SA WG2 Temporary Document

Page 1

SA WG2 Meeting #96
S2-131194
08 - 12 April 2013, San Diego, California, USA
(revision of S2-13xxxx)
Source:
Renesas Mobile Europe Ltd
Title:
Solution for ProSe UE Discovery
Document for:
Discussion, Approval
Agenda Item:
7.4
Work Item / Release:
ProSe / Rel-12
This contribution addresses the issue of UE discovery and how to enable Application user discovery in ProSe whilst ensuring confidentiality and privacy of the permanent identities of the UE used in the EPS, and of the Application user identity used in the Application.
The proposal articulates around a few fundamental points:

· The Application user identity is not disclosed outside the Application

· The UE identities are not disclosed outside the “3GPP” layer

· Application-level restrictions are enforced solely at the Application – the liability lies exclusively at the Application

Definitions and Assumptions
Application: an application, possibly third-party application, running on any device irrespective of the operating system of the device. The Application may rely on an application server, or not. An application may be e.g. a social network application.

Application instance: an instance of an application running on a given UE.
Application user: the user of an application (e.g. Bob@App). The same Application user can use the same application on different UEs. Different Application users of the same application can use the same UE. Each UE runs an application instance.
A network entity is introduced that provides the functions required to support ProSe operation: ProSe server (control-plane).

ProSe UE discovery and Application discovery
It is necessary to distinguish two levels of discovery: one that lies within the 3GPP system (ProSe UE discovery), and one that lies outside it (subject to an application being external to the 3GPP system):
· 3GPP-level ProSe UE Discovery of ProSe-enabled UEs in proximity: A UE discovers other ProSe UEs in proximity provided ProSe is enabled, and authorized.

· Application-level Discovery of Application users in proximity, enabled by the ProSe discovery of UEs in proximity, provided the Application is authorized to use ProSe.

While ProSe UE discovery can be seen as an enabler of Application-level discovery, ProSe UE discovery is unnecessary if not associated to a (subsequent or concurrent) Application-level discovery. Indeed, Application-level discovery may not necessarily use ProSe UE discovery: existing mechanisms can already today determine two Application users in proximity of each other.
Restrictions and permissions for discoverability can be set and enforced at the application level and at the 3GPP (ProSe) level as illustrated in the following figure.
[image: image1.emf]ProSe UE2ProSe UE1

Discoverable by

Not discoverable by

Discoverable by

Discoverable by

Not discoverable by

Not discoverable by

App A

User A1

App A

User A2

App B

User B1

App B

User B2

App C

User C1

App C

User C2

Discoverable by

Discoverable by

App A level discoverability restrictions and

permissions are enforced by App A

App B level discoverability restrictions and

permissions are enforced by App B

App C level discoverability restrictions and

permissions are enforced by App C

3GPP (ProSe) level discoverability restrictions

and permissions are enforced by ProSe

DiscoverDiscoveredDiscoverDiscovered

Figure 1. ProSe Discovery and Application Discovery

The discovery of either a UE or an Application user relies essentially on identifying the UE or the Application user. A first UE (respectively Application user) is discovered to be in proximity of a second UE (respectively Application user) when that first UE (or Application user) has been identified in proximity of the second UE. The proximity of two UEs is a physical proximity determined either by the exchange of direct radio signals between these UEs, and/or via the 3GPP network. The proximity of Application users relies on the proximity of underlying UEs: two Application users are in proximity if their UEs are in proximity.

The following section describes the identifiers for ProSe (UE) discovery and to enable Application user discovery.
Identifiers

