Orlando, FL

TR45.AHAG/99.02.09.__

2/9/99

Orlando, FL

TR45.AHAG/99.02.09.__

2/9/99

Title:

LESA (Lucent Enhanced Subscriber Authentication) Features and Architecture
Sources:

Lucent Technologies Inc.

Adam Berenzweig

(973) 739-4453

(973) 884-6364 FAX

madadam@lucent.com
Sarvar Patel

(973) 386-6558

(973) 884-6364 FAX

sarvar@lucent.com

Abstract:

This contribution revises the security architecture proposed in 98.09.23.09 (“Protocols for Enhanced Subscriber Authentication”). While the protocols themselves largely remain the same, the overall architecture has been streamlined to better suit the needs of third generation wireless systems.

recommendationS:

Review, then adopt for Enhanced Subscriber Authentication in third generation IS-41 systems.

31.
IntroducTion

2.
Background information
3
2.1
Design Philosophy
3
3.
Overview of the Protocol
4
3.1
Notation
5
3.2
Parameter Sizes
5
3.3
Cryptographic Algorithm
5
3.4
Description of the Basic Protocol
5
3.5
The Lifetime Counter
6
3.6
Preventing Replay within the Global Challenge Window
6
4.
Authentication and Key Agreement Mechanisms
7
4.1
SSD Update (SSDUP)
7
4.2
Session Key Agreement (SKA)
8
4.3
Unique Challenge
9
4.4
Combined SSDUP/SKA
10
4.5
Periodic Re-Keying
11
5.
Integrity Mechanism
11
5.1
Signaling Integrity MAC
11
5.2
Mandatory Cipher Mode Negotiation
12
5.3
Periodic Re-Authentication Message
12
5.4
Packet-Data MAC
12
6.
Threat Analysis
12
7.
Bibliography
13

IntroducTion

In [BP], we proposed a suite of secure and efficient authentication protocols for next generation wireless systems and standards (e.g. IS-41 and IMT-2000). This contribution revises that proposal by streamlining the procedures to better suit the needs of third generation wireless systems. The protocols remain fundamentally the same, at least preserving the security and efficiency of the previous proposal, and in some cases improving on them. We have fleshed out the details of the proposal, including the cryptographic algorithms and how to use them.

The fundamental difference between this proposal and the previous version is the use of session keys which are used throughout a registration period, not just during “sessions”, which were envisioned to be calls or data sessions. This change is indicated by the new services that require the existence of encryption and integrity keys that exist outside the confines of a single call. Examples of such services are control message and SMS encryption, and common (i.e. packet-switched) traffic channels.

Since it is necessary to have such session keys, it no longer makes sense to perform an additional key agreement at each call setup. Rather, the session keys generated at registration time will be used for several calls. These session keys can be re-keyed using the session key agreement protocol.

A data integrity mechanism provides continued security throughout a session, including MACs (message authentication codes) on critical signaling messages, periodic re-authentication messages, the mandatory Cipher Mode Negotiation messages, and packet-switched user data.

1. Background information

1.1 Design Philosophy

The design goals set out in the original proposal have not changed. For convenience, we briefly summarize them here. For a more detailed treatment, see 98.09.23.09.

· Security First: The provably secure protocol assumes an extremely powerful adversary.

· Efficiency is important: The proposal is efficient in the use of resources such as bandwidth on the radio interface, long distance signaling, storage in the AC, UIM, and VLR, and processing delay is minimized.
· Single Algorithm: The “black-box” approach is used to design the protocols, while in practice we use a single cryptographic function. We propose the function SHA-1 as the MAC algorithm as well as the PRF (pseudo-random function).

· Separation principle: Authentication/Integrity does not depend on encryption.

· Symmetric Key vs. Public Key: Symmetric-key cryptography is used; the added complexity and expense of public-key methods is not justified since the requirements are easily met with symmetric-key methods.

· Protect carriers and users: The protocols protect the service provider from a fraudulent mobile, and they protect the mobile user from a network impersonator equipped with a false base station.

2. Overview of the Protocol

An overview of the protocol is shown in Figure 1. The ellipses represent procedures and the boxes represent keys. Since we are using symmetric key cryptography we need a permanent A-Key, which we denote as AK. The A-key can be pre-loaded into the handset or removable UIM device (smart card), or can be provisioned with a key exchange mechanism such as the Over-the-Air Service Provisioning (OTASP) standard or a PIN-based UIM download procedure for global roaming. Key provisioning is outside the scope of this proposal.

