.

Whenever a new IPsecsecurityassociationis proposed
by a remotehost(with the IKE protocol),our KeyNote-
basedisakmpd first collectssecurity-relatedinformation
aboutthe exchange(from its exchange andsa struc-
tures) and createsKeyNote attributes that describethe
proposedexchange.Theseattributesdescribewhat IPsec
protocolsarepresent,theencryption/authenticationalgo-
rithmsandparameters,theSA lifetime, time of day, spe-
cial SA characteristicssuchas tunneling,PFS,etc., the
addressof the remotehost,andthe packet selectorsthat
generatethefilters thatgoverntheSA’s traffic. All this in-
formationis derivedfrom what theremotehostproposed
to us(or whatwe proposedto theremotehost,depending
on who initiatedtheIKE exchange).

Once passedto KeyNote, theseattributes are avail-
able for useby policies(andcredentials)in determining
whethera particularSA is acceptableor not. Recall that
theConditionsfieldof aKeyNoteassertioncontainsanex-
pressionthatteststheattributespassedwith thequery. The
IPsecKeyNoteattributeswerechosento allow reasonably
natural, intuitive expressionsemantics.For example,to
checkthat theIKE exchangeis beingperformedwith the
peerat IP address192.168.1.1,apolicy would includethe
test:

remote_ike_address == "192.168.001.001"

while a policy that allows only the 3DES algorithm
would testthat

esp_enc_alg == "3des"

TheKeyNotesyntaxprovidestheexpectedcomposition
rulesandbooleanoperatorsfor creatingcomplex expres-
sionsthattestmultiple attributes.

The particularcollectionof attributeswe choseallows
a widerangeof possiblepolicies.We designedtheimple-
mentationto make it easyto addotherattributes,should
that be requiredby the policies of applicationsthat we
failedto anticipate.A partiallist of KeyNoteattributesfor
IPsecis containedin Appendix4. For thefull list, consult
theOpenBSDmanualpages.

3.3.Policiesfor PassphraseAuthentication

If passphrasesare used as the IKE authentication
method,KeyNote policy control may be usedto directly
authorizetheholdersof thepassphrases.Passphrasesare
encodedasKeyNoteprincipalsby takingtheASCII string

correspondingto the passphraseprefixed with the string
“passphrase:”Thus, the following policy would allow
anyoneknowing the passphrase“foobar” to establishan
SA with theESP[14] protocol.

Authorizer: "POLICY"
Licensees: "passphrase:foobar"
Conditions:
app domain == "IPsec Policy"
&& esp present == "yes" ;

Using the passphrase: tag requires policies to
be kept private. To avoid this, a hashedversion of
the passphrasemay be used instead(using for exam-
ple the passphrase-sha1-hex: prefix). In the
previousexample,this would bepassphrase-sha1-
hex:8843d7f92416211de9ebb963ff4ce2812-
5932878).

3.4. Policiesfor X.509-basedAuthentication

More interestingis the interactionbetweenKeyNote
policy and X.509 public-key certificatesfor authentica-
tion. Most IKE implementations(including ours) allow
the useof X.509 certificatesfor authentication.Further-
more, thereexist a numberof commercialtools that let
administratorsmanagelarge collectionsof usersusing
X.509. Allowing for interoperabilitywith theseimple-
mentationsis agoodtestof ourarchitectureandcanmake
transitionto a KeyNote-basedinfrastructureconsiderably
smoother.

Implementingthis interoperability is straightforward:
KeyNote policies may be used to delegate directly to
X.509 certificates. The principalsspecifiedmay be the
certificatesthemselves (in pseudo-MIMEformat, using
the x509-base64: prefix), the subjectpublic key, or
theSubjectCanonicalName.An exampleis givenin Fig-
ure3.4.

For eachX.509 certificatereceivedandverifiedaspart
of anIKE exchange,anad hoc KeyNotecredentialis gen-
erated. This credentialmapsthe Issuer/Subjectkeys of
the X.509 certificate(from the respective fields) to Au-
thorizer/Licenseeskeys in KeyNote. Thus,aschainsof
X.509 certificatesare formed during regular operation,
correspondingchainsof KeyNotecredentialsareformed.
Thisallowspoliciesto delegateto aCA andhavethesame
restrictionsapplyto all userscertifiedby thatCA. Specific
usersmaybegrantedmoreprivilegesby directauthoriza-
tion in thehost’spolicy.

3.5. Policiesfor KeyNoteCredentials

KeyNotecredentialsmaybepasseddirectly during the
IKE exchange,in the samemannerasX.509 certificates.

This methodoffers the mostflexibility in policy specifi-
cation,asit allowsprincipalsto furtherdelegateauthority
to othersthrougharbitrarilycomplex graphsof authoriza-
tion. Any signedKeyNotecredentialsreceivedduringthe
IKE exchangearepassedto the KeyNote interpreterdi-
rectly aspartof thequery.

KeyNotecredentialsareespeciallyusefulin theremote
administrationcase,wherethepoliciesof many IPsecend-
pointsarecontrolledby a centraladministrator. Here,the
policy of eachhost would delegateall authority to the
public key of the centraladministrator. The administra-
tor would thenissuecredentialsthatcontainthedetailsof
thepolicy underwhichthey wereissued.Thesecredentail
arepresentedaspartof eachIKE exchangeby any hostre-
questingaccess.This eliminatestheneedto updatelarge
numbersof machinesasthedetailsof organizationalpoli-
cieschange.Adding a new hostis accomplishedby hav-
ing theadministratorissuea new credentialfor thathost;
thathostmaythenusethenewly-issuedcredentialto com-
municatewith any otherhostthatobeys theabovepolicy.
No policy changesarenecessaryto thesehosts. Revok-
ing accessto a host is implementedthroughshort-lived
credentials.New credentialsaremadeavailableperiodi-
cally througha WWW or FTP server; clientscandown-
load themfrom there,without any securityimplications
(sincethe credentialsare signed,their integrity is guar-
anteed).If credentialconfidentialityis anissue,thesecre-
dentialscouldbeencryptedwith thepublickey of theuser
beforethey aremadeavailable.

Regardless of the authentication method in use,
isakmpd callsKeyNoteto determinewhethereachpro-
posedSA shouldbeestablished.After takinginto consid-
erationpolicies, credentials,and the attributespertinent
to theSA, KeyNotereturnsa positiveor negativeanswer.
In the former case,the protocol exchangeis allowed to
proceedasusual. In the latter, an informationalmessage
is sent to the remoteIKE daemonand the exchangeis
dropped.Note that, if anadministratorwereto manually
establishSPDrules(by directly manipulatingthe SPD),
KeyNoteandtheSPDmightdisagree;in thatcase,no SA
would ever be establishedandno packetswould be sent
out for thatcommunicationflow (sincetheSPDwouldre-
quireanSA).

The basicdataflows for KeyNote-controlledIPsecin-
put andoutput processingaregiven in Figures2 and3,
respectively.

Input processingbeginswith a packet arriving at a net-
work interface (#1 in Figure 2). The Security Policy
Databaseis consulted(#2)andoneof threeactionsis fol-
lowed. If the packet is an IPsecpacket, it is sent(#3a)
to the IPsecprocessingcode,which will consultthe SA
Database(#11) to processthe packet; the decapsulated
packet is then fed back to the IP input queue(#12). If

Authorizer: "POLICY"
Licensees: "DN:/CN=Certification Authority Foo/Email=ca@foo.com"
Conditions: ...

Figure1. Samplecredentialwith X.509DN asLicensee

IP Input routine

SA Database

IPSec Processing

3b: Send to
transport, route,
or discard. IKE Daemon

1: Packet arrives

2. Filters applied

SA Setup
3c: Trigger SA setup

4: Query SA Database

6: Initiate IKE

11: consult SA db

12: Feed back to input processing

User ModeKernel

10: update filter rules

5: Consult policy

8: consult policies/credentials

8a: update policies/credentials

9: update SA database

Policies&credentials

7: Do IKE exchange

(KeyNote Language)

3a: Process

SPD

KeyNote Interpreter

Figure2. KeyNote-ControlledIPsecInputProcessing

theSPDsaysthatthepacket shouldjust beaccepted,it is
sent(#3b) to the correspondinghigher-layerprotocol,or
forwarded,asappropriate.If theSPDsaysthatthepacket
shouldbedropped,no furtherprocessingis done.Other-
wise(#3c),theSecurityAssociationsetupprocessis trig-
gered. The SA Databaseis consulted(#4); if an SA is
foundthere,thepacket is droppedbecauseit shouldhave
alreadybeensentasan IPsecpacket (and it wasnot, or
path#3awould have beenfollowed). Next, the Policies
andCredentialsdatabaseis consulted(#5); this is doneby
calling the KeyNote interpreter, supplyingit the relevant
detailsof thepacket(addresses,protocol,ports,etc.). The
KeyNoteinterpreter, in turn,consultsits databaseof poli-
ciesand credentials,anddetermineswhetherthe packet
shouldbe just accepted,dropped,or needsIPsecprotec-
tion. If thelatter is thecase,theIKE daemonis triggered
(#6). It establishesSAs with its peer(#7), during which
processit will alsoneedto consultthepolicy andcreden-
tialsdatabase(#8),andmayalsoupdateit with additional
credentialsacquiredduring the IKE exchange. The SA
and SPD Databasesare then updated(#9, #10) as nec-

essarybasedon the informationnegotiatedby IKE. The
unprotectedpacket that triggeredtheSA establishmentis
dropped.

A host’s local policy is given in a text file
(/etc/isakmpd.policy) thatcontainsKeyNotepol-
icy assertions.

Output processingstartswhen a packet arrives (#1 in
Figure2) at the IP outputcodefrom eithera higher-level
protocolor from the forwardingcode. TheSecurityPol-
icy Databaseis consulted(#2) to determinewhetherthe
packetshouldbeprotectedwith IPsecor not; if noprotec-
tion is needed,the packet is simply sentout (#3a). Oth-
erwise,it is sentto the IPsecprocessingcode(#3b). A
lookup(#4) in theSA databasedetermineswhetheranSA
for this packet alreadyexists; if so, theappropriatetrans-
formsareappliedandtheresultingpacket is output(#5a).
If an SA did not exist, the SA setupprocessis invoked
(#5b).Thesystempolicy (ascontainedin theSPD)is con-
sulted(#6), andif policy relevant to this packet is found,
theIKE exchangeis triggered(#7),otherwisethepacketis
simply dropped.During theIKE exchange(#8), thelocal

SA Database

IKE Daemon

5a: SA fully set up,
process and output

SA Setup

User ModeKernel

12: update filter rules

9: consult policies/credentials

10: update policies/credentials

11: update SA database

Policies&credentials

(KeyNote Language)

IP Output routine

1: Packet arrives

IPSec Processing
4: consult SA db

3b: IPSec possible

5b: Trigger SA setup

6: Consult policy

7: Initiate IKE

SPD

8: Do IKE exchange

3a: No IPSec processing needed

2: Consult SPD

KeyNote Interpreter

Figure3. KeyNote-ControlledIPsecOutputProcessing

policy andcredentialsareconsulted(#9),andany creden-
tials fetchedfrom thepeerduringtheexchangedaresub-
sequentlystored(#10) in the local database.If the IKE
exchangeresultsin SAs being created,theseare stored
back in the SA database(#11). Finally, the SPD is up-
dated(#12) if necessary, andsubsequentpacketscanbe
processed(theoriginalunprotectedpacket is dropped).

It shouldbeobvious from theabove that, in our archi-
tecture,the SPD hasbecomea policy cache;the “real”
policy is expressedin termsof KeyNote assertionsand
credentials.Therearetwo waysof populatingthecache.
The first, describedabove, is to populateit on-demand.
If a filter rule doesnot exist in the SPD,KeyNote is in-
vokedto determinewhatshouldbedonewith thepacket;
basedon the responsefrom KeyNote, a rule is installed
in the SPD that makes further KeyNote queriesunnec-
essary. The secondapproachis to analyzeall policies
at startuptime andpopulatethe SPDaccordingly. This
avoidsthecostof a cross-domaincall (from thekernelto
a userlandpolicy daemon)per cachemiss, but requires
re-initializationof theSPDeverytimethepolicy changes.

