3GPP TSG SA2
Tdoc S2-001162
Drafting Meeting on Key Issues
Sophia Antipolis, 12th – 14th June 2000

TITLE:
Possible Solutions for Service Provision
DATE:
June, 6th 2000
ABSTRACT:
This document analyses the different possibilities for the realisation (control/execution) of 3rd generation services and proposes some solutions for further analysis
RECOMMENDATION:
For discussion at the S2 drafting session on Key Issues

SOURCE:
Erwin Postmann

SIEMENS AG

Email address:

erwin.postmann@siemens.at

Office Phone #:

+43.51707.21398

Mobile Phone #:

+43.664.1010034

FAX #:

+43.51707.51924

1.
Background

The 3GPP Release 00 architecture shows a link between the CSCF and the “Applications and Services” space, however there has been little discussion on the protocol (if needed) to run over this link.

It is particularly important for the completion of Release 00 to define the requirements for service control and to elaborate technical solutions to fulfil these requirements.

2.
Introduction

The main issue of this document is to describe different options for the interface between the CSCF and the "Applications and Services" space. These options should be considered for the further discussion on this topic within 3GPP S2.

The following general statements on Applications and Service should be taken as the basis of the further work:

· Application and Services have to be provided wherever the subscriber roams and whatever terminal he uses (depending of the capabilities of the serving network and/or used terminal)

· Application and Services shall be provided independent of the access technology
· New Application and Services are not standardised

· Support of Operator specific Application and Services shall be ensured

· Value added applications and services shall be realised by TOOLKITS

· Network Capabilities have to guarantee fast deployment of new Application and Services

The following options for the control and execution of call related services on a I2N (Intelligent Internet Network) architecture could be identified (NOTE: This list is not exhaustive):

· 3GPP approaches

· CAMEL access to SIP networks

· OSA approach

· JAIN - Parlay

· Internet proposals for SIP Sever Programming

· Call Processing Language (CPL)

· Common Gateway Interface (CGI) for SIP

· SIP Servlet API

· Java enhanced SIP

The following figure provides an overview about the different possibilities supported by an generalised I2N architecture(see also [2],[3]).

[image: image1.wmf]CSE

OSA GW

CSCF (SIP Server)

SoftSSF

JAIN-SIP

CSE

Application

Application

TCAP / CAP

OSA GW

Application

OSA API

JAIN Parlay

Server

Application

JAIN Parlay API

OSA API

Application Server

e.g. SIP

Application Environment

(e.g CPL-scripts, CGI-scripts,

Servlets

, Java Mobile agents)

Application

(e.g CPL-scripts, CGI-scripts,

Servlets

, Java Mobile agents)

 SIP

Figure 1: Generalised I2N architecture

3.
3GPP approaches

Different approaches are discussed within 3GPP for the support of services and applications within Rel'00. The proposed technical solutions are

· the enhancement of CAMEL (phase 4) to support also IP based services and

· the usage of the Open Service Architecture concept (the CSCF will be seen as a new Service Capability Server)

3.1
CAMEL approach

The CN 2 WG of 3GPP has elaborated the TR 21.978 [10] to show the feasibility to use CAMEL also for VoIP calls. This TR introduces a so-called "softSSF" which acts as an overlay between the IP telephony call control and the Intelligent Network layer provided by the gsmSSF and the gsmSCF. This ‘softSSF’ provides the necessary mapping between the SIP protocol state machine and the CAP/INAP Basic Call State Model (BCSM).

This "softSSF" interacts with the SIP server via a not standardised interface. This interface shall carry sufficient call data for the gsmSSF to function correctly and to deliver the necessary information to the gsmSCF so that the service logic can make the necessary decisions. The interface shall also allow the gsmSCF (in combination with the gsmSSF and the MSC Emulator) to control VoIP calls and manipulate call information similar to a Rel'99 GMSC or VMSC.

For further details see [10].

3.2
OSA approach

3GPP has standardised an Open Service Architecture within Rel'99 . This architecture defines an open API for the design, implementation, control and execution of services and applications provided by third party service providers (see [11]). Also a mapping of the functionality provides by this API to the CAP-Protocol (see [12]) was defined.

The OSA approach could be used in two different ways:

· OSA Gateway on top of the CSE:

Due to that also a mapping of the functionality provided by the OSA-API to the CAP-Protocol (see [12]) was defined, the OSA approach could be used to realise CAMEL-like applications and services but requires in addition to the OSA-GW (on top of the CSE) also a so-called "softSSF" at the CSCF (described in the section above).