From the root key AK, a second key AK2 is derived using a secure one-way function (SHA-1). AK2 is used during the SSD Update procedure to authenticate messages and respond to challenges. The root key AK is used to generate the secondary keys, SSD (Shared Secret Data). The separation of AK and AK2 is necessary for the security of the protocols. Note that AK2 can either be stored in the AC database (and the UIM) or generated on the fly at each SSD Update. The SSDUP (SSD Update) protocol is a 3-Round Mutually Authenticated Key Agreement protocol.

[image: image1.wmf]Combined

SSDUP/SKA

AK

Figure 1. Overview of LESA

AK2

SSDA

SSDB

SSD Update

Session

Key

Agreeement

CK

IK

Enhanced

Encryption

Integrity

Mechanism

The SKA (Session Key Agreement) protocol uses the secondary keys, or SSD (Shared Secret Data). SKA is a 2-Round Authenticated Key Agreement similar to the SSDUP procedure, without the final round. A three-round option is available to provide explicit mutual authentication if operators so desire.

It is expected that SKA will frequently be performed directly after an SSDUP. For efficiency, a combined SSDUP/SKA procedure is also provided.

The session keys generated during the SKA procedure are used for the duration of the session. The ciphering key CK is used with ESP (Enhanced Subscriber Privacy), if available. The integrity key IK is used with the integrity mechanism to sign MACs (Message Authentication Codes). The frequency with which to re-key is under the control of the UIM, and the VLR, and indirectly, the HLR. See section 4.5 for details.

2.1 Notation

Throughout this paper we use the following notation for describing cryptographic operations. [MESSAGE]KEY denotes the keyed Message Authentication Code for MESSAGE under KEY. This is sometimes referred to as the tag of MESSAGE. {MESSAGE}KEY denotes the symmetric encryption of MESSAGE under KEY. As stated above, we use idealized constructions (“black boxes”) to describe the cryptographic primitives. One black box is the Pseudorandom Function, denoted by PRFKEY(INPUT), which can be thought of as an encryption algorithm; it is not possible for an adversary to distinguish a PRF from a random function with significant probability. As usual, the symbol (denotes the bitwise XOR function.

2.2 Parameter Sizes

Except where noted otherwise, the parameters described in the following protocols are sized as follows: Cryptographic keys are 64 bits long (compound keys such as SSDA and SSDB are each 64 bits, so SSD is 128 bits in total); message tags computed by the MAC are 32 bits; and random challenges are 64 bits.

2.3 Cryptographic Algorithm

SHA-1 is used as the authentication algorithm, the key derivation function (pseudo-random function), as well as the integrity MAC. SHA-1 is well-studied, widely used, and efficient.

2.4 Description of the Basic Protocol

The protocols in this paper are based on a provably-secure mutually authenticated key agreement protocol. Formal proofs of security for similar protocols are presented in [Bellare-Rogaway] and less formally argued in [BGHJSMY]. The generic protocol is illustrated in Figure 2.

[image: image2.wmf]Mobile

Network

R

N

C

M

,[0,R

N

,C

M

]

auth_key

 [1,C

M

]

auth

_key

K=PRF

keygen_

key

(R

N

,C

M

)

K=PRF

keygen_

key

(R

N

,C

M

)

Figure 2. Generic Mutually Authenticated Key Agreement

The network initiates by sending the random challenge RN. If global challenge is used, we will denote it with RG. The mobile responds with CM,[0,RN,CM]auth_key, where auth_key is the symmetric key shared between the mobile and the network for authentication. The network verifies the message authentication tag, and then responds with [1,CM]auth_key. The mobile verifies that the CM is properly signed, which completes the mutual authentication. Now both entities can complete the key exchange by calculating K = PRFkeygen_key(RN,CM), where keygen_key is a separate symmetric key shared between the mobile and the network for this purpose.

The security of our protocol can be reduced to the security of the basic protocol in [Bellare-Rogaway]. Our protocols differ from the protocols in [Bellare-Rogaway] as follows: we represent identities with a single bit, use a counter in place of a random number for the mobile-side nonce, and use the network’s global challenge. We briefly justify the modifications below. A more detailed and formal proof of security is forthcoming.

