
Sha-zam: A Block Cipher. Fast as DES, Secure

as SHA

Sarvar Patel

Lucent Technologies

67 Whippany Road

Whippany, NJ 07981

sarvar@lucent.com

Zul�kar Ramzan�

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

zulfikar@theory.lcs.mit.edu

Ganesh Sundaram

Lucent Technologies

67 Whippany Road

Whippany, NJ 07981

ganeshs@lucent.com

October 26, 1998

Abstract

We describe a block cipher which is both practical and provably secure.
The cipher uses the Secure Hash Algorithm (SHA-1) as an underlying
primitive, and we show that any succesful attack on the cipher results
in a succesful attack against one or more of the hallowed properties of
SHA-1. Moreover, our block cipher is still as fast as the Data Encryption
Standard (DES). We also describe a practical Pseudo-Random Generator
which again is as secure as SHA-1. We apply this generator for secure
key scheduling and since it is based on the same underlying primitive
as our cipher, we get e�cient reuse of our code. Finally we describe a
construction of an e�cient family of universal hash functions which are
used by our cipher { which may be of independent interest.

1 Introduction

Designing practical yet provably secure cryptographic algorithms is one of the
greatest challenges in modern cryptography. In fact the notions of practicality
and provable security have often seemed contradictory. Usually provably secure

�Work done while this author was at Lucent Technologies

1

2

systems rely on heavy duty mathematical tools which often end up slowing the
system down immensely. On the other hand, one can attempt to design systems
in a fast, ad-hoc manner, but usually it's di�cult to make any statements about
the security of these systems, and the upshot is that most such systems end up
being broken.

In this paper we propose the design of a practical but yet provably secure
block cipher based on SHA1 as one of the underlying building blocks of our sys-
tem. We combine SHA with what's called a Feistel Permutation, and a square
hash function (SQH). This permutation function is one of the design principles
that is central to the data encryption standard (DES), whereas SQH is funda-
mentally new. In this work we present a proof, under some reasonable and well
accepted assumptions about SHA, that our block cipher is secure. The novelty
in our proof is that we show di�erent levels of security under di�erent assump-
tions about SHA. Under some of the stronger assumptions about SHA we can
make very strong guarantees of security, and under certain weaker assumptions
about SHA we can make weaker guarantees of security. This enables us to avoid
\putting all of our eggs in one basket." This way even if many years down the
line, someone shows that a particular assumption about SHA is false (though
this is commonly believed to be unlikely) our system may still be secure. More-
over, our system is designed such that it might still be a secure system even if
all the underlying hallowed assumptions about SHA are wrong (which is, once
again, believed to be unlikely).

The central idea in our construction is based on a result of Luby and Racko�,
[13], where they use Feistel networks to construct pseudo random permutations
from pseudo random functions. In particular they have outlined the construc-
tion of a block cipher from pseudo random functions using Feistel Networks.
This work of Luby and Racko� has initiated an explosion of research on appli-
cations and generalizations. More recently, Maurer [15] has greatly simpli�ed
the treatment and proofs of [13], and Lucks [12] has improved the e�ciency
using di�erence concentration. This work was followed by a more e�cient con-
struction by Naor and Reingold, [16], where they partially replace the Feistel
permutation by universal hash functions. This modi�cation improves the e�-
ciency with no compromise on security. Furthermore, they present proofs for a
four round construction which is secure against adaptive plaintext and adaptive
chosentext attacks.

Replacing pseudo random functions (PRF) by cryptographic functions (with
desired properties) is not new. Biham and Anderson [2], propose the use of feistel
networks in conjunction with stream ciphers to design block ciphers. Also, Lucks
used MD5 with an unbalanced Feistel network and Guttman's construction uses
SHA but di�erent from the Luby Racko� construction.

In our design we do not use any stream ciphers. Instead we rely entirely

1- To be precise we use SHA-1 in our construction. But for brevity we will refer to it as

SHA in the entire paper.

3

on the improved versions of the Luby Racko� construction and use SHA as
our underlying primitive. In addition to this, we use another building block
called a �-universal hash function. We propose a new family of such hash
functions and we prove that this family of functions has the desired properties.
This use of hash functions, similar to the Naor-Reingold construction, makes
our cipher secure against adaptive attacks (as mentioned earlier). Notably, our
construction is simpler compared to the Naor-Reingold scheme since we use a
triplet of keys for four rounds. This simpli�cation and optimization comes with
no compromise of security, and we prove this fact within.

The novelty of this paper lies in the fact that our design is practical but yet
provably secure. We use familiar constructions from contemporary cryptogra-
phy. The contributions of this work lie in the following: We introduce a new
family of �-universal hash functions which aids in the e�ciency of the over-
all system. In fact, this family of hash functions is faster than contemporary
families with similar properties used in cryptography. In addition, properties
speci�c to this family of hash functions allows us to use three keys for four
rounds thereby increasing the e�ciency. Next, our use of the Feistel permuta-
tion is slightly modi�ed without any sacri�ce in the security. This modi�cation
was motivated by the observation that the core of the proof of Luby and Racko�
regarding the properties of the Feistel permutation relies on the fact that the
operations are being performed in a group. In other words, there is nothing
speci�c about the XOR operation (as in the conventional Feistel permutation).
In our design we use the group of integers modulo 2n instead of the Galois �eld
GF (2n) and prove that this modi�cation does not introduce any weaknesses.
Additionally, the triplet of keys which drive the cipher are generated by a prov-
ably secure pseudo random bit generator which also uses SHA as the underlying
primitive. This pseudo random bit generator, whose security is related to SHA,
runs at approximately half the speed of the overall cipher but every bit of the
output is individually hard. Since we use SHA for this generator also, we get
very e�cient reuse of code, which helps in improving the overall e�ciency of the
system. The proofs of security, are of two kinds: First under the assumption
that SHA provides us with a family of pseudo random functions, we show our
system is secure. Also, under the \random oracle model" this assumption is
justi�ed. This assumption, albeit theoretical, is very widely accepted. Next,
under the \message authentication code (MAC)" assumption (which is weaker)
we show our cipher is secure. This assumption is very practical, and in fact
is at the heart of many systems currently in practice for example HMAC. In
fact, even if HMAC is broken our system might be secure. This second proof
(where we require the IV to be secret) based on a weaker assumption, for a
Luby Racko� cipher, is fundamentally new. Finally, we observe that the overall
system is as fast as DES (the data encryption standard). Note that, DES has
been a world wide standard and by far the most popular encryption algorithm.
The security of DES (although under debate in recent times) is believed to be
high and the e�ciency of the encryption and decryption processes are very fast

4

in most microprocessors.
All the assumptions we make about SHA are widely believed to be true.

