SA WG2 Temporary Document

Page 1

SA WG2 Meeting #99
S2-133497
23 - 27 September 2013, Xiamen, P.R. China
(revision of S2-13xxxx)
ource:
Nokia, NSN
Title:
Discussion on gateways residing in the device
Document for:
Discussion
Agenda Item:
6.9
Work Item / Release:
IMS_WebRTC / Rel-12
Abstract of the contribution: Discusses the implementation aspects of the device resident gateway functions

1. Introduction

Some architectural solutions propose that the WebRTC signalling and media mediation functions should locate within a custom application in the UE. Mediation functions then should adapt the WebRTC client (web browser with a JavaScript application) to the IMS protocols towards the IMS network. This can be called as “device resident gateway” approach. The UE architecture is out of scope of the 3GPP, but since the implementability is important factor when evaluating different solutions against each other, some possible implementation options to achieve this requirement are discussed in this paper.

2. Implementation options for device resident gateways

2.1 Custom browser

In this alternative a custom browser in the device uses a set of proprietary, operating system dependent APIs to initiate an IMS registration, initiate and tear-down an IMS session, for QoS and APN handling, UICC access, etc. Alternatively the necessary IMS client capabilities can be integrated to the custom browser, or a native IMS (telephony) application can be extended with embedded web viewer and JavaScript capabilities. The JavaScript needs to be able to deduce the type of device and use proper API calls based on this information. The JavaScript need to be enhanced for each device operating system the service provider intends to support. 

The JavaScript does not utilize the W3C WebRTC API, but a set of device OS dependent proprietary APIs. The custom browser required by this solution is therefore not re-usable for regular WebRTC.

2.2 Regular WebRTC browser with plugins

This alternative requires the regular WebRTC browser can be extended with plugins which are able to use the IP connectivity procedures provided by the device operating system. The plugin is then provided which uses the services provided by the native IMS client, or the plugin may implement the necessary IMS protocol functions itself.

Since none of the current, commonly used mobile browsers are known to support this kind of plugins, this alternative is not considered further. 

2.3 Regular WebRTC browser without plugins

In this alternative the regular WebRTC browser and WebRTC W3C JavaScript APIs are used, and the browser is not extended with plugins.

The JavaScript needs to be able to deduce the type of device and select a correct session signaling protocol towards the signalling mediation function based on this information. The JavaScript need to be enhanced for each device operating system the service provider intends to support.

In order to utilize the regular browser, the mediation functions in the device need to be able to “hijack” the control plane (JSEP based session signalling) and the media plane (STUN/TURN/SRTP/DTLS) and convert these to the IMS protocols (e.g. Gm) with possible audio/video transcoding as needed. 

One option to hijack the signalling plane is to use an internal HTTP proxy. The proxy may need to be selective, i.e. only the target URIs towards the IMS based WebRTC service are routed via the proxy. In addition HTTPS/TLS cannot be used as the proxy would not be able to decrypt the content.

For media mediation, the WebRTC media mediation function needs to be able to “hijack” the media plane from the browser and convert the WebRTC media plane from/to the IMS compatible media. In addition, it needs to be able to transcode the WebRTC codecs (e.g. Opus) from/to IMS codecs (e.g. AMR). Transcoding inside the device, especially for video streams, may cause performance issues. The use of DTLS in browser needs to be disabled as the mediation function cannot decrypt the DTLS encrypted content. One option to achieve the medial plane hijacking could be to use an internal TURN server, but it would need to be studied more whether this is feasible or not.
3. Conclusion

Custom browser could be an option to implement the device resident gateways, but as the JavaScript would not utilize the W3C WebRTC API, but a set of device OS dependent proprietary APIs, the custom browser required by this solution is not re-usable for regular WebRTC.

Plugins are not considered as a viable option.

The use of regular WebRTC with device resident gateways requires more study to see whether this is viable option or not.

4. Proposal

It is proposed not to include the solutions based on device-resident gateways into the TR unless it can be shown that there is a viable option to implement such gateways.
3GPP

SA WG2 TD