Since there are only two users of a specific key, the mobile and the network, their identity can be expressed as 0 and 1 respectively. The mobile-side counter and global challenge are discussed in the following sections.

2.5 The Lifetime Counter

The mobile uses a counter value CM to eliminate the need for random number generation in the mobile terminals. The counter need not be synchronized with the network. The only requirement is that the counter is strictly increasing, incremented with every use.

2.6 Preventing Replay within the Global Challenge Window

If the global challenge is used in third generation systems, an additional mechanism is available to prevent replay attacks within the “window of opportunity” when the global challenge remains constant. The synchronized local counter tracks the last value of the counter CM for each mobile which has responded to RG. An attempt to reuse a previously heard (RG,CM) pair is rejected by the network. The use of CM, which is monotonically increasing and is therefore a nonce, prevents the replay attack.
For the currently active global challenge RG, the network must keep a database of the last value of CM seen for each mobile which has responded to the current global challenge. In practice, since the number of times a mobile is expected to respond to a single global challenge is small (a few dozen, perhaps), we only need to record the (8) least significant bits of the lifetime counter CM. This can be thought of as a distinct, “local” counter, used to prevent replay within the global challenge window. Although the database of local counters is an added burden to the network, no state information needs to be kept beyond the lifetime of the active global challenge. Every time the global challenge is updated, the old database can be discarded. In addition, nothing special is required to synchronize the counter - the first time a mobile responds to the current global challenge, the network records the value of CM sent as the mobile-side challenge. On subsequent uses of RG, the network simply checks that the new value of CM is greater than the stored value (and then replaces the stored value with the new value of CM). If there is a crash on the network side then a new global random number will be used after recovery, so there is no need to remember any prior information. A crash on the mobile side is not a concern because the mobile must store authentication parameters in non-volatile storage (otherwise SSD and AK are also lost in a crash, and we have bigger problems to worry about!).

There is one attack we cannot prevent. Since the value of CM is predictable, and the value of RG is constant within the lifetime of the global challenge, there is a “pre-play” attack on the protocol. The attacker, impersonating the network, queries the legitimate mobile with RG ahead of time. The mobile’s responds and increments its internal counter, but the real network does not hear this exchange and does not increment its counter. Now the attacker can play the response back to the legitimate network. This type of attack will always be possible when we use predictable random challenges on the network side. This attack can be thought of as an extension of the relay attack, which we know we cannot prevent. The pre-play attack merely allows a longer time window in which the attack is possible, as opposed to the relay attack which must be done in real time. Note that this attack requires an active adversary, while the passive replay attack is foiled by the local counter.
3. Authentication and Key Agreement Mechanisms

The authentication protocols in LESA are: The SSD Update (SSDUP) mechanism, the Session Key Agreement (SKA) mechanism, and the combined SSDUP/SKA mechanism. Additionally, an optional Unique Challenge mechanism is described.

3.1 SSD Update (SSDUP)

The SSDUP (SSD Update) procedure is an authenticated key agreement between the home network and the UIM, based on the A-key. The three entities involved are the home network (specifically, the Authentication Center), the visited network (VLR), and the mobile (UIM). AK2 is used to sign challenges, and AK is used to derive SSD. At the completion of the protocol, both the UIM and the AC have performed the calculation SSD = SHA(AK,RN,CM), and SSD is optionally shared with the VLR. SSD consists of two 64-bit quantities, or 128 bits total.

[image: image3.wmf]UIM

AC/HLR

VLR

R

N

C

M

, [0,R

N

,C

M

]

AK2

[1,C

M

]

AK2

 SSD*, [1,C

M

]

AK2

SSD=

SHA(AK,R

N

,C

M

)

SSD=

SHA(AK,R

N

,C

M

)

Figure 3. SSD Update Procedure

* If SSD is shared.

AK2 =

SHA(AK)

AK2 =

SHA(AK)

If SSD is shared, the Authentication Center sends the new SSD to the VLR along with its message tag in the third step. Note that the VLR simply relays the messages between the HLR/AC and the mobile. Although the protocol requires that three rounds of messages be sent back to the home network, this three-round, provably secure protocol is more efficient than the current protocol, which requires more rounds of messages involving base-station challenges and unique challenges.