3.6. Policy Updates

Changing policy in the simple case is straightfor-
ward: the new policies are placedin isakmpd.conf.
Whenexisting IPsecSAsexpire andaresubsequentlyre-

negotiated,or when new IPsecSAs are established,the
new policy will automaticallybetakeninto consideration.
If we want to new policy to be appliedto existing IPsec
SAs,we cansimply examinetheexisting SAsin thecon-
text of thenew policy, pretendingwearenow establishing
them.If theupdatedpolicy permitstheoldSAs,nofurther
actionis required;otherwise,they aredeleted.

3.7.Performance

Theoverheadof KeyNotein theIKE exchangesis neg-
ligible comparedto the cost of performing public-key
operations. Assertion evaluation (without any crypto-
graphicverification) is approximately120 microseconds
on a modernPentiumprocessor. Becauseevaluatingthe
baseKeyNote policies themselves doesnot require the
verificationof digital signatures,theKeyNotecompliance
checkis generallyvery fast: with a smallnumberof pol-
icy assertions,initialization and verification overheadis
approximately130microseconds.This numberincreases
linearly with thesizeandthenumberof policy assertions
that are actually evaluated,eachsuch assertionadding
approximately20 microseconds.The generationof the
shadow delegationtreeis alsovery low cost.Whenusing
KeyNote credentialsfor both authenticationand policy
specification,thecostof public-key signatureverification
is incurred. This cost is identical to that of the standard

X.509 case(and indeedto that of any other public-key
authenticationmechanism).Signaturesin KeyNote cre-
dentialsareverifiedasneededandonly thefirst time they
areused— the verification result is cachedand reused.
Credentialexpiration is handledby the generalKeyNote
processing,aspart of the Conditionsfield; thuspolicies
andcredentialsthathave expireddo not contributein au-
thorizinganSA andno specialhandlingis needed.In all
cases,thecostof KeyNotepolicy processingis severalor-
dersof magnitudelower thanthe costof performingthe
public-key operationsthatit is controlling.

KeyNote policy control contributed only a negligible
increasein the codesize of the OpenBSDIPsecimple-
mentation. To addKeyNote supportto isakmpd we had
to addabout1000linesof “glue” codeto isakmpd. Al-
mostall of this codeis relatedto datastructuremanage-
mentandformattingfor communicatingwith theKeyNote
interpreter. For comparison,the rudimentaryconfigura-
tion file-basedsystemthattheKeyNote-basedschemere-
placestook approximately300 lines of code. The entire
original isakmpd itself wasabout27000lines of code
(not including the cryptographiclibraries). The original
isakmpd andtheKeyNoteextensionsto it arewritten in
theC language.

4. Conclusions,Future Work, Availability

We have demonstrateda practicalandusefulapproach
to managingtrust in network-layersecurity. Oneof the
mostvaluablefeaturesof trustmanagementfor IPsecSA
policy managementis its handlingof policy delegation,
which essentiallyunifiesremoteadministrationwith cre-
dentialdistribution.

Perhapsthe most importantcontribution of this work
is our useof a two level policy specificationhierarchyto
control IPsectraffic. At the packet level, we usea spe-
cialized, very efficient, but lessexpressive filtering lan-
guagethatprovidesthebasiccontrolof traffic throughthe
host. The installationof thesepacket filters, in turn, is
controlledby amoreexpressive,generalpurpose,but less
efficient trust-managementlanguage. Our performance
measurementsprovideencouragingevidencethatthis ap-
proachis quite viable, providing a very high degreeof
control over traffic without the performanceimpactnor-
mally associatedwith highly expressive, generalpurpose
mechanisms.It is possiblethat this approachhasmerit in
applicationsbeyondcontrollingnetwork-layersecurity.

Becausethe KeyNote languageon which this work is
basedis application-independent,ourschemecanbeused
asthebasisfor amorecomprehensivepolicy management
architecturethattiestogetherdifferentaspectsof network
securitywith policiesfor IPsecandpacket filtering. For
example,a generalnetwork securitypolicy might specify
theacceptablemechanismsfor remoteaccessto a private

corporatenetwork overtheInternet;suchapolicy may, for
example,allow theuseof clear-text passwordsonly if traf-
fic is protectedwith IPSECor sometransport-layersecu-
rity protocol(e.g., SSH[21]). Multi-applicationpolicies
would, of course,requireembeddingpolicy controlsinto
eitheranintermediatesecurityenforcementnode(suchas
afirewall) or into theendapplicationsandhosts[13]. This
approachis thesubjectof ongoingresearch.

Finally, if trust-managementpoliciesandcredentialsare
built into the network security infrastructure,it may be
possibleto usethem as an “intermediatelanguage”be-
tweenthelower-level protocolandapplicationpolicy lan-
guages(e.g., packet-filteringrules)andhigher-levelpolicy
specificationlanguagesandtools.A translationtool might
convertahigh-level specificationto thetrust-management
system’s language(andperhapsvice-versaaswell). Such
a tool couldmake useof formal methodsto verify or en-
forcethatthegeneratedpolicy hascertainproperties.This
approachis currentlyunderinvestigationin theSTRONG-
MAN DARPA projectat the University of Pennsylvania
andAT&T Labs.

The KeyNote trust-managementsystemis available in
anopensourcetoolkit; seetheKeyNotewebpageat

http://www.crypto.com/trustmgt/
for details. The KeyNote IPsectrust-managementarchi-
tectureis distributedwith OpenBSD2.6(andlater),which
is availablefrom

http://www.openbsd.org/
Becausethepolicy managementfunctionalityis imple-

mentedentirelyin theuser-level isakmpd, thesystemis
readilyportableto otherIPsecplatforms(especiallythose
basedon BSD implementations).

References

[1] C. Alaettinoglu, T. Bates, E. Gerich, D. Karrenberg,
D. Meyer, M. Terpstra,andC. Villamizer. Routing Pol-
icy SpecificationLanguage(RPSL). Requestfor Com-
ments (ProposedStandard)2280, Internet Engineering
TaskForce,January1998.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D.
Keromytis. TheKeyNoteTrustManagementSystemVer-
sion2. InternetRFC2704,September1999.

[3] M. Blaze,J.Feigenbaum,andJ.Lacy. DecentralizedTrust
Management. In Proc. of the 17th Symposium on Secu-
rity and Privacy, pages164–173.IEEE ComputerSociety
Press,Los Alamitos,1996.

[4] M. Blaze,J. Ioannidis,andA. Keromytis. TrustManage-
mentandNetwork LayerSecurityProtocols. In Proceed-
ings of the 1999 Cambridge Security Protocols Interna-
tional Workshop, 1999.

[5] J. Boyle, R. Cohen,D. Durham,S. Herzog,R. Rajan,and
A. Sastry. TheCOPS(CommonOpenPolicy Service)Pro-
tocol. Requestfor comments(proposedstandard),Internet
EngineeringTaskForce,January2000.

[6] R. Braden,L. Zhang,S. Berson,S. Herzog,andS. Jamin.
ResourceReSerVationProtocol(RSVP)– Version1 Func-
tionalSpecification.InternetRFC2208,1997.

[7] P. Calhoun,A. Rubens,H. Akhtar, andE.Guttman.DIAM-
ETERBaseProtocol. InternetDraft, InternetEngineering
TaskForce,Dec.1999.Work in progress.

[8] CCITT. X.509: The Directory Authentication Framework.
InternationalTelecommunicationsUnion,Geneva,1989.

[9] M. Condell,C. Lynn, andJ.Zao. SecurityPolicy Specifi-
cationLanguage.Internetdraft, InternetEngineeringTask
Force,July 1999.

[10] N. Hallqvist and A. D. Keromytis. ImplementingInter-
net Key Exchange(IKE). In Proceedings of the Annual
USENIX Technical Conference, Freenix Track, pages201–
214,June2000.

[11] D. Harkins and D. Carrel. The Internet Key Exchange
(IKE). Requestfor Comments(ProposedStandard)2409,
InternetEngineeringTaskForce,Nov. 1998.

[12] J. IoannidisandM. Blaze. The Architectureand Imple-
mentationof Network-Layer Security Under Unix. In
Fourth Usenix Security Symposium Proceedings. USENIX,
October1993.

[13] S. Ioannidis,A. Keromytis,S.Bellovin, andJ.Smith. Im-
plementingaDistributedFirewall. In Proceedings of Com-
puter and Communications Security (CCS) 2000, Novem-
ber2000.

[14] S. KentandR. Atkinson. IP EncapsulatingSecurityPay-
load (ESP). Requestfor Comments(ProposedStandard)
2406,InternetEngineeringTaskForce,Nov. 1998.

[15] S.KentandR. Atkinson. SecurityArchitecturefor theIn-
ternetProtocol. Requestfor Comments(ProposedStan-
dard)2401,InternetEngineeringTaskForce,Nov. 1998.

[16] A. D. Keromytis,J.Ioannidis,andJ.M. Smith.Implement-
ing IPsec. In Proceedings of Global Internet (GlobeCom)
’97, pages1948– 1952,November1997.

[17] S.McCanneandV. Jacobson.A BSDPacketFilter: A New
Architecturefor User-level PacketCapture.In Proceedings
of USENIX Winter Technical Conference, pages259–269,
SanDiego,California,Jan.1993.Usenix.

[18] R. NeedhamandM. Schroeder. UsingEncryptionfor Au-
thenticationin LargeNetworksof Computers.Communi-
cations of the ACM, 21(12):993–998,December1978.

[19] C. Rigney, A. Rubens,W. Simpson,andS. Willens. Re-
moteAuthenticationDial In UserService(RADIUS). Re-
questfor Comments(ProposedStandard)2138, Internet
EngineeringTaskForce,Apr. 1997.

[20] L. SanchezandM. Condell. SecurityPolicy System. In-
ternetdraft, work in progress,InternetEngineeringTask
Force,November1998.

[21] T. Ylonen,T. Kivinen,M. Saarinen,T. Rinne,andS.Lehti-
nen. SSHProtocolArchitecture. InternetDraft, Internet
EngineeringTaskForce,Feb. 1999.Work in progress.

Appendix 1: KeyNote Action Attrib utes for
IPsec

All the datain the fields of IKE packetsarepassedto
KeyNote as action attributes; theseattributesare avail-
able to the Conditions sectionsof the KeyNote asser-
tions. Therearea numberof attributesdefined(thecom-
pletelist appearsin theisakmpd.policy manpagein

Authorizer: "POLICY"
Licensees: "passphrase:pedomellonamino"
Conditions: app_domain == "IPsec policy"

&& doi == "ipsec"
&& pfs == "yes"
&& esp_present == "yes"
&& esp_enc_alg != "null"
&& remote_filter ==

"135.207.000.000-135.207.255.255"
&& local_filter ==

"198.001.004.0-198.001.004.255"
&& remote_ike_address ==

"198.001.004.001" ;

Figure 4. Policy for Firewall of 135.207.0.0/16
Network.

OpenBSD2.6 and later). The most importantattributes
include:

app domain is alwayssetto IPsec policy.

pfs is set to yes if a Diffie-Hellmanexchangewill be
performedduringQuick Mode,otherwiseit is setto
no.

ah present,esppresent,comp present are set to yes
if anAH, ESP, or compressionproposalwasreceived
in IKE (or otherkey managementprotocol),andto
no otherwise.Notethatmorethanoneof thesemay
besetto yes,sinceit is possiblefor anIKE proposal
to specify “SA bundles” (combinationsof ESPand
AH thatmustbeappliedtogether).

esp enc alg is set to one of des, des-iv64,
3des, rc4, idea and so on dependingon the
proposedencryptionalgorithmto beusedin ESP.

local ike address,remote ike address are set to the
IPv4 or IPv6 address(expressedasa dotted-decimal
notationwith three-digit,zero-prefixed octets(e.g.,
010.010.003.045)) of the local interfaceusedin the
IKE exchange,and the addressof the remoteIKE
daemon,respectively.

remotefilter, local filter aresetto the IPv4 or IPv6 ad-
dressesproposedastheremoteandlocal UserIden-
tities in QuickMode.Hostaddresses,subnets,or ad-
dressrangesmay be expressed(andthuscontrolled
by policy).