In addition it is a NIST standard. So the claims of provable security we make
are based on the assumption that SHA has all these hallowed properties. In
addition, under one of the assumptions (i.e., Secure MAC assumption) we do
not make any claims on partial leakage of bits of a message. This we consider to
be a theoretical weaknesses in the system, but should not be of much concern
in practice.

The rest of the paper is organized as follows. We start with some background
information on practical versus provably secure cryptography. This is followed
by a discussion of the basic tools that are relevant to our construction in section
3. Section 4 provides a description of the block cipher, and in section 6 we
discuss perfomance issues. This is followed by the key scheduling algorithm in
section 6, and �nally in section 7 we discuss the proofs of the security of the
system.

2 Background

In the design of unconditionally secure cryptosystems, the goal is to show that
it is absolutely infeasible for any adversary, no matter how clever, to break the
cryptosystem. But, no one to this day has been able to design an uncondi-
tionally provably secure cryptosystem (with one notable, but very impractical
exception). The approach taken by most people trying to design provably secure
systems is to start with some type of basic building block or primitive. Then,
you make some reasonable assumptions, which you may not be able to formally
prove, but yet justify for all practical purposes, about this primitive. Usually
such assumptions should be well accepted and widely believed, even though no
formal proof is known. Finally, you show that any attack which breaks the
security of your new cryptosystem will cause one of the hallowed assumptions
you made on the underlying primitive to be broken. Since you assumed, and it
is widely believed, that the assumption on the underlying primitive is valid, it
then becomes unlikely that the cryptosystem can be broken. This approach was
introduced in a seminal paper by Blum and Micali [6], where they introduced
the notion of a secure pseudo random number generator based on complexity
theoretic assumptions.

One problem with this approach is that often, in order to design systems like
the ones mentioned above, one needs a great deal of heavy duty mathematical
machinery, and this can often cost you a great deal of e�ciency. For example,
many people have used famous unsolved problems in number theory as the
underlying primitives. Unfortunately, most number theoretic notions are very
expensive to implement on current microprocessors. Some of the more popular
number theoretic problems considered are the discrete log problem in a �nite
�eld and the problem of factoing integers. The reader is re�ered to [17] for a

5

survey of the work on discrete log based generators and the design of an e�cient
generator. The bene�t of these systems is that, although they are very slow, we
are almost guaranteed that no one can break them.

The design of practical cryptosystems is in many ways an art. The goal is
to use inexpensive operations, and be clever enough so that no one can break
the system. Usually cleverness entails doing enough bit manipulation so as to
confuse any adversary thereby preventing breakage of the cryptosystem. The
nice thing about this approach is that the resulting systems are often very
fast. Unfortunately, the security of the cryptosystems rests almost solely on
the cleverness of the person who designed it. There are several well known
systems that were designed to be very e�cient, but for which there are no
known mathematical proofs of security. Examples: SHA-1, DES. A few of these
systems have \withstood the test of time" and have still not been broken. One
of the newest trends in cryptography has been to study these particular systems,
and understand what it is about them that makes them secure. And to see if
these systems in some form can be incorporated and used as the building blocks
for other systems. This brings us to the forefront of current research, which
involves the design and analysis of practical yet provably secure cryptosystems.

Perhaps the main approach to designing practical, yet provably secure cryp-
tosystems has been to use fundamental building blocks which are both fast, and
for which there are many hallowed properties which are believed and widely
accepted to be true. One example of such a building block is the Secure Hash
Algorithm (SHA). SHA is believed to have several very nice properties. Un-
fortunately, no one has been able to prove that these properties hold, but it
appears that they do. Moreover, to this day, no one has been able to show that
any of these believed properties are false { though many have tried.

3 Basic Tools

The Sha-zam cipher makes use of two building blocks. The �rst of these is
the Secure Hash Algorithm (SHA) designed by NIST along with the NSA. The
second of these basic building blocks is the Square Hash (SQH) which we have
developed. We describe the construction of SHA and SQH in the subsequent
sections and discuss their relevant properties. Before proceeding further, we
discuss the relevant notation.

3.1 Notation

Given two strings x and y we denote by (x; y) their concatenation. Also we
denote by f0; 1gk the set of all bit strings of length k. If C is an n-bit string, we
denote by prefixk(C) the n� k bit pre�x of C (i.e. the �rst n� k bits of C).

6

3.2 The Secure Hash Algorithm (SHA)

The Secure Hash Algorithm (SHA) was designed by the National Institute
of Standards and Technology (NIST) along with the NSA (National Security
Agency) to be used with the Digital Signature Standard. SHA was modled
closely after the MD family of message digest algorithms devloped by Rivest.
SHA takes a 512 bit input and produces a 160 bit output. SHA also has a
160 bit Initialization Vector (IV) which can be modi�ed but there is a stan-
dard setting for this vector which is believed to give good security. SHA was
designed to make the process of digitally signing messages more practical. In
particular the idea is that instead of signing the entire message, you �rst apply
SHA to the message, get an output of shorter length than the input, and then
sign this shorter value { which would take less time than signing the original
larger message.

We denote by SHA(IV; x) the 160 bit output produced by SHA on a 512
bit user speci�ed input x and the standard IV . SHA is strongly believed to
have several fundamental properties which make it an excellent building block
for cryptographic protocols and algorithms:

1. SHA behaves like a random function: If some signi�cant portion of the
input is kept secret, then there is no computationally feasible mechanism
for correlating the remaining input bits with the output bits of SHA.

2. SHA is collision resistant. That is, it is computationally infeasible to
�nd two distinct 512 bit values, x1 6= x2 such that SHA(IV; x1) =
SHA(IV; x2).

3. SHA is one way. That is, given SHA(IV; x) it is computationally infeasible
to �nd any x0 such that SHA(IV; x) = SHA(IV; x0).

4. SHA acts as a secure Message Authentication Code: If there is a relatively
large (greater than say 128 bits) secret value s, then any adversary who
gets to see pairs (m1; t1); : : : (mn; tn) where each ti = SHA(IV;mi; s),
will not be able to come up with a pair (m0; t0) where t0 = SHA(IV;m0; s)
and where m0 is di�erent from each of the mi's. Moreover, the adver-
sary will be unsuccesful even if this attack is mounted adaptively; e.g.
the adversary can pick a message m1, be given the corresponding tag
t1 = SHA(IV;m1; s), and from this information can pick m2, see the cor-
responding t2 and so on { it will still be impossible for the adversary to
come up with a valid (m0; t0) pair where m0 is di�erent from the other mi.