Note that AK2 is derived from AK, rather than being a completely unrelated key. It is not wise to use AK to sign challenges directly because this exposes AK to chosen ciphertext attacks. However, it is not desirable to use a completely unrelated key; that would necessitate doubling the amount of key storage in the AC. By deriving AK2 from AK, we protect AK while keeping the storage requirements down.

3.2 Session Key Agreement (SKA)

The Session Key Agreement (SKA) protocol provides authenticated key agreement. The resulting session key can be used for message integrity and message encryption for the duration of the session. Session establishment occurs at initial registration, and thereafter periodic re-keying is performed as described in section 4.5.

[image: image4.wmf]Mutual Authentication Option

UIM

VLR/HLR*

R

G

C

M

, [0,R

G

,C

M

]

SSDA

[1,C

M

]

SSDA

CK

,IK = SHA(SSDB,R

G

,C

M

)

CK

,IK = SHA(SSDB,R

G

,C

M

)

Figure 4. Session Establishment

* VLR if SSD is shared,

else HLR

The protocol (illustrated in Figure 4) is identical to the generic 3-Round mutually authenticated key agreement protocol described in section 3.4. The network may use the global challenge, and the mobile uses the lifetime counter. SSDA is used to sign challenges, and SSDB is used to derive the ciphering key CK and the integrity key IK. The final round, providing explicit authentication of the network to the mobile, is optional.

If SSD is shared, the serving VLR performs the protocol autonomously without communication with the home network. If SSD is not shared, the last two rounds must be sent back to the home network. In this case the final round is still optional over the air interface, but the HLR must send the session keys CK and IK to the VLR so that the visited system may perform integrity checks and ciphering locally.

3.3 Unique Challenge

The Stage 1 security requirements drafted by TR45.AHAG include a mechanism to support “individual challenges of terminals on dedicated (bearer and signaling) channels” (i.e, Unique Challenge). The need for this requirement is obviated by the SSDUP and SKA procedures. However, if operators still feel that Unique Challenge is a useful tool, it is a simple matter to convert the SKA procedure into a unique challenge. The first two rounds of the protocol are used, and a unique random number replaces the global challenge.

We briefly explain why a separate Unique Challenge is not needed. In second generation IS-41 systems, the Unique Challenge mechanism was generally used for three purposes: 1) In case of global challenge failure, 2) for key confirmation after SSD Update, and 3) for re-authentication during a session to prevent hijacking. Each of these uses may be fulfilled with the SKA and SSDUP procedures.

1. If the SKA procedure fails, the operator may choose to deny service, or to restart the SKA procedure.

2. Explicit key confirmation after SSD Update is not necessary. The most common cause of key mismatch in 2G systems is an error during transmission of RANDSSD. However, the SSD Update protocol described here provides implicit confirmation of the random numbers. If the authentication protocol completes, then both parties have proof that the random numbers have been received correctly. In the unlikely even that the derived keys are corrupted for some other reason, the protocol is simply run again.

3. The Integrity Mechanism is designed to protect against channel hijacking. In some sense, the periodic re-authentication message, which is part of the Integrity Mechanism, is in fact a unique challenge. See section 5.3 for more details.

3.4 Combined SSDUP/SKA
It is expected that a service provider may want to perform an SSD Update every time a mobile roams into a new network. Furthermore, it is expected that the SSDUP procedure is usually followed immediately with the SKA agreement. By combining the two procedures, we cut down on the amount of signaling and processing required for this common sequence of events.

[image: image5.wmf]UIM

AC/HLR

VLR

R

N

C

M

, [0,R

N

,C

M

]

AK2

[1,C

M

]

AK2

 SSD*, [1,C

M

]

AK2

SSD=

SHA(AK,R

N

,C

M

)

SSD=

SHA(AK,R

N

,C

M

)

CK

,IK=SHA(SSDB,R

N

,C

M

)

Figure 5.

Combined SSD Update / Session Key Agreement.

* If SSD is shared. If

not, CK and IK are

calculated

at the HLR.

AK2 =

SHA(AK)

AK2 =

SHA(AK)

CK

,IK=SHA(SSDB,R

N

,C

M

)*

The protocol is identical to the regular SSDUP procedure, except an additional step is added at the end: the session keys CK and IK are derived using the same random seeds used to derive SSD, but using the key SSDB rather than AK.