· OSA Gateway on top of the CSCF:

To avoid the usage of "softSSF" at the CSCF a mapping of the OSA-API functions to SIP has to be defined. If such a mapping is defined it is possible to implement the OSA-GW on top of the CSCF. It is not required to standardise the interface between the OSA-GW and the CSCF.

4.
JAIN Parlay

The Parlay Group publishes technology-independent specifications that define a set of interfaces in the form of methods, events, parameters and their semantics. The results of the Parlay Group (the Parlay API) is also the basis for the 3GPP OSA API. Similar to the Parlay Group, the JAVA APIs for Integrated Networks (JAIN) Community provides a Java standardisation of desktop and server technology for different network technology.

The definition of a JAIN-Community-endorsed version of the Parlay API, enables third party application developers to build network applications conforming to the Java "write once, run anywhere" paradigm.

To support the Parlay API as an external API the JAIN Community architecture was enhanced. To use the JAIN Community service plane and control plane capabilities, the JAIN Parlay Implementation Server interacts with the JSLEE (JAIN Service Logic Execution Environment) to access features such service subscriptions, JCC (JAIN Call Control)and JCAT (JAIN Co-ordination and Transaction) APIs to access call related feature (for more details see [13]).

5.
Internet proposals

Different solutions for the programming of SIP Services within the IETF were proposed. This approaches include the usage of e.g. Call Processing Language (CPL), Common Gateway Interface (CGI) for SIP, SIP Servlets APIs, JAVA enhanced SIP (JES).

The service logic can either reside on the SIP servers themselves, or in special computers (Application /Feature Server) separate from the SIP servers (CSCF).

In the latter case, some protocol is needed for the interface between the server and the service logic. This can again be (enhanced) SIP – in which case the CSCF would in principle act as a SIP proxy, it could be a (new) special purpose protocol, or can be some form of Remote Procedure Call (RPC). Distributed computing platforms, such as CORBA and DCOM, can also be used. This allows the location of the service logic to be independent of the interface itself.

When the service logic and server are co-resident, their interface can be a simple (internal) API.

Placing the logic in an external server has numerous advantages. It increases security. Malicious or buggy code which crashes has less effect on the server, since they are physically separated. There can be multiple computers executing the logic for a single server. This provides load balancing and improves scalability and administration. On the other hand, executing the service logic on the same server simplifies the interface. Network issues, such as losses, delays, and encryption, can be ignored. Execution time for the logic is also improved, since it is not necessary to traverse a network.
Call Processing Language (CPL) – see also [1], [6],[7]
The Call Processing Language (CPL) is a XML-based language that can be used to describe and control Internet telephony services. It is designed to be implementable on either network servers or user agent servers. It is meant to be simple, extensible, easily edited by graphical clients, and independent of operating system or signalling protocol. It is suitable for running on a server where users may not be allowed to execute arbitrary programs, as it has no variables, loops, or ability to run external programs.

There are four broad classes of language primitives in the CPL. First, there are switch nodes, which represent decisions a script can make. Secondly, location nodes indicate the locations where users can be found, either directly or by reference. Signalling actions are the core of the language; they control the behaviour of the underlying signalling protocol. Finally, non-signalling actions allow non-call actions to be taken.

For details see [6].
Common Gateway Interface (CGI) for SIP – see also [1], [8]
Like traditional HTTP CGI, a SIP CGI script may be invoked when a SIP request arrives at a server. The server passes the body of the message to the script through its standard input, and sets environment variables containing information on the message headers, user information, and server configuration. The script performs some processing, and generates output data which is. This data may then be processed by the server, which acts accordingly, and then the script terminates.

There are some important differences between SIP CGI and HTTP CGI, e.g. (a) persistence model, (b) SIP CGI Triggers, (c) support of multiple actions per script output, (d) Naming, (e) usage of environment variables, (f) setting of timers.

For details see [8].

SIP Servlets APIs – see also [4], [5]
This approach proposes a Java extension API for SIP servers. It allows SIP server functionality to be extended by associating incoming requests and responses with SIP servlets - Java programs which control or influence the processing of SIP messages. The API is similar in spirit to the servlet API used with Web servers.

Basing a SIP server extension mechanism on the notion of Java servlets has a number of advantages, e.g. the ability to remain stateful, low overhead, a typed API, a number of built-in security mechanisms, as well as convenient access to a wide range of APIs, e.g. directory services, databases, and the Java Media Framework.

The API gives full control to servlets to handle SIP messages, e.g. has full access to headers and body, it may proxy or redirect requests, respond to or reject requests, forward responses upstream, initiate requests.