These are all well accepted and widely believed properties of SHA. To
this day, no one has been able to violate even a single one of these hallowed
properties. We show that any attack on the Sha-zam block cipher will violate at
least one of these properties. In fact, we can show that in order to \completely"
break the Sha-zam cipher and the key scheduling generator, one would have to

7

violate all of the above mentioned properties. Moreover, the converse is not
necessarily true. That is, someone can violate all three properties (which is
highly unlikely) and still not be able to break our cipher.

3.3 The Square Hash

In this section we discuss the second fundamental building block of our block
cipher: The Square Hash (SQH). SQH is what's called a �-universal family of
hash functions. It has some very nice statistical properties, and is very easy
to compute and evaluate. Because of its nice statistical properties, we can use
�-universal hash functions in our block cipher to enable us to get a great degree
of security at a very small cost. We start by de�ning the SQH1 family which
gives the basic idea, and later we show how to modify this idea in order to make
implementations easier. Here is the de�nition of SQH1 :

De�nition 1 Let p be a prime. De�ne the SQH1 family of functions from Zp
to Zp as:

SQH1 � fhx : Zp �! Zpjx 2 Zpg

where the functions hx are de�ned as:

hx(m) � (m+ x)2 mod p

We now de�ne what it means to be a �-universal family of hash functions:

De�nition 2 Let R be an Abelian Group and let 0�0 denote the subtraction
operation with respect to this group. Then H is a �-universal-family of hash
functions if for all x; y 2 D with x 6= y, and all a 2 R, Pr[h(x) � h(y) = a] �
1=jRj. H is called �� almost��� universal if Pr[h(x) � h(y) = a] � �.

Theorem 1 The family SQH1 is a �-univeral family of hash functions.

Here is the de�nition of SQH which is a minor modi�cation on SQH1 to make
implementations easier:

De�nition 3 Let l be a positive integer, and let p be a prime with 2l < p <
2l + 2l�1. The SQH family of functions from Zk

p to Zp is de�ned as follows:

SQH � fgx : f0; 1g
l �! f0; 1gl j x 2 f0; 1glg

where the functions gx are de�ned for any x;m 2 f0; 1gl,

gx(m) = (m+ x)2 mod p mod 2l

Usually we denote by SQHk(m) the value gk(m) = (m+ k)2 mod p mod 2l.

8

When implementing the SQH family we usually take l = 160 and p to be
the smallest prime number greater than 2160. We now state our main theorem
regarding the statistical properties of the SQH family:

Theorem 2 SQH is an �-almost-�-universal family of hash functions with � �
3 � 2�l

Since we typically take l to be a large quantity (a 160 bit number), 3 � 2�l is a
negligible quantity.

The proofs of theorems 1 and 2 are provided in the companion paper, [16].
This is done with a view towards keeping the discussion a little more focused.

4 Description of Block Cipher

Our block cipher, which we call Sha-zam, takes as input a 320 bit block M and
outputs a 320 bit ciphertext C. We denote M = (L;R) where L is the left 160
bits of M and R is the right 160 bits of M . Also, we prefer to keep IV secret.

Encryption with Sha-zam

Input: Plaintext Stored in L, R { each of which is 160 bits
Private Key: k = (k1; k2; k3) where:
k1; k3 are 160 bits each, and k2 is 352 bits.
If IV not secret: then use the standard 160 bit IV.

Output: Ciphertext stored in V,W { each of which is 160 bits

Procedure: S = L+ SQHk1(R) mod 2
160

T = R+ SHA(IV; S; k2) mod 2
160

V = S + SHA(IV; T; k2) mod 2
160

W = T + SQHk3(V) mod 2
160

9

Decryption with Sha-zam

Input: Ciphertext Stored in V,W { each of which is 160 bits
Private Key: k = (k1; k2; k3) where:
k1; k3 are 160 bits each, and k2 is 352 bits.
If IV note secret: then use the standard 160 bit IV.

Output: Plaintext stored in L,R

Procedure: T =W � SQHk3(V) mod 2
160

S = V � SHA(IV; T; k2) mod 2
160

R = T � SHA(IV; S; k2) mod 2
160

L = S � SQHk1(R) mod 2
160

5 Performance of Sha-zam

Our block cipher can be implemented e�ciently. Speci�cally, it can encrypt
messages in roughly the same time as it would take DES to accomplish this
same task. We start by comparing the processing speed (in megabits / sec-
ond) of opti mized SHA and DES implementations. On a Pentium 100 running
Linux, SHA works at 18.6 megabits per second, whereas DES produces 17.864
megabits per second. On a Pentium Pro 200 running W in 95, SHA works at
39.656 megabits per second, and DES works at 37.322 megabits per second.
Here is a table summarizing these results:

Platform SHA DES

Pentium 100 Running Linux 18.6 mbits/sec 17.864 mbits/sec
Pentium Pro 200 Running Win 95 39.656 mbits/sec 37.232 mbits/sec

These results were derived using the SSLay Optimized Assembly implemen-
tations of SHA and DES. This implementation can be found at:
ftp://ftp.psy.uq.oz.au/pub/Crypto/libeay/.

For our implementation of Sha-zam we can actually speed things up because
part o f our input to SHA is held to be a �xed constant. This should give
us approximately a 10% speedup for each of the two calls to SHA. Moreoever,
we also believe that each call to SQH can be implemented within this 10%
window. We derived at this conclusion by analyzing the instruc tion counts
of an optimized assembly language implementation of SQH. Therefore, we can
implement our entire cipher in the same amount of time as DES.

Note that, these implementation results are preliminary. More work needs
to be d one to con�rm these numbers and it is possible to improve some of these
timings.

10

6 Key Scheduling

We describe a practical and provably secure pseudo-random generator based on
SHA. If we run our generator using a randomly selected 100-bit key as an input
seed, we can securely generate the necessary 672 bits needed for the secret key
of our block cipher. If the initial value for SHA (i.e., IV) is also a secret, then
we will generate an extra 160 bits, for a total of 832 bits. We can also run our
generator assuming a smaller or larger initial seed and get an appropriate level
of security { so the system is exible.