The security of the protocol is not changed. The SSD Update procedure is unaffected by the addition of the extra step. The session keys are now derived from the same random seeds as SSD; this remains secure because the key derivation function is still keyed with the unknown value SSDB.
3.5 Periodic Re-Keying
The session keys CK and IK are established at initial registration. Thereafter, the SKA procedure can be run at any time for re-keying. We propose that control of the re-keying procedure should be shared between the UIM and the VLR. The home service provider has no direct control over the procedure, but it has indirect control via the UIM. The UIM can be programmed to initiate re-keying after a certain amount of time has elapsed, after a certain number of calls, or after a certain amount of data usage. The VLR can also initiate re-keying after similar conditions are met. If the UIM is a removable card, it may be necessary to standardize ME-UIM messages to assist this procedure. For instance, the current time would be passed to a removable UIM with no clock, or usage information would be passed if the timer is usage-based. These mechanisms are for further study.

4. Integrity Mechanism

Entity authentication during key agreement does not protect against relay attacks or hijacking attacks that occur after the protocol is finished. The integrity mechanism is designed to thwart attacks throughout the duration of the session.

The entire contents of a data frame or packet can be hashed and then signed with the integrity key IK to produce a MAC, which accompanies the data. To prevent replay of messages within a session, a counter is included in the MAC. This Integrity Counter, denoted by CI, is specific to the session and is not related to the mobile’s lifetime counter used for challenging the network. The input to the MAC algorithm (SHA-1) is shown in Figure 6. The ID of the sender (0 for mobile, 1 for network) is the most significant bit of input, followed by the value of the counter, followed by the message itself.

[image: image6.wmf]Figure 6. Message Integrity

message,

[0/1, C

I

,

message

]

IK

The Integrity Mechanism is used on the following messages: critical signaling messages; the mandatory Cipher Mode Negotiation messages; periodic re-authentication messages; and packet-switched user data packets. Each application is described below.

4.1 Signaling Integrity MAC

All signaling messages that contain requests for new services, such as origination, flash, and SMS requests shall be protected with an integrity check. A Message Authentication Code (MAC) shall be calculated on the contents of the message. This includes messages sent in both the forward and the reverse directions.

4.2 Mandatory Cipher Mode Negotiation

At the start of each new call (voice or data), the mandatory Cipher Mode Negotiation process will occur. The network will send the mobile a Cipher Mode Command, and the mobile will respond by indicating its encryption capabilities. These messages will be integrity-protected with a MAC.

4.3 Periodic Re-Authentication Message

To prevent channel hijacking, an optional re-authentication message is provided. The procedure can be initiated by the mobile or by the network. The initiator sends the Re-Authentication Request message, and the other party responds with the Re-Authentication Reply message. Both messages are protected with a MAC.

4.4 Packet-Data MAC

Due to the connectionless nature of packet-switched channels, the integrity of packet data is a concern. Packet-switched user data is protected with a MAC.

5. Threat Analysis

In addition to strengthening the algorithms, expanding key sizes, and making the system more flexible and “future-proof”, a primary goal of 3G security is to thwart several attacks on the current 2G systems. The 2G security architecture was not designed to defend against the active man-in-the-middle attacks. 3G security should address these attacks, since it appears that a network impersonator equipped with a false base station is now, and will surely be in the future, a real threat.

Several of the attacks specifically addressed by this proposal are summarized below:

1. Dialed digits attack. The attacker appends digits to his origination string in order to force the AUTHR to match an AUTHR overheard from a legitimate mobile.

2. Disable encryption. An eavesdropping attack in which the False BTS relays a call between a legitimate mobile and the legitimate network, but signals the mobile to disable encryption, thus exposing the user’s data.

3. Control of the encryption key. The attacker relays a call between the legitimate network and the legitimate mobile, but forces the mobile to use an old session key by sending the random challenge corresponding to the old key. The attacker may know the key if network security has been compromised, for example.

4. Replay of old SSD. A network impersonator, having captured an old RANDSSD/SSD pair, replays the RANDSSD in an SSD Update. Similar to attack 3.

5. Modify signaling to hijack channel. A theft-of-service attack in which the attacker relays a call, but the legitimate mobile’s signaling is modified. For instance, the attacker replaces the dialed digit string with the number he wishes to call, or forges a flash request with his desired number.