Appendix 2: Configuration Examples

Example 1: Settingup a VPN

In this example, two sitesare connectedover an en-
crypted tunnel. The authenticationis done by a sim-
ple passphrase.The policy in Figure4 is presentat one

of the firewalls. It specifiesthat packets betweenthe
135.207.0.0/16rangeof addressesand the 198.1.4.0/24
rangeof addresseshave to beprotectedby ESPusingen-
cryption.Theremotegateway, with which IKE will nego-
tiate,is 198.1.4.1.

Example 2: RemoteAccess

Authority to allow remoteaccessthroughthe site fire-
wall is controlledby severalsecurityofficers,eachoneof
whom is identifiedby a public key. A policy entry such
astheoneshown in Figure4 existsfor eachindividualse-
curity officer, andis storedin theisakmpd configuration
file of the firewall. Note the last line in the Conditions
field, which restrictsremoteusersto negotiateonly host-
to-firewall SAs, without placingany restrictionsto their
actualaddressotherwise.

Eachportablemachinethatis to beallowedin musthold
a credentialsimilar to thatshown in Figure4; thecreden-
tial is signedby a securityadministrator. Whenweaken-
cryption is used,theusercanonly readandsende-mail;
whenstrongencryptionis used,all kindsof traffic areal-
lowed. During the IKE exchange,the user’s isakmpd
providesthis credentialto thefirewall, which passesit on
to KeyNote.Thepolicy andthecredential,takentogether,
expresstheoverallaccesspolicy for theholderof key JIK.
A similarpolicy (andacorrespondingcredential)is issued
to theuser(andfirewall), to authorizethereversedirection
(thefirewall needsto proveto theuserthatit is authorized
by theadministratorto handletraffic to the139.91.0.0/16
network).

Authorizer: POLICY
Licensees: RAS_ADMIN_Key
Comment: delegate authority to a Remote Access administrator.
Local-Constants:

RAS_ADMIN_Key_A = "rsa-base64:MDgCMQDMiEBn89VCSR3ajxr0bNRC\
Audlz5724fUaW0uyi4r1oSq8PaSC2v9QGS+phGEahJ8CAwEAAQ=="

Conditions: app_domain == "IPsec policy"
&& doi == "ipsec"
&& pfs == "yes"
&& ah_present == "no"
&& esp_present == "yes"
&& esp_enc_alg == "3des" && esp_auth_alg == "hmac-sha"
&& esp_encapsulation == "tunnel"
&& local_filter == "139.091.000.000-139.91.255.255"
&& remote_ike_address == remote_filter ;

Figure5. Mobile hostlocalpolicy.

Authorizer: RAS_ADMIN_KEY_A
Licensees: JIK
Local-Constants:

RAS_ADMIN_KEY_A = "rsa-base64:MDgCMQDMiEBn89VCSR3ajxr0bNRC\
Audlz5724fUaW0uyi4r1oSq8PaSC2v9QGS+phGEahJ8CAwEAAQ=="

JIK = "x509-base64:MIICGDCCAYGgAwIBAgIBADANBgkqhkiG9w0BAQQ\
FADBSMQswCQYDVQQGEwJHQjEOMAwGA1UEChMFQmVuQ28xETAPBg\
NVBAMTCEJlbkNvIENBMSAwHgYJKoZIhvcNAQkBFhFiZW5AYWxnc\
m91cC5jby51azAeFw05OTEwMTEyMzA2MjJaFw05OTExMTAyMzA2\
MjJaMFIxCzAJBgNVBAYTAkdCMQ4wDAYDVQQKEwVCZW5DbzERMA8\
GA1UEAxMIQmVuQ28gQ0ExIDAeBgkqhkiG9w0BCQEWEWJlbkBhbG\
dyb3VwLmNvLnVrMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBg\
QDaCs+JAB6YRKAVkoi1NkOpE1V3syApjBj0Ahjq5HqYAACo1JhM\
+QsPwuSWCNhBT51HX6G6UzfY3mOUz/vou6MJ/wor8EdeTX4nucx\
NSz/r6XI262aXezAp+GdBviuJZx3Q67ON/IWYrB4QtvihI4bMn5\
E55nF6TKtUMJTdATvs/wIDAQABMA0GCSqGSIb3DQEBBAUAA4GBA\
MaQOSkaiR8id0h6Zo0VSB4HpBnjpWqz1jNG8N4RPN0W8muRA2b9\
85GNP1bkC3fK1ZPpFTB0A76lLn11CfhAf/gV1iz3ELlUHo5J8nx\
Pu6XfsGJm3HsXJOuvOog8Aean4ODo4KInuAsnbLzpGl0d+Jqa5u\
TZUxsyg4QOBwYEU92H"

Conditions: app_domain == "IPsec policy" && doi == "ipsec"
&& pfs == "yes"
&& esp_present == "yes" && ah_present == "no"
&& ((esp_enc_alg == "des" && esp_auth_alg == "hmac-md5"
&& remote_filter_proto == "tcp"
&& local_filter_proto == "tcp"
&& (remote_filter_port == "25"

|| remote_filter_port == "110"))
|| (esp_enc_alg == "3des" && esp_aut_alg == "hmac-sha")) ;

Signature: "sig-rsa-sha1-base64:KhKUeJ6m1zF7kehwHb7W0xAQ8EkPNKbUqNhf/i+f\
ymBqjbzMy13OmH1itijbFLQJ"

Figure6. Mobile hostcredential.

Network Working Group M. Blaze
Request for Comments: 2704 J. Feigenbaum
Category: Informational J. Ioannidis
 AT&T Labs - Research
 A. Keromytis
 U. of Pennsylvania
 September 1999

 The KeyNote Trust-Management System Version 2

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 This memo describes version 2 of the KeyNote trust-management system.
 It specifies the syntax and semantics of KeyNote ‘assertions’,
 describes ‘action attribute’ processing, and outlines the application
 architecture into which a KeyNote implementation can be fit. The
 KeyNote architecture and language are useful as building blocks for
 the trust management aspects of a variety of Internet protocols and
 services.

1. Introduction

 Trust management, introduced in the PolicyMaker system [BFL96], is a
 unified approach to specifying and interpreting security policies,
 credentials, and relationships; it allows direct authorization of
 security-critical actions. A trust-management system provides
 standard, general-purpose mechanisms for specifying application
 security policies and credentials. Trust-management credentials
 describe a specific delegation of trust and subsume the role of
 public key certificates; unlike traditional certificates, which bind
 keys to names, credentials can bind keys directly to the
 authorization to perform specific tasks.

Blaze, et al. Informational [Page 1]

RFC 2704 The KeyNote Trust-Management System September 1999

 A trust-management system has five basic components:

 * A language for describing ‘actions’, which are operations with
 security consequences that are to be controlled by the system.

 * A mechanism for identifying ‘principals’, which are entities that
 can be authorized to perform actions.

 * A language for specifying application ‘policies’, which govern the
 actions that principals are authorized to perform.

 * A language for specifying ‘credentials’, which allow principals to
 delegate authorization to other principals.

 * A ‘compliance checker’, which provides a service to applications
 for determining how an action requested by principals should be
 handled, given a policy and a set of credentials.

 The trust-management approach has a number of advantages over other
 mechanisms for specifying and controlling authorization, especially
 when security policy is distributed over a network or is otherwise
 decentralized.

 Trust management unifies the notions of security policy, credentials,
 access control, and authorization. An application that uses a
 trust-management system can simply ask the compliance checker whether
 a requested action should be allowed. Furthermore, policies and
 credentials are written in standard languages that are shared by all
 trust-managed applications; the security configuration mechanism for
 one application carries exactly the same syntactic and semantic
 structure as that of another, even when the semantics of the
 applications themselves are quite different.

 Trust-management policies are easy to distribute across networks,
 helping to avoid the need for application-specific distributed policy
 configuration mechanisms, access control lists, and certificate
 parsers and interpreters.

 For a general discussion of the use of trust management in
 distributed system security, see [Bla99].

 KeyNote is a simple and flexible trust-management system designed to
 work well for a variety of large- and small-scale Internet-based
 applications. It provides a single, unified language for both local
 policies and credentials. KeyNote policies and credentials, called
 ‘assertions’, contain predicates that describe the trusted actions
 permitted by the holders of specific public keys. KeyNote assertions
 are essentially small, highly-structured programs. A signed

Blaze, et al. Informational [Page 2]

RFC 2704 The KeyNote Trust-Management System September 1999

 assertion, which can be sent over an untrusted network, is also
 called a ‘credential assertion’. Credential assertions, which also
 serve the role of certificates, have the same syntax as policy
 assertions but are also signed by the principal delegating the trust.

 In KeyNote:

 * Actions are specified as a collection of name-value pairs.

 * Principal names can be any convenient string and can directly
 represent cryptographic public keys.

 * The same language is used for both policies and credentials.

 * The policy and credential language is concise, highly expressive,
 human readable and writable, and compatible with a variety of
 storage and transmission media, including electronic mail.

 * The compliance checker returns an application-configured ‘policy
 compliance value’ that describes how a request should be handled
 by the application. Policy compliance values are always
 positively derived from policy and credentials, facilitating
 analysis of KeyNote-based systems.

 * Compliance checking is efficient enough for high-performance and
 real-time applications.

 This document describes the KeyNote policy and credential assertion
 language, the structure of KeyNote action descriptions, and the
 KeyNote model of computation.

 We assume that applications communicate with a locally trusted
 KeyNote compliance checker via a ‘function call’ style interface,
 sending a collection of KeyNote policy and credential assertions plus
 an action description as input and accepting the resulting policy
 compliance value as output. However, the requirements of different
 applications, hosts, and environments may give rise to a variety of
 different interfaces to KeyNote compliance checkers; this document
 does not aim to specify a complete compliance checker API.

2. KeyNote Concepts

 In KeyNote, the authority to perform trusted actions is associated
 with one or more ‘principals’. A principal may be a physical entity,
 a process in an operating system, a public key, or any other
 convenient abstraction. KeyNote principals are identified by a
 string called a ‘Principal Identifier’. In some cases, a Principal
 Identifier will contain a cryptographic key interpreted by the

Blaze, et al. Informational [Page 3]

RFC 2704 The KeyNote Trust-Management System September 1999

 KeyNote system (e.g., for credential signature verification). In
 other cases, Principal Identifiers may have a structure that is
 opaque to KeyNote.

 Principals perform two functions of concern to KeyNote: They request
 ‘actions’ and they issue ‘assertions’. Actions are any trusted
 operations that an application places under KeyNote control.
 Assertions delegate the authorization to perform actions to other
 principals.

 Actions are described to the KeyNote compliance checker in terms of a
 collection of name-value pairs called an ‘action attribute set’. The
 action attribute set is created by the invoking application. Its
 structure and format are described in detail in Section 3 of this
 document.

 KeyNote provides advice to applications about the interpretation of
 policy with regard to specific requested actions. Applications
 invoke the KeyNote compliance checker by issuing a ‘query’ containing
 a proposed action attribute set and identifying the principal(s)
 requesting it. The KeyNote system determines and returns an
 appropriate ‘policy compliance value’ from an ordered set of possible
 responses.

 The policy compliance value returned from a KeyNote query advises the
 application how to process the requested action. In the simplest
 case, the compliance value is Boolean (e.g., "reject" or "approve").
 Assertions can also be written to select from a range of possible
 compliance values, when appropriate for the application (e.g., "no
 access", "restricted access", "full access"). Applications can
 configure the relative ordering (from ‘weakest’ to ‘strongest’) of
 compliance values at query time.

 Assertions are the basic programming unit for specifying policy and
 delegating authority. Assertions describe the conditions under which
 a principal authorizes actions requested by other principals. An
 assertion identifies the principal that made it, which other
 principals are being authorized, and the conditions under which the
 authorization applies. The syntax of assertions is given in Section
 4.