6.1 Description of Generator

We start by describing some of the relevant parameters and building blocks of
our generator. Our generator makes use of several parameters. We make use
of a 512 bit prespeci�ed global constant C. We almost never use the entire
constant C but often take some speci�ed pre�x of it depending on the length of
the key we're working with. We now describe our generator. Given a seed s we
generate random bits as follows:

Description of Secure Pseudo Random Number Generator
Input: seed s (usually 80 bits)

1. Let s0 = s
2. For i= 1 to 11 do

Let si = SHA(IV; prefixjsi�1j(C); si�1)
3. Output: hh(s1); : : : ; h(s11)i

In step 3 above, h refers to a hash function chosen from a universal class.
For example, the linear congruential hash function is any �nite �eld is a very
good candidate. For our purposes we will be using linear congruential hash
functions in a �nite �eld of order 2t. Several optimal implementations of this
hash function (which involves a multiplication and an addition in a �nite �eld
of the given order) exist.

We now give a verbal description of the generator and a brief high level
explanation of why it's secure (This part may be omitted without loss of con-
tinuity). Since SHA is believed to be a one-way secure hash function, it is
di�cult to �nd preimages of a given output { even if you know some portion
of the input. Using this idea, and the hypothesis SHA is collision intractable,
we can also show that SHA is "hard on its iterates." In other words, if you
compute a sequence of SHA's, it's still di�cult to compute the preimage of any
element in that sequence. Refering to our algorithm, this implies that if you
see any si (1 � i � 11), it is di�cult to obtain any substantial information

11

about si+1. Levin [12] showed that it's possible to construct a provably secure
pseudo-random number generator out of a one-way-function that's secure on
its iterates. His construction involves extracting what are called hard-core bits.
This is the role of the h function. The use of linear functions in a �nite �eld of
characteristic 2, i.e., AX +B where A;X;B are treated as elements of GF (2t),
is based on a theorem of Naslund [17], where he shows that for any one way
function the bits of this function are individually hard and logarithmic num-
ber of them are simultaneously hard. We extract a large number of these bits
(namely 76 bits per iteration) and still retain a system which is computationally
infeasible to break.

6.1.1 Proof of Security

In this section we present simple constructions of pseudorandom generators
based on the existence of hash functions which are one way and collision-
intractable. Any attack on the pseudorandom generator can be e�ciently turned
into an attack to discover collisions or preimages.

For the rest of this section we will refer to h(c; xi) as simply h(xi). Thus
h(xi) is a collision resistant function which has a domain of all 2

mn values and a
range of up to 2mn di�erent values. Although unlikely it is possible for function
h to be one to one and onto for some speci�c value of c. We will show that
even if it's not onto, the range of the function has to be almost as large as the
domain or else we will violate the collision intractability assumption of h.

De�nition 4 (birthday attack): for a function h going from n+c bits to n bits,
an attack which can �nd collisions h(m1) = h(m2) (m1 6= m2) in time O(2

n

2)
with probability 1

2 will be called a birthday attack.

Lemma 1 Assuming that a birthday attack is the best possible attack for �nding
collisions on h, the range Ri of the ith iteration of h, satis�es the inequality
jRij � c 2

n

i2
, where c is a constant independent of n.

Proof: Supposse that Ri shrinks to size jRij then we can randomly pick m's
and calculate hi(m)'s and see if collisions happen, that is perform a birthday
attack. This will require O(

p
jRij) attempts to �nd a collision with probability

of 1
2 . Each attempt requires us to calculate i hashes for a total of iO(

p
jRij)

hashes. Note that, hi(x) = hi(y) for some x 6= y implies that h(x0) = h(y0) for
some x0 6= y0. Since we assumed that the birthday attack is the best possible
attack on h, then no attack can �nd collisions with probability larger than half
in less than O(2

n

2) evaluations. Hence O(i
p
jRij) � O(2

n

2); solving for jRij

gives us the result that jRij � c 2
n

i2
, where c is a constant independent of n.

De�nition 5 Let Ei be the set of points on the ith iteration of h on which it
is possible to invert in time t. Let Hi = Ri � Ei be the set of points on the
ith iteration of h on which it is not possible to invert in time t. Pr(Ei) be the

12

probability that given values x in the domain R0 are picked uniformly and after
ith iteration hi(x) ends in the set Ei. Similarly Pr(Hi) is de�ned and is equal
to 1� Pr(Ei).

Theorem 3 (h is one way on its iterates): Suppose there is an algorithm A
which can invert hi(x) in t steps with probability � then there is another algorithm

A0 which can invert h(x) in steps t0 = t and �' = �2

i2
.

Lemma 2 jEij �
2n

i2
�2.

Sketch of proof of lemma: Let us denote the domain of h as R0, and the
range of h as R1. We will dispense with the use of the O notation, just for the
time being in order to avoid the use of constants in every step.

After i iterations the set of points reached is Ri. Note that we are assuming
that Pr(Ei) = �. If we were always able to pick points from the set E0 of points
in domain R0 which reach the set Ei then, assuming there is compression of
atleast 1 bit, we can �nd collisions with probability 1/2 in t =

p
jEij calculations

of function hi or i
p
jEij evaluations of basic function h. On average we need

1
�
tries to pick from the set which will reach Ei. So we need about 1

�
i
p
jEij

evaluations of h to �nd a collision with probability 1/2.
We know that the birthday attack requires 2

n

2 evaluations of h to �nd a
collision with probability 1/2. So 1

�
i
p
jEij � 2

n

2 . Thus jEij �
2n

i2
�2. We had

assumed that the number of points in R0 which reach Ei is twice as large or
in other words there is compression of at least 1 bit. If this is not true then
jE0j � 2jEij. But recall, jE0j = �2n. Hence �2n � 2jEij and jEij �

�
22

n. This

inequality is also satis�ed for all i � 2 by the inequality jEij �
2n

i2
�2.

Proof of theorem: The set Ei is a proper subset of R1 and hence every point
in Ei has a preimage in R0. Since its easy to invert on points in Ei its easy to
invert on h(x) calculated on at least jEij points in the domain R0 of the function

h. Thus the probability of inverting R1 is
jEij
jR0j

= �2

i2
= �0.

Thus based on the assumed di�culty of inverting h(x) on random x, that is
speci�c t0 and �0, we can �nd out the bound on probability of inverting at the
i� th step, � in t evaluations of h.