6. Insertion of packet data. A theft-of-service attack on shared, packet-switched channels. The attacker forges the source address field of data packets to gain access to the network.

Attacks 1 and 5 are prevented by signaling encryption and/or signaling integrity checks. Attack 2 is prevented by the mandatory Cipher Mode Command that is part of the integrity mechanism. Attacks 3 and 4 are prevented with the mobile’s contribution to the session keys, which guarantees key freshness. Attack 6 is prevented by the packet-data integrity mechanism.

6. Bibliography

[BP] A. Berenzweig and S. Patel, “Protocols for Enhanced Subscriber Authentication”, TR45.AHAG 98.09.23.09.

[Bellare-Rogaway] M. Bellare, and P. Rogaway, Entity authentication and key distribution, Advances in Cryptology - Crypto ’93, 1993

[BGHJKMY] R. Bird, and I. Gopal, A. Herzberg, P.Janson, S. Kutten, R. Molva, and M. Yung, Systematic design of two-party authentication protocols, Advances in Cryptology - Crypto ’91, 1991.

[IS41C] EIA/TIA, Cellular radio telecommunications intersystem operations IS-41 Rev. C, 1994.

[Patel97] S. Patel, Weaknesses of the North American wireless authentication protocol, IEEE Personal Communications, 40-44 June 1997.

Copyright Statement:
Copyright (Lucent Technologies Inc., 1999. The contributor grants a free, irrevocable license to the Telecommunications Industry Association (TIA) to incorporate text contained in this contribution and any modifications thereof in the creation of TIA standards publications, to copyright in TIA’s name any TIA standards publication even though it may include portions of this contribution, and at TIA’s sole discretion to permit others to reproduce in whole or in part the resulting TIA standards publication.

Notice:

This contribution has been prepared by Lucent Technologies Inc. to assist the Standards Committee TIA TR45. This document is offered to the Standards Committee as a basis for discussion and should not be considered as a binding proposal on Lucent Technologies Inc. or any other company. Specifically, Lucent Technologies Inc. reserves the right to modify, amend, or withdraw the statement contained herein.

Permission is granted to TIA Committee participants to copy any portion of this document for the legitimate purposes of the TIA. Copying this document for monetary gain or other non-TIA purpose is prohibited.

Page 13

_979996732.doc

* If SSD is shared.

Figure 3. SSD Update Procedure

UIM

AC/HLR

VLR

RN

CM, [0,RN,CM]AK2

 [1,CM]AK2

 SSD*, [1,CM]AK2

SSD=SHA(AK,RN,CM)

SSD=SHA(AK,RN,CM)

AK2 = SHA(AK)

AK2 = SHA(AK)

_979997653.doc

* If SSD is shared. If not, CK and IK are calculated at the HLR.

Figure 5. Combined SSD Update / Session Key Agreement.

UIM

AC/HLR

VLR

RN

CM, [0,RN,CM]AK2

 [1,CM]AK2

 SSD*, [1,CM]AK2

SSD=SHA(AK,RN,CM)

SSD=SHA(AK,RN,CM)

CK,IK=SHA(SSDB,RN,CM)

AK2 = SHA(AK)

AK2 = SHA(AK)

CK,IK=SHA(SSDB,RN,CM)*

_980021256.doc

SSDB

AK

CK

IK

AK2

SSDA

SSD Update

Session Key Agreeement

Combined SSDUP/SKA

Figure 1. Overview of LESA

Enhanced Encryption

Integrity Mechanism

_980016001.doc

Figure 6. Message Integrity

 message, [0/1, CI, message]IK

_979997286.doc

CK,IK = SHA(SSDB,RG,CM)

CK,IK = SHA(SSDB,RG,CM)

UIM

VLR/HLR*

RG

CM, [0,RG,CM]SSDA

 [1,CM]SSDA

Figure 4. Session Establishment

* VLR if SSD is shared, else HLR

Mutual Authentication Option

_979996200.doc

Figure 2. Generic Mutually Authenticated Key Agreement

K=PRFkeygen_key(RN,CM)

K=PRFkeygen_key(RN,CM)

Mobile

Network

RN

CM,[0,RN,CM]auth_key

 [1,CM]auth_key