 A special principal, whose identifier is "POLICY", provides the root
 of trust in KeyNote. "POLICY" is therefore considered to be
 authorized to perform any action.

Blaze, et al. Informational [Page 4]

RFC 2704 The KeyNote Trust-Management System September 1999

 Assertions issued by the "POLICY" principal are called ‘policy
 assertions’ and are used to delegate authority to otherwise untrusted
 principals. The KeyNote security policy of an application consists
 of a collection of policy assertions.

 When a principal is identified by a public key, it can digitally sign
 assertions and distribute them over untrusted networks for use by
 other KeyNote compliance checkers. These signed assertions are also
 called ‘credentials’, and serve a role similar to that of traditional
 public key certificates. Policies and credentials share the same
 syntax and are evaluated according to the same semantics. A
 principal can therefore convert its policy assertions into
 credentials simply by digitally signing them.

 KeyNote is designed to encourage the creation of human-readable
 policies and credentials that are amenable to transmission and
 storage over a variety of media. Its assertion syntax is inspired by
 the format of RFC822-style message headers [Cro82]. A KeyNote
 assertion contains a sequence of sections, called ‘fields’, each of
 which specifies one aspect of the assertion’s semantics. Fields
 start with an identifier at the beginning of a line and continue
 until the next field is encountered. For example:

 KeyNote-Version: 2
 Comment: A simple, if contrived, email certificate for user mab
 Local-Constants: ATT_CA_key = "RSA:acdfa1df1011bbac"
 mab_key = "DSA:deadbeefcafe001a"
 Authorizer: ATT_CA_key
 Licensees: mab_key
 Conditions: ((app_domain == "email") # valid for email only
 && (address == "mab@research.att.com"));
 Signature: "RSA-SHA1:f00f2244"

 The meanings of the various sections are described in Sections 4 and
 5 of this document.

 KeyNote semantics resolve the relationship between an application’s
 policy and actions requested by other principals, as supported by
 credentials. The KeyNote compliance checker processes the assertions
 against the action attribute set to determine the policy compliance
 value of a requested action. These semantics are defined in Section
 5.

 An important principle in KeyNote’s design is ‘assertion
 monotonicity’; the policy compliance value of an action is always
 positively derived from assertions made by trusted principals.
 Removing an assertion never results in increasing the compliance
 value returned by KeyNote for a given query. The monotonicity

Blaze, et al. Informational [Page 5]

RFC 2704 The KeyNote Trust-Management System September 1999

 property can simplify the design and analysis of complex network-
 based security protocols; network failures that prevent the
 transmission of credentials can never result in spurious
 authorization of dangerous actions. A detailed discussion of
 monotonicity and safety in trust management can be found in [BFL96]
 and [BFS98].

3. Action Attributes

 Trusted actions to be evaluated by KeyNote are described by a
 collection of name-value pairs called the ‘action attribute set’.
 Action attributes are the mechanism by which applications communicate
 requests to KeyNote and are the primary objects on which KeyNote
 assertions operate. An action attribute set is passed to the KeyNote
 compliance checker with each query.

 Each action attribute consists of a name and a value. The semantics
 of the names and values are not interpreted by KeyNote itself; they
 vary from application to application and must be agreed upon by the
 writers of applications and the writers of the policies and
 credentials that will be used by them.

 Action attribute names and values are represented by arbitrary-length
 strings. KeyNote guarantees support of attribute names and values up
 to 2048 characters long. The handling of longer attribute names or
 values is not specified and is KeyNote-implementation-dependent.
 Applications and assertions should therefore avoid depending on the
 the use of attributes with names or values longer than 2048
 characters. The length of an attribute value is represented by an
 implementation-specific mechanism (e.g., NUL-terminated strings, an
 explicit length field, etc.).

 Attribute values are inherently untyped and are represented as
 character strings by default. Attribute values may contain any non-
 NUL ASCII character. Numeric attribute values should first be
 converted to an ASCII text representation by the invoking
 application, e.g., the value 1234.5 would be represented by the
 string "1234.5".

 Attribute names are of the form:

 <AttributeID>:: {Any string starting with a-z, A-Z, or the
 underscore character, followed by any number of
 a-z, A-Z, 0-9, or underscore characters} ;

 That is, an <AttributeID> begins with an alphabetic or underscore
 character and can be followed by any number of alphanumerics and
 underscores. Attribute names are case-sensitive.

Blaze, et al. Informational [Page 6]

RFC 2704 The KeyNote Trust-Management System September 1999

 The exact mechanism for passing the action attribute set to the
 compliance checker is determined by the KeyNote implementation.
 Depending on specific requirements, an implementation may provide a
 mechanism for including the entire attribute set as an explicit
 parameter of the query, or it may provide some form of callback
 mechanism invoked as each attribute is dereferenced, e.g., for access
 to kernel variables.

 If an action attribute is not defined its value is considered to be
 the empty string.

 Attribute names beginning with the "_" character are reserved for use
 by the KeyNote runtime environment and cannot be passed from
 applications as part of queries. The following special attribute
 names are used:

 Name Purpose
 ------------------------ ------------------------------------
 _MIN_TRUST Lowest-order (minimum) compliance
 value in query; see Section 5.1.

 _MAX_TRUST Highest-order (maximum) compliance
 value in query; see Section 5.1.

 _VALUES Linearly ordered set of compliance
 values in query; see Section 5.1.
 Comma separated.

 _ACTION_AUTHORIZERS Names of principals directly
 authorizing action in query.
 Comma separated.

 In addition, attributes with names of the form "_<N>", where <N> is
 an ASCII-encoded integer, are used by the regular expression matching
 mechanism described in Section 5.

 The assignment and semantics of any other attribute names beginning
 with "_" is unspecified and implementation-dependent.

 The names of other attributes in the action attribute set are not
 specified by KeyNote but must be agreed upon by the writers of any
 policies and credentials that are to inter-operate in a specific
 KeyNote query evaluation.

Blaze, et al. Informational [Page 7]

RFC 2704 The KeyNote Trust-Management System September 1999

 By convention, the name of the application domain over which action
 attributes should be interpreted is given in the attribute named
 "app_domain". The IANA (or some other suitable authority) will
 provide a registry of reserved app_domain names. The registry will
 list the names and meanings of each application’s attributes.

 The app_domain convention helps to ensure that credentials are
 interpreted as they were intended. An attribute with any given name
 may be used in many different application domains but might have
 different meanings in each of them. However, the use of a global
 registry is not always required for small-scale, closed applications;
 the only requirement is that the policies and credentials made
 available to the KeyNote compliance checker interpret attributes
 according to the same semantics assumed by the application that
 created them.

 For example, an email application might reserve the app_domain
 "RFC822-EMAIL" and might use the attributes named "address" (the
 email address of a message’s sender), "name" (the human name of the
 message sender), and any "organization" headers present (the
 organization name). The values of these attributes would be derived
 in the obvious way from the email message headers. The public key of
 the message’s signer would be given in the "_ACTION_AUTHORIZERS"
 attribute.

 Note that "RFC822-EMAIL" is a hypothetical example; such a name may
 or may not appear in the actual registry with these or different
 attributes. (Indeed, we recognize that the reality of email security
 is considerably more complex than this example might suggest.)

4. KeyNote Assertion Syntax

 In the following sections, the notation [X]* means zero or more
 repetitions of character string X. The notation [X]+ means one or
 more repetitions of X. The notation <X>* means zero or more
 repetitions of non-terminal <X>. The notation <X>+ means one or more
 repetitions of X, whereas <X>? means zero or one repetitions of X.
 Nonterminal grammar symbols are enclosed in angle brackets. Quoted
 strings in grammar productions represent terminals.

4.1 Basic Structure

 <Assertion>:: <VersionField>? <AuthField> <LicenseesField>?
 <LocalConstantsField>? <ConditionsField>?
 <CommentField>? <SignatureField>? ;

 All KeyNote assertions are encoded in ASCII.

Blaze, et al. Informational [Page 8]

RFC 2704 The KeyNote Trust-Management System September 1999

 KeyNote assertions are divided into sections, called ‘fields’, that
 serve various semantic functions. Each field starts with an
 identifying label at the beginning of a line, followed by the ":"
 character and the field’s contents. There can be at most one field
 per line.

 A field may be continued over more than one line by indenting
 subsequent lines with at least one ASCII SPACE or TAB character.
 Whitespace (a SPACE, TAB, or NEWLINE character) separates tokens but
 is otherwise ignored outside of quoted strings. Comments with a
 leading octothorp character (see Section 4.2) may begin in any
 column.

 One mandatory field is required in all assertions:

 Authorizer

 Six optional fields may also appear:

 Comment
 Conditions
 KeyNote-Version
 Licensees
 Local-Constants
 Signature

 All field names are case-insensitive. The "KeyNote-Version" field,
 if present, appears first. The "Signature" field, if present,
 appears last. Otherwise, fields may appear in any order. Each field
 may appear at most once in any assertion.

 Blank lines are not permitted in assertions. Multiple assertions
 stored in a file (e.g., in application policy configurations),
 therefore, can be separated from one another unambiguously by the use
 of blank lines between them.

4.2 Comments

 <Comment>:: "#" {ASCII characters} ;

 The octothorp character ("#", ASCII 35 decimal) can be used to
 introduce comments. Outside of quoted strings (see Section 4.3), all
 characters from the "#" character through the end of the current line
 are ignored. However, commented text is included in the computation
 of assertion signatures (see Section 4.6.7).

Blaze, et al. Informational [Page 9]

RFC 2704 The KeyNote Trust-Management System September 1999

4.3 Strings

 A ‘string’ is a lexical object containing a sequence of characters.
 Strings may contain any non-NUL characters, including newlines and
 nonprintable characters. Strings may be given as literals, computed
 from complex expressions, or dereferenced from attribute names.

4.3.1 String Literals

 <StringLiteral>:: "\"" {see description below} "\"" ;

 A string literal directly represents the value of a string. String
 literals must be quoted by preceding and following them with the
 double-quote character (ASCII 34 decimal).

 A printable character may be ‘escaped’ inside a quoted string literal
 by preceding it with the backslash character (ASCII 92 decimal)
 (e.g., "like \"this\"."). This permits the inclusion of the double-
 quote and backslash characters inside string literals.

 A similar escape mechanism is also used to represent non-printable
 characters. "\n" represents the newline character (ASCII character
 10 decimal), "\r" represents the carriage-return character (ASCII
 character 13 decimal), "\t" represents the tab character (ASCII
 character 9 decimal), and "\f" represents the form-feed character
 (ASCII character 12 decimal). A backslash character followed by a
 newline suppresses all subsequent whitespace (including the newline)
 up to the next non-whitespace character (this allows the continuation
 of long string constants across lines). Un-escaped newline and
 return characters are illegal inside string literals.

 The constructs "\0o", "\0oo", and "\ooo" (where o represents any
 octal digit) may be used to represent any non-NUL ASCII characters
 with their corresponding octal values (thus, "\012" is the same as
 "\n", "\101" is "A", and "\377" is the ASCII character 255 decimal).
 However, the NUL character cannot be encoded in this manner; "\0",
 "\00", and "\000" are converted to the strings "0", "00", and "000"
 respectively. Similarly, all other escaped characters have the
 leading backslash removed (e.g., "\a" becomes "a", and "\\" becomes
 "\"). The following four strings are equivalent:

 "this string contains a newline\n followed by one space."
 "this string contains a newline\n \
 followed by one space."

Blaze, et al. Informational [Page 10]

RFC 2704 The KeyNote Trust-Management System September 1999

 "this str\
 ing contains a \
 newline\n followed by one space."

 "this string contains a newline\012\040followed by one space."

4.3.2 String Expressions

 In general, anywhere a quoted string literal is allowed, a ‘string
 expression’ can be used. A string expression constructs a string
 from string constants, dereferenced attributes (described in Section
 4.4), and a string concatenation operator. String expressions may be
 parenthesized.