Now we can extract hard bits at each step assuming the function is su�-
ciently one way based on our original assumptions on t0 and �0. We can extract
many bits simultaneously but the security is reduced by half for every extra
bit extracted. However, the overall security may be large enough that every
bit is simultaneously secure unless the hash function is not su�ciently collision
intractable or su�ciently one way. In other words, an attack on the pseudoran-
dom generator can be turned into faster attacks on the two hallowed properties
of the hash function. Since we believe faster attacks do not exist, we conclude
our generator is secure.

13

7 Security of Sha-zam

In this section we discuss the security of the system. We are able to prove that
Sha-zam is at least as secure as the underlying cryptographic primitive, SHA.
In fact, under some reasonable assumptions about SHA we can show that an
adversary (who has no knowledge of the secret key) cannot even distinguish the
output of Sha-zam from a purely random string. This is the strongest possible
claim of security you can possibly make. Under di�erent assumptions about the
security of SHA, we can show di�erent levels of security for our block cipher.
In the subsequent sections we describe the various levels of provable security we
can achieve.

7.1 Security of the Feistel Construction

The overall security of the system relies on the Feistel construction, the proof
of which was provided by Luby and Racko�, and later simplied by Maurer [15].
Our design follows the Naor Reingold scheme [16], however, we improve upon
their constructions in particual ways. First we use the same random function f
in rounds 2 and 3, but do not use a full 2n bit pairwise independent permutations
in rounds 1 and 4. Instead we use a n bit universal hash function in rounds 1
and 4. Furthermore the universal hash function does not have to be a strongly
universal thus saving on key bits, but it is enough to be a certain type of delta
universal hash function. Care needs to be taken here, for example the use of
a linear delta-universal hash function will not guarantee a secure system. We
show that the square hash function is su�cient. Square hash also has the added
bene�t of being twice as e�cient as the linear hash. To be able to use square
hash we have to also change the XORs between rounds to addition modulo 2n.

Theorem 4 Let h1 and h2 be SQH �-universal hash functions and f be a
random function. The block cipher de�ned by a 4 round feistel network where
f1 = h1, f2 = f , f3 = f , and f4 = h2 is distinguishable from a random

permutation with Prob � O(m
2

2n) where m is the number of queries made by an
adversary.

Proof: The basic structure of the complete proof is from the more formal
treatmeant in the Naor-Reingold paper, and the simpler proof explanation pro-
vided here follows the treatment given by Maurer. We will try to show informally
that the block cipher is distinguishable from a random function with only very
low probability. But since we eventually want to get the distinguishing proba-
bility with respect to a 2n bit random permutation, this consideration gives a

minimum distinguishing proability of m2

22n (see [16] for details). Fortunately, the
conditions that need to be satis�ed for being a random function as presented
by a Maurer type treatment are the same as the conditions resulting from the
more formal treatment of Naor-Reingold.

14

Let us call the ith query plaintext (Li; Ri) and the n bit input to f in
round 2, Si. Let us call Ti the input to random function f in round 3, and
the ciphertext is (Vi;Wi). Assume that the same plaintext or ciphertext queries
are not made because they do not reveal any new information. Let ES be the
event that all S1; :::; Sm are di�erent and let ET be the event that all T1; :::; Tm
are di�erent. Also let EST be the event that set S = S1; : : : ; Sm and the set
T = T1; : : : ; Tm have nothing in common. First let us assume that the functions
f1 and f2 are di�erent. One of the n bit outputs is Vi, so if ET happens then
V1 = S1 + f2(T1); :::; Vm = Sm + f2(Tm) are random because f2(T1); :::; f2(Tm)
are random. This is because the output of a random function looks random
and if all the inputs to the random function are di�erent, the entire collection
looks like a collection of random outputs. The other half of the output is
Wi = Ti + h1(Vi) = Ri + f1(Si) + h1(Vi), so if ES happens then Wi is random
because all the outputs of f1() will be random if the the inputs are all di�erent.
If the query was a decryption query we will end up with similar conditions to
guarantee that the \outputs" (Li; Ri) look random, that is the inputs to f1 are
all di�erent and the inputs to f2 are all di�erent or in short both ES and EST
should happen. So if this good conditions do not happen then may be we can
distinguish the outputs from random and hence the block cipher from a random
function. Naor-Reingold calls the events BAD when the good condition is not
satis�ed.

Prob[BAD happening] <
P

1�i<j�m P [Ti = Tj] +
P

1�i<j�m P [Si = Sj]

< m(m�1)
2 (P [Ti = Tj] + P [Si = Sj])

< m2

2 (P [Wi � h2(Vi) =Wj � h2(Vj)]

+P [Li + h1(Ri) = Lj + h1(Rj)])

< m2

2 (P [Wi �Wj = h1(Vi)� h2(Vj)]

+P [h1(Ri)� h1(Rj) = Lj � Li])

< m2

2 (3
2n + 3

2n)

< m2(3
2n):

The probability P [Wi �Wj = h1(Vi) � h2(Vj)] is the condition for delta-
universality and is less than 3

2n .
The above was the case when f1 and f2 are di�erent. If they are the same

then we also have to make sure that EST happens.

15

Prob(EST not happening) <
P

1�i�j�m P [Si = Tj]

< m2P [Li + h1(Ri) =Wj � h2(Vj)]

< m2P [h1(Ri) + h2(Vj) =Wj � Li = �]
So we need to compute,

PX;Y (hX(Ri) + hY (Vj) = �):

After substituting for SQH, this is equal to,

PX;Y ((Ri +X)2 + (Vj + Y)2 = �) mod p)

PX;Y (X = �Ri �
q
�� (Vj + Y)2 mod p):

There are 2 solutions for X for a given key Y, so altogether there are 2n+1

solutions out of 22n possible keys X,Y. So

PX;Y (hX(Ri) + hY (Vj) = �) =
2n+1

22n
=

1

2n�1
:

However, since we modulo reduce by n the probability is going to further
increase to 3

2n�1 =
6
2n (see [16]). Altogether for the case of f1 = f2 the

Prob[BAD happening] < m2(
3

2n
+

6

2n
)

< O(
m2

2n
):

This means, an adversary needs O(280) queries to distinguish Sha-zam from
a random permutation with signi�cant probability. In our construction we use
SHA for our family of pseudo random functions. Hence, our cipher is as secure
as SHA under the assumption that SHA is a family of pseudorandom functions.
This hypothesis, albeit very strict and seemingly strong, is widely accepted and
in the next section we justify this assumption using the random oracle model.