ProSe UE Discovery – UE identifier
ProSe UE Discovery is a 3GPP mechanism that as explained above involves identifying a UE. It is proposed that a 3GPP UE identifier be used for this purpose. Namely, the S-TMSI (see 3GPP TS 23.003) can be used within the 3GPP system whilst protecting the permanent identities of the UE (and subscriber) in the EPS: the S-TMSI, assigned by the network, identifies a UE within an MME (incl. MME pool) and is thus relatively static – it is also expected that UEs in physical proximity may very well belong to the same MME (incl. MME pool), if on the same PLMN.
A Stage 1 requirement exists for allowing or preventing the discovery of UEs on other PLMNs: “The operator shall be able to authorise the ability of a ProSe-enabled UE to discover ProSe-enabled UEs served by the E-UTRAN of other PLMNs”. Our interpretation is that this refers to other PLMNs than the (E)HPLMN when the UE is served by the (E)HPLMN. It should thus be considered to allow the identification of a PLMN when identifying a UE in proximity – however this need not require the PLMN ID itself (e.g. if network sharing is used, the PLMN index can be used, known to all supporting UEs).
It should also be noted however that, specifically for Public Safety UEs, out-of-coverage operation must be possible such that a UE could be taken out of the box and expected to operate immediately with ProSe i.e. without prior connection to the EPS, thus without assignment of a S-TMSI by the EPS. To this end, a pre-configured UE identity is necessary and need to be available in the Public Safety UE. This implies that a Public Safety UE must also be pre-configured with the identities of other Public Safety UEs it may (allowed to) discover. This is not required for non-Public Safety UEs. In addition, it shall be possible for a Public Safety UE out-of-coverage to enter an E-UTRAN coverage area, while a Public Safety UE out-of-coverage should still be able to discover this UE.
The above results in the necessity for ProSe discovery to be able operate with two kinds of UE identifiers:

· UE identifier assigned by the 3GPP (EPS) system, e.g. S-TMSI; possibly together with an indication of the PLMN
· For public safety UEs only, UE identifier not assigned by the 3GPP (EPS) system, but instead pre-configured in the UE e.g. at manufacture.

Application-level Discovery – Application-level identifier
Central to ProSe is the ability of a UE to determine that a discovered UE is a UE of interest, as required by Stage 1:
“A discovering ProSe-enabled UE shall be able to determine whether or not another ProSe-enabled UE is of interest to it. A ProSe-enabled UE is of interest to a discovering ProSe-enabled UE if its proximity needs to be known by one or more authorised applications on the discovering ProSe-enabled UE.”
Determining that a UE is of interest implies the following considerations:
a) A first UE not having any a priori knowledge about a second UE: i.e. the second UE is not already known by the first UE to be of interest or not, but the first UE must be able to determine whether or not the second UE is a UE of interest. This requires a posteriori information.
b) A first UE having a priori knowledge about a second UE, which can be two-fold

· The second UE is already known to be of interest
· The second UE is already known not to be of interest.

It should be clear that for an efficient discovery, b) ought to occur more frequently than a). While a) cannot be excluded, it should be ensured that required information is readily available in the UE for discovery and seldom acquired following discovery.
It is proposed to define that a first UE is of interest to a second UE when:

· The UE identifier of the first UE is known by the second UE; and

· An Application user of an Application instance on the second UE wants to discover its peer on the first UE: this is instrumental to the definition of “interest”.
To achieve the above, it is proposed to use in the 3GPP system, an application-level identifier (ProSe_App_User_ID) which when combined with a UE identifier of a ProSe-enabled UE allows to determine that this UE is of interest.

The ProSe_App_User_ID is defined by the Application itself using an Application-level mechanism and providing a one-to-one mapping with the Application user identity (e.g. Bob@App) in the application without disclosure of the Application user identity outside the Application: the Application provider is responsible (and liable) for ensuring the confidentiality and privacy of the data of its users as per its terms of use, not the 3GPP system. Said otherwise, if an application decides that Bob@App can be disclosed publicly, then it is disclosed publicly; the 3GPP system is not responsible to ensure the privacy and confidentiality of Bob@App. The ProSe_App_User_ID is exchanged between Application instances of the same Application using application level mechanisms, such that the Application instance for a given Application user gets hold of the relevant ProSe_App_User_ID of other Application users according to restrictions and permissions enforced at the Application.
The ProSe_App_User_ID is only expected to be unique within the realm of an Application, not across Applications, hence an Application ID is also necessary in the 3GPP system to uniquely refer to an Application user.