 <StrEx>:: <StrEx> "." <StrEx> /* String concatenation */
 | <StringLiteral> /* Quoted string */
 | "(" <StrEx> ")"
 | <DerefAttribute> /* See Section 4.4 */
 | "$" <StrEx> ; /* See Section 4.4 */

 The "$" operator has higher precedence than the "." operator.

4.4 Dereferenced Attributes

 Action attributes provide the primary mechanism for applications to
 pass information to assertions. Attribute names are strings from a
 limited character set (<AttributeID> as defined in Section 3), and
 attribute values are represented internally as strings. An attribute
 is dereferenced simply by using its name. In general, KeyNote allows
 the use of an attribute anywhere a string literal is permitted.

 Attributes are dereferenced as strings by default. When required,
 dereferenced attributes can be converted to integers or floating
 point numbers with the type conversion operators "@" and "&". Thus,
 an attribute named "foo" having the value "1.2" may be interpreted as
 the string "1.2" (foo), the integer value 1 (@foo), or the floating
 point value 1.2 (&foo).

 Attributes converted to integer and floating point numbers are
 represented according to the ANSI C ‘long’ and ‘float’ types,
 respectively. In particular, integers range from -2147483648 to
 2147483647, whilst floats range from 1.17549435E-38F to
 3.40282347E+38F.

 Any uninitialized attribute has the empty-string value when
 dereferenced as a string and the value zero when dereferenced as an
 integer or float.

Blaze, et al. Informational [Page 11]

RFC 2704 The KeyNote Trust-Management System September 1999

 Attribute names may be given literally or calculated from string
 expressions and may be recursively dereferenced. In the simplest
 case, an attribute is dereferenced simply by using its name outside
 of quotes; e.g., the string value of the attribute named "foo" is by
 reference to ‘foo’ (outside of quotes). The "$<StrEx>" construct
 dereferences the attribute named in the string expression <StrEx>.
 For example, if the attribute named "foo" contains the string "bar",
 the attribute named "bar" contains the string "xyz", and the
 attribute "xyz" contains the string "qua", the following string
 comparisons are all true:

 foo == "bar"
 $("foo") == "bar"
 $foo == "xyz"
 $(foo) == "xyz"
 $$foo == "qua"

 If <StrEx> evaluates to an invalid or uninitialized attribute name,
 its value is considered to be the empty string (or zero if used as a
 numeric).

 The <DerefAttribute> token is defined as:

 <DerefAttribute>:: <AttributeID> ;

4.5 Principal Identifiers

 Principals are represented as ASCII strings called ‘Principal
 Identifiers’. Principal Identifiers may be arbitrary labels whose
 structure is not interpreted by the KeyNote system or they may encode
 cryptographic keys that are used by KeyNote for credential signature
 verification.

 <PrincipalIdentifier>:: <OpaqueID>
 | <KeyID> ;

 4.5.1 Opaque Principal Identifiers

 Principal Identifiers that are used by KeyNote only as labels are
 said to be ‘opaque’. Opaque identifiers are encoded in assertions as
 strings (see Section 4.3):

 <OpaqueID>:: <StrEx> ;

 Opaque identifier strings should not contain the ":" character.

Blaze, et al. Informational [Page 12]

RFC 2704 The KeyNote Trust-Management System September 1999

4.5.2 Cryptographic Principal Identifiers

 Principal Identifiers that are used by KeyNote as keys, e.g., to
 verify credential signatures, are said to be ‘cryptographic’.
 Cryptographic identifiers are also lexically encoded as strings:

 <KeyID>:: <StrEx> ;

 Unlike Opaque Identifiers, however, Cryptographic Identifier strings
 have a special form. To be interpreted by KeyNote (for signature
 verification), an identifier string should be of the form:

 <IDString>:: <ALGORITHM>":"<ENCODEDBITS> ;

 "ALGORITHM" is an ASCII substring that describes the algorithms to be
 used in interpreting the key’s bits. The ALGORITHM identifies the
 major cryptographic algorithm (e.g., RSA [RSA78], DSA [DSA94], etc.),
 structured format (e.g., PKCS1 [PKCS1]), and key bit encoding (e.g.,
 HEX or BASE64). By convention, the ALGORITHM substring starts with
 an alphabetic character and can contain letters, digits, underscores,
 or dashes (i.e., it should match the regular expression "[a-zA-Z][a-
 zA-Z0-9_-]*"). The IANA (or some other appropriate authority) will
 provide a registry of reserved algorithm identifiers.

 "ENCODEDBITS" is a substring of characters representing the key’s
 bits, the encoding and format of which depends on the ALGORITHM. By
 convention, hexadecimal encoded keys use lower-case ASCII characters.

 Cryptographic Principal Identifiers are converted to a normalized
 canonical form for the purposes of any internal comparisons between
 them; see Section 5.2.

 Note that the keys used in examples throughout this document are
 fictitious and generally much shorter than would be required for
 security in practice.

4.6 KeyNote Fields

4.6.1 The KeyNote-Version Field

 The KeyNote-Version field identifies the version of the KeyNote
 assertion language under which the assertion was written. The
 KeyNote-Version field is of the form

 <VersionField>:: "KeyNote-Version:" <VersionString> ;
 <VersionString>:: <StringLiteral>
 | <IntegerLiteral> ;

Blaze, et al. Informational [Page 13]

RFC 2704 The KeyNote Trust-Management System September 1999

 where <VersionString> is an ASCII-encoded string. Assertions in
 production versions of KeyNote use decimal digits in the version
 representing the version number of the KeyNote language under which
 they are to be interpreted. Assertions written to conform with this
 document should be identified with the version string "2" (or the
 integer 2). The KeyNote-Version field, if included, should appear
 first.

4.6.2 The Local-Constants Field

 This field adds or overrides action attributes in the current
 assertion only. This mechanism allows the use of short names for
 (frequently lengthy) cryptographic principal identifiers, especially
 to make the Licensees field more readable. The Local-Constants field
 is of the form:

 <LocalConstantsField>:: "Local-Constants:" <Assignments> ;
 <Assignments>:: /* can be empty */
 | <AttributeID> "=" <StringLiteral> <Assignments> ;

 <AttributeID> is an attribute name from the action attribute
 namespace as defined in Section 3. The name is available for use as
 an attribute in any subsequent field. If the Local-Constants field
 defines more than one identifier, it can occupy more than one line
 and be indented. <StringLiteral> is a string literal as described in
 Section 4.3. Attributes defined in the Local-Constants field
 override any attributes with the same name passed in with the action
 attribute set.

 An attribute may be initialized at most once in the Local-Constants
 field. If an attribute is initialized more than once in an
 assertion, the entire assertion is considered invalid and is not
 considered by the KeyNote compliance checker in evaluating queries.

4.6.3 The Authorizer Field

 The Authorizer identifies the Principal issuing the assertion. This
 field is of the form

 <AuthField>:: "Authorizer:" <AuthID> ;
 <AuthID>:: <PrincipalIdentifier>
 | <DerefAttribute> ;

 The Principal Identifier may be given directly or by reference to the
 attribute namespace (as defined in Section 4.4).

Blaze, et al. Informational [Page 14]

RFC 2704 The KeyNote Trust-Management System September 1999

4.6.4 The Licensees Field

 The Licensees field identifies the principals authorized by the
 assertion. More than one principal can be authorized, and
 authorization can be distributed across several principals through
 the use of ‘and’ and threshold constructs. This field is of the form

 <LicenseesField>:: "Licensees:" <LicenseesExpr> ;

 <LicenseesExpr>:: /* can be empty */
 | <PrincExpr> ;

 <PrincExpr>:: "(" <PrincExpr> ")"
 | <PrincExpr> "&&" <PrincExpr>
 | <PrincExpr> "||" <PrincExpr>
 | <K>"-of(" <PrincList> ")" /* Threshold */
 | <PrincipalIdentifier>
 | <DerefAttribute> ;

 <PrincList>:: <PrincipalIdentifier>
 | <DerefAttribute>
 | <PrincList> "," <PrincList> ;

 <K>:: {Decimal number starting with a digit from 1 to 9} ;

 The "&&" operator has higher precedence than the "||" operator. <K>
 is an ASCII-encoded positive decimal integer. If a <PrincList>
 contains fewer than <K> principals, the entire assertion is omitted
 from processing.

4.6.5 The Conditions Field

 This field gives the ‘conditions’ under which the Authorizer trusts
 the Licensees to perform an action. ‘Conditions’ are predicates that
 operate on the action attribute set. The Conditions field is of the
 form:

 <ConditionsField>:: "Conditions:" <ConditionsProgram> ;

 <ConditionsProgram>:: /* Can be empty */
 | <Clause> ";" <ConditionsProgram> ;

 <Clause>:: <Test> "->" "{" <ConditionsProgram> "}"
 | <Test> "->" <Value>
 | <Test> ;

 <Value>:: <StrEx> ;

Blaze, et al. Informational [Page 15]

RFC 2704 The KeyNote Trust-Management System September 1999

 <Test>:: <RelExpr> ;

 <RelExpr>:: "(" <RelExpr> ")" /* Parentheses */
 | <RelExpr> "&&" <RelExpr> /* Logical AND */
 | <RelExpr> "||" <RelExpr> /* Logical OR */
 | "!" <RelExpr> /* Logical NOT */
 | <IntRelExpr>
 | <FloatRelExpr>
 | <StringRelExpr>
 | "true" /* case insensitive */
 | "false" ; /* case insensitive */

 <IntRelExpr>:: <IntEx> "==" <IntEx>
 | <IntEx> "!=" <IntEx>
 | <IntEx> "<" <IntEx>
 | <IntEx> ">" <IntEx>
 | <IntEx> "<=" <IntEx>
 | <IntEx> ">=" <IntEx> ;

 <FloatRelExpr>:: <FloatEx> "<" <FloatEx>
 | <FloatEx> ">" <FloatEx>
 | <FloatEx> "<=" <FloatEx>
 | <FloatEx> ">=" <FloatEx> ;

 <StringRelExpr>:: <StrEx> "==" <StrEx> /* String equality */
 | <StrEx> "!=" <StrEx> /* String inequality */
 | <StrEx> "<" <StrEx> /* Alphanum. comparisons */
 | <StrEx> ">" <StrEx>
 | <StrEx> "<=" <StrEx>
 | <StrEx> ">=" <StrEx>
 | <StrEx> "~=" <RegExpr> ; /* Reg. expr. matching */

 <IntEx>:: <IntEx> "+" <IntEx> /* Integer */
 | <IntEx> "-" <IntEx>
 | <IntEx> "*" <IntEx>
 | <IntEx> "/" <IntEx>
 | <IntEx> "%" <IntEx>
 | <IntEx> "^" <IntEx> /* Exponentiation */
 | "-" <IntEx>
 | "(" <IntEx> ")"
 | <IntegerLiteral>
 | "@" <StrEx> ;

 <FloatEx>:: <FloatEx> "+" <FloatEx> /* Floating point */
 | <FloatEx> "-" <FloatEx>
 | <FloatEx> "*" <FloatEx>
 | <FloatEx> "/" <FloatEx>
 | <FloatEx> "^" <FloatEx> /* Exponentiation */

Blaze, et al. Informational [Page 16]

RFC 2704 The KeyNote Trust-Management System September 1999

 | "-" <FloatEx>
 | "(" <FloatEx> ")"
 | <FloatLiteral>
 | "&" <StrEx> ;

 <IntegerLiteral>:: {Decimal number of at least one digit} ;
 <FloatLiteral>:: <IntegerLiteral>"."<IntegerLiteral> ;

 <StringLiteral> is a quoted string as defined in Section 4.3
 <AttributeID> is defined in Section 3.

 The operation precedence classes are (from highest to lowest):
 { (,) }
 {unary -, @, &, $}
 {^}
 {*, /, %}
 {+, -, .}

 Operators in the same precedence class are evaluated left-to-right.

 Note the inability to test for floating point equality, as most
 floating point implementations (hardware or otherwise) do not
 guarantee accurate equality testing.

 Also note that integer and floating point expressions can only be
 used within clauses of condition fields, but in no other KeyNote
 field.