7.2 Security Under the Random Oracle Model

In the Random Oracle Model, one designs a cryptographic scheme using an
underlying primitive such as SHA. Then, in order to make provable statements
about the security, certain assumptions are made about the underlying primi-
tive, and the goal is to show that any attack on the whole system would enable
one to violate one or more of the assumptions made about the underlying prim-
itive. In particular, the Random Oracle Model makes the assumption that the

16

underlying primitive behaves like a "Random Oracle." Intuitively, this means
that it is computationally infeasible for any adversary to establish any kind of
corellation between any of the input and output bits. In other words, the out-
put bits appear to be "random." Using SHA as the underlying primitive in the
Random Oracle Model is a well accepted idea.

Under the Random Oracle Model, we can achieve an incredibly strong level
of security for our system: We show that not only is it infeasible for an adver-
sary, who doesn't know the secret key, to encrypt or decrypt ciphertext, but we
show that it is infeasible for the adversary to even distinguish the encryptions of
various messages from purely random strings! More formally, we put the adver-
sary in one of two di�erent situations { in one situation he is given encryptions
and decryptions of messages of his choice. In the second situation whenever
he asks for either an encryption or decryption he is provided with a somewhat
randomly chosen string. The adversary is not, however, told which situation he
has been put in. We say that the adversary "wins" if he can correctly guess
which of the two situations he's in. We can show that it is impossible for him
to win even a non-negligble amount better than 50% of the time (keep in mind
that he can probably win half the time if he just randomly guesses). Here is a
more detailed description of this attack and the two relevant situations:

1. In this �rst situation, the adversary (who doesn't know the secret key) is
actually given temporary "black box" access to both the encryption func-
tion of Sha-zam and the decryption function of Sha-zam { i.e. given any
plaintext of his choice, he will be provided with the corresponding cipher-
text produced by the Sha-zam Algorithm. And given any ciphertext of his
choice, he will be provided with the corresponding plaintext. Moreover,
the adversary can make these queries to the black box in an arbitrary and
perhaps adaptive manner. That is, he will be allowed to see the answer
to all of his previous queries before he decides which query to make next.

2. In the second situation, the adversary is given access to a black box which
computes a "random" permutation and a black box which computes the
inverse of the previous random permutation. He will be told that the
random permutation box in fact computes the encrpytion function for
Sha-zam, and the random permutation inverse black box computes the
corresponding decryption function for Sha-zam. Loosely, a random per-
mutation is a function which is in some sense "dynamically" created. On
a given input, the output is chosen completely at random { independent of
the input. Moreover, the outputs are chosen so that the resulting function
is still a permutation. More speci�cally, the random permutation boxes
will work as follows:

(a) If a query P (where P stands for the plaintext given to the box) is
made to the permutation box, we �rst check whether the query P
was made to the permutation box before. If it was made before, then

17

we return the same answer as last time. If it wasn't made before, we
check to see if we ever returned the value P for any query made to
the inverse permutation black box. If it was returned, then we return
the value of the query that was made to the inverse permutation box
that resulted in P being returned. If neither of these things happend,
we pick a random 320 bit string (i.e. we can just ip a coin 160 times)
which we call R that we never picked before for this stage, and we
return this string. Finally, we record that the query P was made
to the permutation black box, and that the random string R was
returned.

(b) If a query C (where C stands for the ciphertext given to the box) is
made to the inverse permutation box, we �rst check whether C was
made to the permutation box before. If it was made before, then we
return the same answer as we did last time. If it wasn't made before,
we check to see if we ever returned the value C for any query made to
the permutation black box. If it was returned before, we return the
value of the query that was made to permutation box that resulted
in C being returned. If neither of these is the case, we pick a random
320 bit string which we call R0 that we never picked before for this
stage, and we return this string. Finally we record that the query C
was made to the inverse permutation box, and that the corresponding
random string R0 was returned.

In other words, we randomly and dynamically choose our replies in such
a way that the replies are consistent, and appear to come from a permu-
tation.

We put the adversary in one of these two situations, but we don't tell him
which one. We say that the adversary "wins" if he can �gure out which of
the two scenarios taking place. Clearly the adversary can win about 50% of
the time just by guessing randomly. We can show that it is computationally
infeasible for the adversary to win even a non-negligible amount more than 50%
of the time. This is in some sense the ultimate level of security because if the
adversary cannot distinguish the output of Sha-zam from random junk outputs
that happen to be consistent with a permutation, then there is absolutely no
hope of him being able to decrypt any portion of the ciphertext (and we can
more formally prove this as well).

To summarize, we are able to prove the following theorem:

Theorem 5 Under the Random Oracle Assumption on SHA, it is infeasible
for the adversary to distinguish (plaintext, ciphertext) pairs produced using Sha-
zam with pairs produced using a random permutation { even if the adversary is
given unrestricted black box access to the encryption and decryption functions
of Sha-zam under some secret key.

18

7.3 Security Under the Secure Message Authentication
Code Assumption

We consider the case when the adversary is able to decrypt ciphertext without
knowing the secret key. We already know that under the widely accepted ran-
dom oracle assumptions on SHA this is very unlikely. In any case, we now give
further evidence that this is unlikely under a slightly weaker but widely held
assumption: That SHA can be used for Secure Message Authentication. This
assumption is quite widely believed { in fact it were false, then the proofs of
security in HMAC (which is an internet RFC) would not work. We start by
de�ning some basic notions relating to Message Authentication Codes (MACs),
(see [3]), and later show that in fact the task of decryption in Sha-zam without
knowledge of the secret key is much more di�cult than violating the MAC secu-
rity of SHA. In this section, we will use Sha-zam with a secret initial value. In
other words we will generate 160 extra bits out of the key scheduling generator
(for a total of 832 bits) and allot these bits for the IV.

A Message Authentication Code (or MAC) is a function which has a secret
key k and takes as input a message m. It returns as output a tag MACk(m).
MAC's are used by two people engaged in communication (who have agreed
on a secret key) to ascertain that the messages they've sent across are in fact
valid, authentic, and have not been tampered with. There is a stringent notion
of security for MACs. Here is the most general type of attack that can occur.
An adversary gets to see a sequence (m1; t1); (m2; t2); : : : (mq ; tq) of (message,
tag) pairs; i.e. ti = MACk(mi). The adversary, however, is not told what the
secret key k is. We say that the adversary breaks the MAC if he can come up
with a message m which is di�erent from each of the messages m1; : : : ;mq, and
a corresponding tag t such that t =MACk(m).