For details see [5].
JAVA enhanced SIP (JES) – see also [9]
This approach proposes an extension to the SIP protocol to:

· extend SIP messages to carry Java applets or Java applets plus their state and runtime contexts - in other words Java mobile agents (or URLs to either the applet or the Java Mobile agent)
· to define a Java SIP API which will allows the Java applet or Java Mobile Agent interact with the receiving host system and receiving SIP client
· to extend the SIP client so that the Java applet or Java Mobile Agent is run before any other actions are taken on the receipt of a message by the receiving host SIP client.
Java enhanced SIP includes security measures to allow a client to be configured to enable and disable certain actions between the JVM running the Java applet or the Java mobile agent virtual machine running the Java Mobile Agent in the message and the clients SIP client and host system.
6.
Conclusions

As shown in the section above a variety of approaches for the realisation of applications and services with Rel'00 are possible.

A number of considerations come into play when evaluating the different approaches. One important criteria is the secure access to the network resources from third parties. Obviously, it is of paramount importance for a network (e.g. the CSCF) to protect itself against accidental or malicious usage of the network resources. Another criteria is ease-of-use. If ordinary end-users are going to configure their communication services the solution need to be fairly straightforward. These two aspects, safety and simplicity, are independent, and it has been argued that they point to the need for two levels of programmability-one for trusted, advanced developers and or system administrators, and one for untrusted end users (see also [1], [4]). To avoid two different interface it would be preferable to have only one technical solution which fulfils all requirements.

The strength of the API approach (OSA, Parlay) over downloadable mechanisms (like CPL, CGI, Servlets) is that by defining a secure extensible real-time interface, the API provides a clear demarcation between the network operator and the third party application provider. The API provides a standardised access for the control and usage of network resources to the third parties which could be end users, service providers, enterprises, and maybe other network operator.

As another possible advantage of the API approach could be the richness of the functions provided to third party providers, e.g. compared with the functions offered by CPL or the possibilities offered in the area of load management and administration, e.g. compared with that provided by the SIP CGI, SIP servlets approaches.

7.
References

[1] J. Rosenberg, J. Lennox, H. Schulzrinne: "Programming Internet Telephony Services" , IEEE Network Magazine, 13(3):42-49, May/June 1999

[2] G.P. Gerhard: SIP and Parlay- "Design for Applications", Presentation at SIP 2000

[3] L. Slutsman, G. Ash, F. Haerens, V, Gurbani: "Framework and Requirements for the Internet Intelligent Networks (IIN)", Internet Draft, March 2000, <draft-lslutman-sip-iin-framework-00.txt>
[4] A. Kristensen, A. Byttner, R. Kurmanowytsch: "Programming SIP Services", iptel2000 Proceedings, 19-21

[5] A. Kristensen, A. Byttner: "The SIP Servlet API", Internet Draft, Sept. 1999, <draft-kristensen-sip-serlvet-00.txt>. Work in progress

[6] J. Lennox, H. Schulzrinne: "CPL: A Lanugae for User Control of Internet Telephony Services", Internet Draft, March 2000, <draft-ietf-iptel-cpl-01.txt>

[7] J. Lennox, H. Schulzrinne: "Call Processing Language Framework and Requirements", Internet Draft, Jan. 2000, <draft-ietf-iptel-cpl-framework-02.txt>

[8] J. Lennox, J. Rosenberg, H. Schulzrinne: "Common Gateway Interface for SIP", Internet Draft, March 2000, <draft-lennox-sip-cgi-03.txt>

[9] M O'Doherty: "Java enhanced SIP (JES)", ", Internet Draft, March 2000, <draft-odoherty-sip-java-enhanced-00.txt

[10] 3GPP TR 21.978 - Feasibility Technical Report – CAMEL Control of VoIP Services

[11] 3GPP TS 23.137 - Virtual Home Environment / Open Service Architecture

[12] 3GPP TR 29.998 - Open Services Architecture - API - Part 2
[13] S. Beddus, G. Bruce, S. Davis: "Opening Up Networks with JAIN Parlay", IEEE Communications Magazine, 136-143, April 2000

2
3

_1021722411.ppt

CSE

OSA GW

CSCF (SIP Server)

SoftSSF

JAIN-SIP

CSE

Application

Application

TCAP / CAP

OSA GW

Application

OSA API

JAIN Parlay

Server

Application

JAIN Parlay API

OSA API

Application Server

e.g. SIP

Application Environment

(e.g CPL-scripts, CGI-scripts,

Servlets, Java Mobile agents)

Application

(e.g CPL-scripts, CGI-scripts,

Servlets, Java Mobile agents)

 SIP