 The keywords "true" and "false" are not reserved; they can be used as
 attribute or principal identifier names (although this practice makes
 assertions difficult to understand and is discouraged).

 <RegExpr> is a standard regular expression, conforming to the POSIX
 1003.2 regular expression syntax and semantics.

 Any string expression (or attribute) containing the ASCII
 representation of a numeric value can be converted to an integer or
 float with the use of the "@" and "&" operators, respectively. Any
 fractional component of an attribute value dereferenced as an integer
 is rounded down. If an attribute dereferenced as a number cannot be
 properly converted (e.g., it contains invalid characters or is empty)
 its value is considered to be zero.

Blaze, et al. Informational [Page 17]

RFC 2704 The KeyNote Trust-Management System September 1999

4.6.6 The Comment Field

 The Comment field allows assertions to be annotated with information
 describing their purpose. It is of the form

 <CommentField>:: "Comment:" <text> ;

 No interpretation of the contents of this field is performed by
 KeyNote. Note that this is one of two mechanisms for including
 comments in KeyNote assertions; comments can also be inserted
 anywhere in an assertion’s body by preceding them with the "#"
 character (except inside string literals).

4.6.7 The Signature Field

 The Signature field identifies a signed assertion and gives the
 encoded digital signature of the principal identified in the
 Authorizer field. The Signature field is of the form:

 <SignatureField>:: "Signature:" <Signature> ;

 <Signature>:: <StrEx> ;

 The <Signature> string should be of the form:

 <IDString>:: <ALGORITHM>":"<ENCODEDBITS> ;

 The formats of the "ALGORITHM" and "ENCODEDBITS" substrings are as
 described for Cryptographic Principal Identifiers in Section 4.4.2
 The algorithm name should be the same as that of the principal
 appearing in the Authorizer field. The IANA (or some other suitable
 authority) will provide a registry of reserved names. It is not
 necessary that the encodings of the signature and the authorizer key
 be the same.

 If the signature field is included, the principal named in the
 Authorizer field must be a Cryptographic Principal Identifier, the
 algorithm must be known to the KeyNote implementation, and the
 signature must be correct for the assertion body and authorizer key.

 The signature is computed over the assertion text, beginning with the
 first field (including the field identifier string), up to (but not
 including) the Signature field identifier. The newline preceding the
 signature field identifier is the last character included in
 signature calculation. The signature is always the last field in a
 KeyNote assertion. Text following this field is not considered part
 of the assertion.

Blaze, et al. Informational [Page 18]

RFC 2704 The KeyNote Trust-Management System September 1999

 The algorithms for computing and verifying signatures must be
 configured into each KeyNote implementation and are defined and
 documented separately.

 Note that all signatures used in examples in this document are
 fictitious and generally much shorter than would be required for
 security in practice.

5. Query Evaluation Semantics

 The KeyNote compliance checker finds and returns the Policy
 Compliance Value of queries, as defined in Section 5.3, below.

5.1 Query Parameters

 A KeyNote query has four parameters:

 * The identifier of the principal(s) requesting the action.

 * The action attribute set describing the action.

 * The set of compliance values of interest to the application,
 ordered from _MIN_TRUST to _MAX_TRUST

 * The policy and credential assertions that should be included in
 the evaluation.

 The mechanism for passing these parameters to the KeyNote evaluator
 is application dependent. In particular, an evaluator might provide
 for some parameters to be passed explicitly, while others are looked
 up externally (e.g., credentials might be looked up in a network-
 based distribution system), while still others might be requested
 from the application as needed by the evaluator, through a ‘callback’
 mechanism (e.g., for attribute values that represent values from
 among a very large namespace).

5.1.1 Action Requester

 At least one Principal must be identified in each query as the
 ‘requester’ of the action. Actions may be requested by several
 principals, each considered to have individually requested it. This
 allows policies that require multiple authorizations, e.g., ‘two
 person control’. The set of authorizing principals is made available
 in the special attribute "_ACTION_AUTHORIZERS"; if several principals
 are authorizers, their identifiers are separated with commas.

Blaze, et al. Informational [Page 19]

RFC 2704 The KeyNote Trust-Management System September 1999

5.1.2 Ordered Compliance Value Set

 The set of compliance values of interest to an application (and their
 relative ranking to one another) is determined by the invoking
 application and passed to the KeyNote evaluator as a parameter of the
 query. In many applications, this will be Boolean, e.g., the ordered
 sets {FALSE, TRUE} or {REJECT, APPROVE}. Other applications may
 require a range of possible values, e.g., {No_Access, Limited_Access,
 Full_Access}. Note that applications should include in this set only
 compliance value names that are actually returned by the assertions.

 The lowest-order and highest-order compliance value strings given in
 the query are available in the special attributes named "_MIN_TRUST"
 and "_MAX_TRUST", respectively. The complete set of query compliance
 values is made available in ascending order (from _MIN_TRUST to
 _MAX_TRUST) in the special attribute named "_VALUES". Values are
 separated with commas; applications that use assertions that make use
 of the _VALUES attribute should therefore avoid the use of compliance
 value strings that themselves contain commas.

5.2 Principal Identifier Normalization

 Principal identifier comparisons among Cryptographic Principal
 Identifiers (that represent keys) in the Authorizer and Licensees
 fields or in an action’s direct authorizers are performed after
 normalizing them by conversion to a canonical form.

 Every cryptographic algorithm used in KeyNote defines a method for
 converting keys to their canonical form and that specifies how the
 comparison for equality of two keys is performed. If the algorithm
 named in the identifier is unknown to KeyNote, the identifier is
 treated as opaque.

 Opaque identifiers are compared as case-sensitive strings.

 Notice that use of opaque identifiers in the Authorizer field
 requires that the assertion’s integrity be locally trusted (since it
 cannot be cryptographically verified by the compliance checker).

5.3 Policy Compliance Value Calculation

 The Policy Compliance Value of a query is the Principal Compliance
 Value of the principal named "POLICY". This value is defined as
 follows:

Blaze, et al. Informational [Page 20]

RFC 2704 The KeyNote Trust-Management System September 1999

5.3.1 Principal Compliance Value

 The Compliance Value of a principal <X> is the highest order
 (maximum) of:

 - the Direct Authorization Value of principal <X>; and

 - the Assertion Compliance Values of all assertions identifying
 <X> in the Authorizer field.

5.3.2 Direct Authorization Value

 The Direct Authorization Value of a principal <X> is _MAX_TRUST if
 <X> is listed in the query as an authorizer of the action.
 Otherwise, the Direct Authorization Value of <X> is _MIN_TRUST.

5.3.3 Assertion Compliance Value

 The Assertion Compliance Value of an assertion is the lowest order
 (minimum) of the assertion’s Conditions Compliance Value and its
 Licensee Compliance Value.

5.3.4 Conditions Compliance Value

 The Conditions Compliance Value of an assertion is the highest-order
 (maximum) value among all successful clauses listed in the conditions
 section.

 If no clause’s test succeeds or the Conditions field is empty, an
 assertion’s Conditions Compliance Value is considered to be the
 _MIN_TRUST value, as defined Section 5.1.

 If an assertion’s Conditions field is missing entirely, its
 Conditions Compliance Value is considered to be the _MAX_TRUST value,
 as defined in Section 5.1.

 The set of successful test clause values is calculated as follows:

 Recall from the grammar of section 4.6.5 that each clause in the
 conditions section has two logical parts: a ‘test’ and an optional
 ‘value’, which, if present, is separated from the test with the "->"
 token. The test subclause is a predicate that either succeeds
 (evaluates to logical ‘true’) or fails (evaluates to logical
 ‘false’). The value subclause is a string expression that evaluates
 to one value from the ordered set of compliance values given with the
 query. If the value subclause is missing, it is considered to be
 _MAX_TRUST. That is, the clause

Blaze, et al. Informational [Page 21]

RFC 2704 The KeyNote Trust-Management System September 1999

 foo=="bar";

 is equivalent to

 foo=="bar" -> _MAX_TRUST;

 If the value component of a clause is present, in the simplest case
 it contains a string expression representing a possible compliance
 value. For example, consider an assertion with the following
 Conditions field:

 Conditions:
 @user_id == 0 -> "full_access"; # clause (1)
 @user_id < 1000 -> "user_access"; # clause (2)
 @user_id < 10000 -> "guest_access"; # clause (3)
 user_name == "root" -> "full_access"; # clause (4)

 Here, if the value of the "user_id" attribute is "1073" and the
 "user_name" attribute is "root", the possible compliance value set
 would contain the values "guest_access" (by clause (3)) and
 "full_access" (by clause (4)). If the ordered set of compliance
 values given in the query (in ascending order) is {"no_access",
 "guest_access", "user_access", "full_access"}, the Conditions
 Compliance Value of the assertion would be "full_access" (because
 "full_access" has a higher-order value than "guest_access"). If the
 "user_id" attribute had the value "19283" and the "user_name"
 attribute had the value "nobody", no clause would succeed and the
 Conditions Compliance Value would be "no_access", which is the
 lowest-order possible value (_MIN_TRUST).

 If a clause lists an explicit value, its value string must be named
 in the query ordered compliance value set. Values not named in the
 query compliance value set are considered equivalent to _MIN_TRUST.

 The value component of a clause can also contain recursively-nested
 clauses. Recursively-nested clauses are evaluated only if their
 parent test is true. That is,

 a=="b" -> { b=="c" -> "value1";
 d=="e" -> "value2";
 true -> "value3"; } ;

 is equivalent to

 (a=="b") && (b=="c") -> "value1";
 (a=="b") && (d=="e") -> "value2";
 (a=="b") -> "value3";

Blaze, et al. Informational [Page 22]

RFC 2704 The KeyNote Trust-Management System September 1999

 String comparisons are case-sensitive.

 A regular expression comparison ("~=") is considered true if the
 left-hand-side string expression matches the right-hand-side regular
 expression. If the POSIX regular expression group matching scheme is
 used, the number of groups matched is placed in the temporary meta-
 attribute "_0" (dereferenced as _0), and each match is placed in
 sequence in the temporary attributes (_1, _2, ..., _N). These
 match-attributes’ values are valid only within subsequent references
 made within the same clause. Regular expression evaluation is case-
 sensitive.

 A runtime error occurring in the evaluation of a test, such as
 division by zero or an invalid regular expression, causes the test to
 be considered false. For example:

 foo == "bar" -> {
 @a == 1/0 -> "oneval"; # subclause 1
 @a == 2 -> "anotherval"; # subclause 2
 };

 Here, subclause 1 triggers a runtime error. Subclause 1 is therefore
 false (and has the value _MIN_TRUST). Subclause 2, however, would be
 evaluated normally.

 An invalid <RegExpr> is considered a runtime error and causes the
 test in which it occurs to be considered false.

5.3.5 Licensee Compliance Value

 The Licensee Compliance Value of an assertion is calculated by
 evaluating the expression in the Licensees field, based on the
 Principal Compliance Value of the principals named there.

 If an assertion’s Licensees field is empty, its Licensee Compliance
 Value is considered to be _MIN_TRUST. If an assertion’s Licensees
 field is missing altogether, its Licensee Compliance Value is
 considered to be _MAX_TRUST.

 For each principal named in the Licensees field, its Principal
 Compliance Value is substituted for its name. If no Principal
 Compliance Value can be found for some named principal, its name is
 substituted with the _MIN_TRUST value.

 The licensees expression (as defined in Section 4.6.4) is evaluated
 as follows:

Blaze, et al. Informational [Page 23]

RFC 2704 The KeyNote Trust-Management System September 1999

 * A "(...)" expression has the value of the enclosed subexpression.

 * A "&&" expression has the lower-order (minimum) of its two
 subexpression values.

 * A "||" expression has the higher-order (maximum) of its two
 subexpression values.

 * A "<K>-of(<List>)" expression has the K-th highest order
 compliance value listed in <list>. Values that appear multiple
 times are counted with multiplicity. For example, if K = 3 and
 the orders of the listed compliance values are (0, 1, 2, 2, 3),
 the value of the expression is the compliance value of order 2.