The (message, tag) pairs that the adversary gets to see could be derived in
several di�erent ways. It could be that the adversary managed to eavesdrop on
some communication between two parties, and had no control over the messages
for which he saw the tag. Or, the adversary could have been given restricted
black box access to the MACing algorithm. Speci�cally, the adversary could
have chosen messagesm1; : : : ;mq and been told the corresponding tags t1; : : : ; tq
such that ti =MACk(mi). This type of attack is called a chosen message attack.
Or, the worst possible scenario { the adversary was given unrestricted black box
access to the MACing algorithm. Speci�cially, the adversary can choose m1, get
to see the corresponding tag t1. From that information, the adversary can pick
m2, receive the corresponding tag t2, and so on. In this case, the adversary is
said to mount an adaptive chosen message attack because the adversary gets
to adaptively choose his queries to the black box based on the answers to the
previous queries.

We now formally state our assumption on SHA's ability to be a secure MAC:

Assumption 1 Let k be a 352 bit secret key. Consider the MAC on a 160

19

bit message m de�ned by MACk(m) = SHA(IV;m; k). We assume that it is
computationally infeasible for an adversary to break the MAC (even under an
adaptive chosen message attack).

One thing to note is that the above assumption is actually much weaker
than the standard assumptions made about SHA's ability to act as a good
MAC. Normally when one thinks of a MAC, both the size of the secret key and
the size of the output are much smaller than the size of the input message. Since
we have a relatively large key and a relatively large output size, we get a much
better level of security. We now state our main theorem regarding the security
of our cipher under the assumption that SHA serves as a secure MAC:

Theorem 6 Suppose there is an adversary A that is given black box access
to both the encryption and decryption functions for Sha-zam. And after some
number q of queries to the black box, is capable of either encrypting or decrypt-
ing an arbitrary message M . Then this adversary A can be converted to an-
other adversary (call it A0) which can break the MAC denoted by: MACk(m) =
SHA(IV;m; k) by making 2q adaptive queries. (Thus violating the assumption
that SHA serves as a secure MAC.)

Proof Idea: The idea is to show that given an adversary A which can break
either the encryption or decryption of Sha-zam, it possible to construct an adver-
sary A0 that can break SHA based MAC. The adverary A0 will do the following:
It will simulate the adversary A. Now, A is supposed to have black box access to
both the encryption and decryption functions for Sha-zam. So, every now and
then A will ask for a certain message to be decrypted, or encrypted. Whenever
this happens, A0 must simulate the encryption/decryption black boxes. How
can it do this? Well, keep in mind that A0 is being given access to a black box
for MAC and A0 is attempting to break this MAC. It turns out that any en-
cryption or decryption query made by A can be resolved by A0 if A0 makes two
queries to the MAC black box. So, the idea is that A0 can correctly simulate the
encryption and decryption black boxes of Sha-zam given access to a box for the
SHA based MAC. After a while of simulating A, it will be ready to encrypt or
decrypt messages. Once this happens, we can pick a message in a certain way,
and give it to A0 to either encrypt or decrypt. Once we see both the message
and its corresponding encryption, with some manipulation of equations, one can
derive a message/tag pair that's authentic with respect to the SHA MAC for
some particular key. We now present a more formal proof.
Proof: We divide the adversary A into two halves: Aq and Ar (which we call
the query phase and the request phase respectively). Aq makes queries to either
the encryption or decryption boxes of Sha-zam. Moreover, it can make these
queries in any manner (either adaptive or non adaptive) it so chooses. After-
wads, Ar "takes over." Ar get to see all the information passed to Aq . Now, Ar

can be given a ciphertext (or a plaintext) and it must produce the corresponding

20

plaintext (or ciphertext) that Sha-zam would have produced. Given an adver-
sary A that can break Sha-zam in q queries, we must construct an adversary A0

that can break the MAC de�ned by MACk(m) = SHA(IV;m; k) with only 2q
queries to a black box which can compute the MAC. A0 has access to a black
box, called MAC, which on input m produces MACk(m) = SHA(IV;m; k).
Also, A0 makes use of Aq and Ar (the adversaries that can break encryption
and decryption mechanisms in Sha-zam). We also note that A0 makes use of
the SQH function which we de�ned earlier. Here is a formal description of A':

Formal Description of A'
Outputs a (message, tag) pair that's authentic with
respect to the SHA MAC.
1. Pick k1; k3 at random from f0; 1g160

2. Start simulating adversary Aq .
a. Suppose Aq makes a query to get an encryption on 320 bit input M:

a1. Divide M into L and R, the leftmost and rightmost 160 bits of M .
a2. Compute S = L+ SQHk1(R) mod 2

160

a3. Query the MAC black box on input S and call the response F1.
a4. Compute T = R+ F1 mod 2

160

a5. Query the MAC black box on input T and call the response F2.
a6. Compute V = S + F2 mod 2

160

a7. Compute W = T + SQHk3(V) mod 2
160

a8. return (V,W) to Aq as the corresponding ciphertext pair to input M .
b. Suppose Aq makes a query to get an decryption on 320 bit input C:

b1. Divide C into V and W , the leftmost and rightmost 160 bits of C.
b2. Compute T =W � SQHk3(V) mod 2

160

b3. Query the MAC black box on input T and call the response F1.
b4. Compute S = V � F1 mod 2

160

b5. Query the MAC black box on input S and call the response F2.
b6. Compute R = T � F2 mod 2

160

b7. Compute L = S � SQHk1(R) mod 2
160

b8. return (L,R) to Aq as the corresponding plaintext pair to input C.
3. Continue simulation in step 2 until Aq is done making queries and Ar is ready to take requests.
4. Start simulating the adversary Ar:

c. Suppose Ar claims it can decrypt any ciphertext:
c1. Pick C 2 f0; 1g320 at random, such that W � SQHk3(V) mod 2

160 is di�erent from
any query you made to the MAC (where V and W are the left and right halves of C).
c2. Give the string C to Ar and call the response M .
c3. Denote M = (L;R) and C = (V;W) where jLj = jRj = jV j = jW j = 160:
c4. Output: (W � SQHk3(V) mod 2

160; V � L� SQHk1(R)�R mod 2160)
(this is the valid (message, tag) pair.)

d. Suppose Ar claims it can encrypt any ciphertext:
c1. Pick M 2 f0; 1g320 at random, such that L+ SQHk1(R) mod 2

160 is di�erent from
any query you made to the MAC (where L and R are the left and right halves of M).

21

d2. Give the string M to Ar and call the response C.
d3. Denote M = (L;R) and C = (V;W) where jLj = jRj = jV j = jW j = 160:
d4. Output: (L+ SQHk1(R) mod 2

160;W � SQHk3(V)�R mod 2160)
(this is the valid (message, tag) pair.)

We now describe why this algorithm works. Observe that in steps a1 through
a8 we are computing the encryption speci�ed by Sha-zam for secret key (k1; k2; k3)
where k1 and k3 were chosen in step 1, and k2 is the key for the MAC. In steps
b1 through b8, we are computing the decryption speci�ed by Sha-zam for the
secret key (k1; k2; k3). Therefore, the adversary A gets to see valid (plaintext,
ciphertext) pairs for the Sha-zam algorithm with secret key (k1; k2; k3). At the
end, Ar should either be able to decrypt any ciphertext, or be able encrypt any
plaintext. If it can decrypt any ciphertext or plaintext, then it's not hard to
come up with a message/tag pair corresponding to the MAC with private key
k2. If it's the case that decryption can be done by Ar, then if you look at the
equations speci�ed in the description of encryption and decryption algorithms in
Sha-zam, and work through them, you can see that message tag pair produced
by the algorithm is really (T; SHA(IV; T; k2)). And if encryption can be done
by Ar then working through the equations you �nd that the algorithm in fact
produces the pair (S; SHA(IV; S; k2)). In both cases, the MAC is broken. And
this concludes the proof. 2

Some interesting notes about the proof: Even if the Adversary A was re-
stricted to using either an encryption black box for Sha-zam, or a decryption
black box (but not both!) he could still be converted to an adversary A0 which
breaks the underlying SHA MAC. Another thing to note is that in our block
cipher we call SHA twice, with the same inner key k2 in both cases. It appears
that a system in which we instead have two distinct keys for the two di�erent
calls to SHA is more secure. If we look at the above proof, we see more concrete
evidence of why this might hold. If there were two distinct keys for the two calls
to SHA, it would be possible to break the underlying MAC with only half the
number of queries than in the original case. This is because we could query the
MAC in steps a3 and b3. And in steps a5 and b5 we could obtain an answer by
constructing our own MAC from a di�erent key, and using that to return the
answer. Thus we only need to query the original MAC half the time. Since we
are less likely to break a MAC if we are permitted only half as many queries, it
follows that the system is probably more secure when we use two distinct keys
for the two calls to SHA. However, this is a tradeo� because even though we get
some more security, we have to pay the heavy of price of extra key material.

8 Conclusion

We have described a practical and provably secure Block Cipher. We have
shown that our cipher is as fast as DES, and is as secure as SHA. We have also

22

described how to do secure key schedhuling via a practical and cryptographically
secure pseudo-random bit generator where each bit is individually hard as SHA.

References

[1] W. Alexi, B. Chor, O. Goldreich and C. P. Schnorr, RSA/Rabin bits
are 1/2+1/poly(log N) secure, Proceedings of 25th FOCS, 449{457,
1984.

[2] R. Anderson, E. Biham, Two practical and provably secure block
ciphers, BEAR and LION, Fast Software Encryption (ed: D. Goll-
mann), LNCS 1039, 113{120, 1996.

[3] M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for mes-
sage authentication, Advances in Cryptology, (ed: N. Koblitz), LNCS
1109, 1996.

[4] M. Ben-Or, B. Chor, A. Shamir, On the cryptographic security of
single RSA bits, Proceedings of 15th STOC, 421{430, 1983.

[5] L. Blum, M. Blum, and M. Shub, A simple secure pseudo-random
number generator, SIAM J. Computing, 15 No. 2:364{383, 1986.

[6] M. Blum, and S. Micali, How to generate cryptographically strong
sequences of pseudo random bits, SIAM J. Computing, 13 No. 4:850{
864, 1984.

[7] U. S. Department of Commerce/ N. I. S. T, Data Encryption Stan-
dard, FIPS 46{2, 1977.

[8] U. S. Department of Commerce/ N. I. S. T, Digital Signature Stan-
dard, FIPS 186, May 1994.

[9] O. Goldreich, and L. A. Levin, A hard-core predicate for all one way
functions, Proceedings of 21st STOC, 25{32, 1989.

[10] S. Goldwasser, and A. Micali, Probabilistic encryption, Journal of
Computer and Systems Science, 28: 270{299, 1984.

[11] P. Gutmann, documentation to SFS release 1.20 - SFS7.DOC,
URL:http:/www.cs.auckland.ac.nz/pgut01/sfs.html, 1995.

[12] L. Levin, Pseudorandom generators from one way functions, Combi-
natorica, 7(4): 357{363, 1987.

[13] M. Luby, and C. Racko�, How to construct pseudorandom permu-
tations from pseudorandom functions, SIAM Journal of Computing,
17: #2, 373{386, 1988.

23

[14] S. Lucks, Faster Luby-Racko� ciphers, Proc. Fast Software Encryp-
tion, Lecture Notes in Computer Science, vol. 1039, Springer-Verlag,
189{203, 1996.

[15] U. Maurer, A simpli�ed and generalized treatment of Luby-Racko�
pseudorandom permutation generators,Advances in Cryptology - EU-
ROCRYPT '92, LNCS 658, 239{255, 1992.

[16] M. Naor, S. Rheingold, On the construction of pseudo-random per-
mutations: Luby-Racko� revisited, Proc. 29th Annual ACM STOC,
189{199, 1997.

[17] M. Naslund, Universal hash functions & hard core bits, Proc. of Eu-
rocrypt '95, LNCS 921, 355{366, 1995.

[18] M. Naslund, All bits in ax + bmod p are hard, Proc. of Crypto '96,
LNCS 1109, 114{128, 1996.

[16] S. Patel, Z. Ramzan, Square hash: Fast message authentication via
optimized universal hash functions, preprint.

[17] S. Patel, G. S. Sundaram, An e�cient discrete log pseudo random
generator, Proc. of Crypto '98, 304{317, 1998.

[18] R. Rivest, RC-6, A proposal for the Advanced Encryption Standard,
1998.

[19] U. S. Department of Commerce/ N. I. S. T, Secure Hash Algorithm,
FIPS 180, April 1995.