 For example, consider the following Licensees field:

 Licensees: ("alice" && "bob") || "eve"

 If the Principal Compliance Value is "yes" for principal "alice",
 "no" for principal "bob", and "no" for principal "eve", and "yes" is
 higher order than "no" in the query’s Compliance Value Set, then the
 resulting Licensee Compliance Value is "no".

 Observe that if there are exactly two possible compliance values
 (e.g., "false" and "true"), the rules of Licensee Compliance Value
 resolution reduce exactly to standard Boolean logic.

5.4 Assertion Management

 Assertions may be either signed or unsigned. Only signed assertions
 should be used as credentials or transmitted or stored on untrusted
 media. Unsigned assertions should be used only to specify policy and
 for assertions whose integrity has already been verified as
 conforming to local policy by some mechanism external to the KeyNote
 system itself (e.g., X.509 certificates converted to KeyNote
 assertions by a trusted conversion program).

 Implementations that permit signed credentials to be verified by the
 KeyNote compliance checker generally provide two ‘channels’ through
 which applications can make assertions available. Unsigned,
 locally-trusted assertions are provided over a ‘trusted’ interface,
 while signed credentials are provided over an ‘untrusted’ interface.
 The KeyNote compliance checker verifies correct signatures for all
 assertions submitted over the untrusted interface. The integrity of
 KeyNote evaluation requires that only assertions trusted as
 reflecting local policy are submitted to KeyNote via the trusted
 interface.

Blaze, et al. Informational [Page 24]

RFC 2704 The KeyNote Trust-Management System September 1999

 Note that applications that use KeyNote exclusively as a local policy
 specification mechanism need use only trusted assertions. Other
 applications might need only a small number of infrequently changed
 trusted assertions to ‘bootstrap’ a policy whose details are
 specified in signed credentials issued by others and submitted over
 the untrusted interface.

5.5 Implementation Issues

 Informally, the semantics of KeyNote evaluation can be thought of as
 involving the construction a directed graph of KeyNote assertions
 rooted at a POLICY assertion that connects with at least one of the
 principals that requested the action.

 Delegation of some authorization from principal <A> to a set of
 principals is expressed as an assertion with principal <A> given
 in the Authorizer field, principal set given in the Licensees
 field, and the authorization to be delegated encoded in the
 Conditions field. How the expression digraph is constructed is
 implementation-dependent and implementations may use different
 algorithms for optimizing the graph’s construction. Some
 implementations might use a ‘bottom up’ traversal starting at the
 principals that requested the action, others might follow a ‘top
 down’ approach starting at the POLICY assertions, and still others
 might employ other heuristics entirely.

 Implementations are encouraged to employ mechanisms for recording
 exceptions (such as division by zero or syntax error), and reporting
 them to the invoking application if requested. Such mechanisms are
 outside the scope of this document.

6. Examples

 In this section, we give examples of KeyNote assertions that might be
 used in hypothetical applications. These examples are intended
 primarily to illustrate features of KeyNote assertion syntax and
 semantics, and do not necessarily represent the best way to integrate
 KeyNote into applications.

 In the interest of readability, we use much shorter keys than would
 ordinarily be used in practice. Note that the Signature fields in
 these examples do not represent the result of any real signature
 calculation.

Blaze, et al. Informational [Page 25]

RFC 2704 The KeyNote Trust-Management System September 1999

 1. TRADITIONAL CA / EMAIL

 A. A policy unconditionally authorizing RSA key abc123 for all
 actions. This essentially defers the ability to specify
 policy to the holder of the secret key corresponding to
 abc123:

 Authorizer: "POLICY"
 Licensees: "RSA:abc123"

 B. A credential assertion in which RSA Key abc123 trusts either
 RSA key 4401ff92 (called ‘Alice’) or DSA key d1234f (called
 ‘Bob’) to perform actions in which the "app_domain" is
 "RFC822-EMAIL", where the "address" matches the regular
 expression "^.*@keynote\.research\.att\.com$". In other
 words, abc123 trusts Alice and Bob as certification
 authorities for the keynote.research.att.com domain.

 KeyNote-Version: 2
 Local-Constants: Alice="DSA:4401ff92" # Alice’s key
 Bob="RSA:d1234f" # Bob’s key
 Authorizer: "RSA:abc123"
 Licensees: Alice || Bob
 Conditions: (app_domain == "RFC822-EMAIL") &&
 (address ~= # only applies to one domain
 "^.*@keynote\\.research\\.att\\.com$");
 Signature: "RSA-SHA1:213354f9"

 C. A certificate credential for a specific user whose email
 address is mab@keynote.research.att.com and whose name, if
 present, must be "M. Blaze". The credential was issued by the
 ‘Alice’ authority (whose key is certified in Example B
 above):

 KeyNote-Version: 2
 Authorizer: "DSA:4401ff92" # the Alice CA
 Licensees: "DSA:12340987" # mab’s key
 Conditions: ((app_domain == "RFC822-EMAIL") &&
 (name == "M. Blaze" || name == "") &&
 (address == "mab@keynote.research.att.com"));
 Signature: "DSA-SHA1:ab23487"

Blaze, et al. Informational [Page 26]

RFC 2704 The KeyNote Trust-Management System September 1999

 D. Another certificate credential for a specific user, also
 issued by the ‘Alice’ authority. This example allows three
 different keys to sign as jf@keynote.research.att.com (each
 for a different cryptographic algorithm). This is, in
 effect, three credentials in one:

 KeyNote-Version: "2"
 Authorizer: "DSA:4401ff92" # the Alice CA
 Licensees: "DSA:abc991" || # jf’s DSA key
 "RSA:cde773" || # jf’s RSA key
 "BFIK:fd091a" # jf’s BFIK key
 Conditions: ((app_domain == "RFC822-EMAIL") &&
 (name == "J. Feigenbaum" || name == "") &&
 (address == "jf@keynote.research.att.com"));
 Signature: "DSA-SHA1:8912aa"

 Observe that under policy A and credentials B, C and D, the
 following action attribute sets are accepted (they return
 _MAX_TRUST):

 _ACTION_AUTHORIZERS = "dsa:12340987"
 app_domain = "RFC822-EMAIL"
 address = "mab@keynote.research.att.com"
 and
 _ACTION_AUTHORIZERS = "dsa:12340987"
 app_domain = "RFC822-EMAIL"
 address = "mab@keynote.research.att.com"
 name = "M. Blaze"

 while the following are not accepted (they return
 _MIN_TRUST):

 _ACTION_AUTHORIZERS = "dsa:12340987"
 app_domain = "RFC822-EMAIL"
 address = "angelos@dsl.cis.upenn.edu"
 and
 _ACTION_AUTHORIZERS = "dsa:abc991"
 app_domain = "RFC822-EMAIL"
 address = "mab@keynote.research.att.com"
 name = "M. Blaze"
 and
 _ACTION_AUTHORIZERS = "dsa:12340987"
 app_domain = "RFC822-EMAIL"
 address = "mab@keynote.research.att.com"
 name = "J. Feigenbaum"

Blaze, et al. Informational [Page 27]

RFC 2704 The KeyNote Trust-Management System September 1999

 2. WORKFLOW/ELECTRONIC COMMERCE

 E. A policy that delegates authority for the "SPEND" application
 domain to RSA key dab212 when the amount given in the
 "dollars" attribute is less than 10000.

 Authorizer: "POLICY"
 Licensees: "RSA:dab212" # the CFO’s key
 Conditions: (app_domain=="SPEND") && (@dollars < 10000);

 F. RSA key dab212 delegates authorization to any two signers,
 from a list, one of which must be DSA key feed1234 in the
 "SPEND" application when @dollars < 7500. If the amount in
 @dollars is 2500 or greater, the request is approved but
 logged.

 KeyNote-Version: 2
 Comment: This credential specifies a spending policy
 Authorizer: "RSA:dab212" # the CFO
 Licensees: "DSA:feed1234" && # The vice president
 ("RSA:abc123" || # middle manager #1
 "DSA:bcd987" || # middle manager #2
 "DSA:cde333" || # middle manager #3
 "DSA:def975" || # middle manager #4
 "DSA:978add") # middle manager #5
 Conditions: (app_domain=="SPEND") # note nested clauses
 -> { (@(dollars) < 2500)
 -> _MAX_TRUST;
 (@(dollars) < 7500)
 -> "ApproveAndLog";
 };
 Signature: "RSA-SHA1:9867a1"

 G. According to this policy, any two signers from the list of
 managers will do if @(dollars) < 1000:

 KeyNote-Version: 2
 Authorizer: "POLICY"
 Licensees: 2-of("DSA:feed1234", # The VP
 "RSA:abc123", # Middle management clones
 "DSA:bcd987",
 "DSA:cde333",
 "DSA:def975",
 "DSA:978add")
 Conditions: (app_domain=="SPEND") &&
 (@(dollars) < 1000);

Blaze, et al. Informational [Page 28]

RFC 2704 The KeyNote Trust-Management System September 1999

 H. A credential from dab212 with a similar policy, but only one
 signer is required if @(dollars) < 500. A log entry is made if
 the amount is at least 100.

 KeyNote-Version: 2
 Comment: This one credential is equivalent to six separate
 credentials, one for each VP and middle manager.
 Individually, they can spend up to $500, but if
 it’s $100 or more, we log it.
 Authorizer: "RSA:dab212" # From the CFO
 Licensees: "DSA:feed1234" || # The VP
 "RSA:abc123" || # The middle management clones
 "DSA:bcd987" ||
 "DSA:cde333" ||
 "DSA:def975" ||
 "DSA:978add"
 Conditions: (app_domain="SPEND") # nested clauses
 -> { (@(dollars) < 100) -> _MAX_TRUST;
 (@(dollars) < 500) -> "ApproveAndLog";
 };
 Signature: "RSA-SHA1:186123"

 Assume a query in which the ordered set of Compliance Values is
 {"Reject", "ApproveAndLog", "Approve"}. Under policies E and G,
 and credentials F and H, the Policy Compliance Value is
 "Approve" (_MAX_TRUST) when:

 _ACTION_AUTHORIZERS = "DSA:978add"
 app_domain = "SPEND"
 dollars = "45"
 unmentioned_attribute = "whatever"
 and
 _ACTION_AUTHORIZERS = "RSA:abc123,DSA:cde333"
 app_domain = "SPEND"
 dollars = "550"

 The following return "ApproveAndLog":

 _ACTION_AUTHORIZERS = "DSA:feed1234,DSA:cde333"
 app_domain = "SPEND"
 dollars = "5500"
 and
 _ACTION_AUTHORIZERS = "DSA:cde333"
 app_domain = "SPEND"
 dollars = "150"

Blaze, et al. Informational [Page 29]

RFC 2704 The KeyNote Trust-Management System September 1999

 However, the following return "Reject" (_MIN_TRUST):

 _ACTION_AUTHORIZERS = "DSA:def975"
 app_domain = "SPEND"
 dollars = "550"
 and
 _ACTION_AUTHORIZERS = "DSA:cde333,DSA:978add"
 app_domain = "SPEND"
 dollars = "5500"

7. Trust-Management Architecture

 KeyNote provides a simple mechanism for describing security policy
 and representing credentials. It differs from traditional
 certification systems in that the security model is based on binding
 keys to predicates that describe what the key is authorized by policy
 to do, rather than on resolving names. The infrastructure and
 architecture to support a KeyNote system is therefore rather
 different from that required for a name-based certification scheme.
 The KeyNote trust-management architecture is based on that of
 PolicyMaker [BFL96,BFS98].

 It is important to understand the separation between the
 responsibilities of the KeyNote system and those of the application
 and other support infrastructure. A KeyNote compliance checker will
 determine, based on policy and credential assertions, whether a
 proposed action is permitted according to policy. The usefulness of
 KeyNote output as a policy enforcement mechanism depends on a number
 of factors:

 * The action attributes and the assignment of their values must
 reflect accurately the security requirements of the application.
 Identifying the attributes to include in the action attribute set
 is perhaps the most important task in integrating KeyNote into new
 applications.

 * The policy of the application must be correct and well-formed. In
 particular, trust must be deferred only to principals that should,
 in fact, be trusted by the application.

 * The application itself must be trustworthy. KeyNote does not
 directly enforce policy; it only provides advice to the
 applications that call it. In other words, KeyNote assumes that
 the application itself is trusted and that the policy assertions
 it specifies are correct. Nothing prevents an application from
 submitting misleading or incorrect assertions to KeyNote or from
 ignoring KeyNote altogether.

Blaze, et al. Informational [Page 30]

RFC 2704 The KeyNote Trust-Management System September 1999

 It is also up to the application (or some service outside KeyNote) to
 select the appropriate credentials and policy assertions with which
 to run a particular query. Note, however, that even if inappropriate
 credentials are provided to KeyNote, this cannot result in the
 approval of an illegal action (as long as the policy assertions are
 correct and the the action attribute set itself is correctly passed
 to KeyNote).

 KeyNote is monotonic; adding an assertion to a query can never result
 in a query’s having a lower compliance value that it would have had
 without the assertion. Omitting credentials may, of course, result
 in legal actions being disallowed. Selecting appropriate credentials
 (e.g., from a distributed database or ‘key server’) is outside the
 scope of the KeyNote language and may properly be handled by a remote
 client making a request, by the local application receiving the
 request, or by a network-based service, depending on the application.

 In addition, KeyNote does not itself provide credential revocation
 services, although credentials can be written to expire after some
 date by including a date test in the predicate. Applications that
 require credential revocation can use KeyNote to help specify and
 implement revocation policies. A future document will address
 expiration and revocation services in KeyNote.

 Because KeyNote is designed to support a variety of applications,
 several different application interfaces to a KeyNote implementation
 are possible. In its simplest form, a KeyNote compliance checker
 would exist as a stand-alone application, with other applications
 calling it as needed. KeyNote might also be implemented as a library
 to which applications are linked. Finally, a KeyNote implementation
 might run as a local trusted service, with local applications
 communicating their queries via some interprocess communication
 mechanism.

8. Security Considerations

 Trust management is itself a security service. Bugs in or incorrect
 use of a KeyNote compliance checker implementation could have
 security implications for any applications in which it is used.

9. IANA Considerations

 This document contains three identifiers to be maintained by the
 IANA. This section explains the criteria to be used by the IANA to
 assign additional identifiers in each of these lists.

Blaze, et al. Informational [Page 31]

RFC 2704 The KeyNote Trust-Management System September 1999

9.1 app_domain Identifiers

 The only thing required of IANA on allocation of these identifiers is
 that they be unique strings. These strings are case-sensitive for
 KeyNote purposes, however it is strongly recommended that IANA assign
 different capitalizations of the same string only to the same
 organization.

9.2 Public Key Format Identifiers

 These strings uniquely identify a public key algorithm as used in the
 KeyNote system for representing keys. Requests for assignment of new
 identifiers must be accompanied by an RFC-style document that
 describes the details of this encoding. Example strings are "rsa-
 hex:" and "dsa-base64:". These strings are case-insensitive.

9.3 Signature Algorithm Identifiers

 These strings uniquely identify a public key algorithm as used in the
 KeyNote system for representing public key signatures. Requests for
 assignment of new identifiers must be accompanied by an RFC-style
 document that describes the details of this encoding. Example strings
 are "sig-rsa-md5-hex:" and "sig-dsa-sha1-base64:". Note that all
 such strings must begin with the prefix "sig-". These strings are
 case-insensitive.

Blaze, et al. Informational [Page 32]

RFC 2704 The KeyNote Trust-Management System September 1999

A. Acknowledgments

 We thank Lorrie Faith Cranor (AT&T Labs - Research) and Jonathan M.
 Smith (University of Pennsylvania) for their suggestions and comments
 on earlier versions of this document.

B. Full BNF (alphabetical order)

 <ALGORITHM>:: {see section 4.4.2} ;

 <Assertion>:: <VersionField>? <AuthField> <LicenseesField>?
 <LocalConstantsField>? <ConditionsField>?
 <CommentField>? <SignatureField>? ;

 <Assignments>:: "" | <AttributeID> "=" <StringLiteral> <Assignments>
 ;

 <AttributeID>:: {Any string starting with a-z, A-Z, or the
 underscore character, followed by any number of
 a-z, A-Z, 0-9, or underscore characters} ;

 <AuthField>:: "Authorizer:" <AuthID> ;

 <AuthID>:: <PrincipalIdentifier> | <DerefAttribute> ;

 <Clause>:: <Test> "->" "{" <ConditionsProgram> "}"
 | <Test> "->" <Value> | <Test> ;

 <Comment>:: "#" {ASCII characters} ;

 <CommentField>:: "Comment:" {Free-form text} ;

 <ConditionsField>:: "Conditions:" <ConditionsProgram> ;

 <ConditionsProgram>:: "" | <Clause> ";" <ConditionsProgram> ;

 <DerefAttribute>:: <AttributeID> ;

 <ENCODEDBITS>:: {see section 4.4.2} ;

 <FloatEx>:: <FloatEx> "+" <FloatEx> | <FloatEx> "-" <FloatEx>
 | <FloatEx> "*" <FloatEx> | <FloatEx> "/" <FloatEx>
 | <FloatEx> "^" <FloatEx> | "-" <FloatEx>
 | "(" <FloatEx> ")" | <FloatLiteral> | "&" <StrEx> ;

 <FloatRelExpr>:: <FloatEx> "<" <FloatEx> | <FloatEx> ">" <FloatEx>
 | <FloatEx> "<=" <FloatEx>
 | <FloatEx> ">=" <FloatEx> ;

Blaze, et al. Informational [Page 33]

RFC 2704 The KeyNote Trust-Management System September 1999

 <FloatLiteral>:: <IntegerLiteral>"."<IntegerLiteral> ;

 <IDString>:: <ALGORITHM>":"<ENCODEDBITS> ;

 <IntegerLiteral>:: {Decimal number of at least one digit} ;

 <IntEx>:: <IntEx> "+" <IntEx> | <IntEx> "-" <IntEx>
 | <IntEx> "*" <IntEx> | <IntEx> "/" <IntEx>
 | <IntEx> "%" <IntEx> | <IntEx> "^" <IntEx>
 | "-" <IntEx> | "(" <IntEx> ")" | <IntegerLiteral>
 | "@" <StrEx> ;

 <IntRelExpr>:: <IntEx> "==" <IntEx> | <IntEx> "!=" <IntEx>
 | <IntEx> "<" <IntEx> | <IntEx> ">" <IntEx>
 | <IntEx> "<=" <IntEx> | <IntEx> ">=" <IntEx> ;

 <K>:: {Decimal number starting with a digit from 1 to 9} ;

 <KeyID>:: <StrEx> ;

 <LicenseesExpr>:: "" | <PrincExpr> ;

 <LicenseesField>:: "Licensees:" <LicenseesExpr> ;

 <LocalConstantsField>:: "Local-Constants:" <Assignments> ;

 <OpaqueID>:: <StrEx> ;

 <PrincExpr>:: "(" <PrincExpr> ")" | <PrincExpr> "&&" <PrincExpr>
 | <PrincExpr> "||" <PrincExpr>
 | <K>"-of(" <PrincList> ")" | <PrincipalIdentifier>
 | <DerefAttribute> ;

 <PrincipalIdentifier>:: <OpaqueID> | <KeyID> ;

 <PrincList>:: <PrincipalIdentifier> | <DerefAttribute>
 | <PrincList> "," <PrincList> ;

 <RegExpr>:: {POSIX 1003.2 Regular Expression}

 <RelExpr>:: "(" <RelExpr> ")" | <RelExpr> "&&" <RelExpr>
 | <RelExpr> "||" <RelExpr> | "!" <RelExpr>
 | <IntRelExpr> | <FloatRelExpr> | <StringRelExpr>
 | "true" | "false" ;

 <Signature>:: <StrEx> ;

 <SignatureField>:: "Signature:" <Signature> ;

Blaze, et al. Informational [Page 34]

RFC 2704 The KeyNote Trust-Management System September 1999

 <StrEx>:: <StrEx> "." <StrEx> | <StringLiteral> | "(" <StrEx> ")"
 | <DerefAttribute> | "$" <StrEx> ;

 <StringLiteral>:: {see section 4.3.1} ;

 <StringRelExpr>:: <StrEx> "==" <StrEx> | <StrEx> "!=" <StrEx>
 | <StrEx> "<" <StrEx> | <StrEx> ">" <StrEx>
 | <StrEx> "<=" <StrEx> | <StrEx> ">=" <StrEx>
 | <StrEx> "~=" <RegExpr> ;

 <Test>:: <RelExpr> ;

 <Value>:: <StrEx> ;

 <VersionField>:: "KeyNote-Version:" <VersionString> ;

 <VersionString>:: <StringLiteral> | <IntegerLiteral> ;

References

 [BFL96] M. Blaze, J. Feigenbaum, J. Lacy. Decentralized Trust
 Management. Proceedings of the 17th IEEE Symp. on Security
 and Privacy. pp 164-173. IEEE Computer Society, 1996.
 Available at
 <ftp://ftp.research.att.com/dist/mab/policymaker.ps>

 [BFS98] M. Blaze, J. Feigenbaum, M. Strauss. Compliance-Checking in
 the PolicyMaker Trust-Management System. Proc. 2nd Financial
 Crypto Conference. Anguilla 1998. LNCS #1465, pp 251-265,
 Springer-Verlag, 1998. Available at
 <ftp://ftp.research.att.com/dist/mab/pmcomply.ps>

 [Bla99] M. Blaze, J. Feigenbaum, J. Ioannidis, A. Keromytis. The
 Role of Trust Management in Distributed System Security.
 Chapter in Secure Internet Programming: Security Issues for
 Mobile and Distributed Objects (Vitek and Jensen, eds.).
 Springer-Verlag, 1999. Available at
 <ftp://ftp.research.att.com/dist/mab/trustmgt.ps>.

 [Cro82] Crocker, D., "Standard for the Format of ARPA Internet Text
 Messages", STD 11, RFC 822, August 1982.

 [DSA94] Digital Signature Standard. FIPS-186. National Institute of
 Standards, U.S. Department of Commerce. May 1994.

 [PKCS1] PKCS #1: RSA Encryption Standard, Version 1.5. RSA
 Laboratories. November 1993.

Blaze, et al. Informational [Page 35]

RFC 2704 The KeyNote Trust-Management System September 1999

 [RSA78] R. L. Rivest, A. Shamir, L. M. Adleman. A Method for
 Obtaining Digital Signatures and Public-Key Cryptosystems.
 Communications of the ACM, v21n2. pp 120-126. February 1978.

Authors’ Addresses

 Comments about this document should be discussed on the keynote-users
 mailing list hosted at nsa.research.att.com. To subscribe, send an
 email message containing the single line
 subscribe keynote-users
 in the message body to <majordomo@nsa.research.att.com>.

 Questions about this document can also be directed to the authors as
 a group at the keynote@research.att.com alias, or to the individual
 authors at:

 Matt Blaze
 AT&T Labs - Research
 180 Park Avenue
 Florham Park, New Jersey 07932-0971

 EMail: mab@research.att.com

 Joan Feigenbaum
 AT&T Labs - Research
 180 Park Avenue
 Florham Park, New Jersey 07932-0971

 EMail: jf@research.att.com

 John Ioannidis
 AT&T Labs - Research
 180 Park Avenue
 Florham Park, New Jersey 07932-0971

 EMail: ji@research.att.com

 Angelos D. Keromytis
 Distributed Systems Lab
 CIS Department, University of Pennsylvania
 200 S. 33rd Street
 Philadelphia, Pennsylvania 19104-6389

 EMail: angelos@dsl.cis.upenn.edu

Blaze, et al. Informational [Page 36]

RFC 2704 The KeyNote Trust-Management System September 1999

Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Blaze, et al. Informational [Page 37]

tmipsec.pdf is appearing in NDSS 2001.

	S3-000766a_presentation
	S3-000766b_Trust Management for IPsec
	S3-000766c_Keynote Trust
	S3-000766d_tmipsec