Summary
As a result of the above, the proposal is that ProSe discovery uses
· A UE identifier that:

· is assigned by the 3GPP (EPS) system, e.g. S-TMSI; this identifier is used possibly together with an indication of the PLMN of the UE.

· For public safety UEs only, is not assigned by the 3GPP (EPS) system, but instead pre-configured in the UE e.g. at manufacture.
· An Application-level identifier “ProSe_App_User_ID” that points to an Application user for any given Application without disclosure of the Application user identity itself (e.g. Bob@App). This identifier is provided by the Application to the UE and exchanged between Application instances using Application-level mechanisms. There may be several Application-level identifiers per each UE. The ProSe_App_User_ID is expected to be unique within the realm of an Application

· An application identifier, or App_ID, that is used to identify a given Application (not an instance thereof) within the 3GPP system. The ProSe_App_User_ID together with the App_ID provides a unique reference to an Application user.
With the above, a first UE is deemed of interest to a second UE if:

· The UE identifier of the first UE is known to the second UE

· At least one {App_ID; ProSe_App_User_ID} combination is to be discovered by the corresponding Application on the second UE.
It is proposed that the ProSe server of one PLMN maintains up-to-date records for each UE of that PLMN. This is illustrated on the picture below.

[image: image2.emf]Correlation between identities per subscriber

ProSe Server

Device / UE ID

·Unknown at the application

·Known only in the 3GPP system

Applications (APP ID)

·Unique across PLMNs; or

·Unique per PLMN

ProSe App User ID

·Allocated by the Application

·Unique per Application

·One-to-one mapping with App User ID

·Protects the privacy of App User ID

·Known to the ProSe server

ProSe_APP_User_ID

APP ID

S-TMSI / ProSe ID

App User ID

·Known only at the application.

·Unknown at the ProSe Server

User@App

ProSe_App_User_ID

APP ID

S-TMSI / ProSeID

ProSe_App_User_ID

ProSe_App_User_ID

APP ID

S-TMSI / ProSeID based entry table:

{S-TMSI / ProSe ID, entry n} uniquely identifies an Application user

S-TMSI1 / ProSeID1

Entry 1. APP ID 1, ProSe App User ID1

Entry 2.APP ID 1, ProSe App User ID2

Entry 3.APP ID 2, ProSe App User ID1

S-TMSI2 / ProSeID3

Entry 1. APP ID 1, ProSe App User ID3

Entry 2.APP ID 3, ProSe App User ID1

S-TMSI3 / ProSeID3

Entry 1. APP ID 2, ProSe App User ID2

Subscriber ID

·Unknown at the application

·Known only in the 3GPP system

IMSI / Subscriber ID

This does not

reside in the

ProSe server. It is

shown here for

illustration only!

Figure 2. ProSe Server and Identifiers

Signalling

General
The discovery procedure outlined in this contribution articulates around a central ProSe server (per PLMN) that for each given UE stores:

· The UE identifier of the UE (e.g. S-TMSI), used for discovery

· An indexed list of {App_ID; ProSe_App_User_ID} combinations for this UE.
Each UE individually uploads its UE identifier and its own list of {App_ID; ProSe_App_User_ID} to the ProSe server in order to be discoverable. The server may respond with the index it assigned to each {App_ID; ProSe_App_User_ID} in this list. Note that a UE is not discoverable to another UE if this other UE does not know the UE identifier and applicable {App_ID; ProSe_App_User_ID} combinations of this UE.
Each UE upon request from an Application to discover an Application user identified by a ProSe_App_User_ID, individually requests from the ProSe server the UE identifier corresponding to the {App_ID; ProSe_App_User_ID} combination. This UE identifier thus identifies a UE of interest to this UE. This UE stores all applicable {UE identifier; {App_ID; ProSe_App_User_ID} list} for all UEs of interest. Note that the ProSe server can also store the UE identifier of a UE requesting the UE identifier of another UE, in order to keep track of “UE relationships” and update the corresponding UEs, upon change of a given UE identifier.
Upon request from one or more Applications, a discoverable UE using direct discovery (Tx side) sends a discovery signal including its UE identifier together with the corresponding indices for the one or more{App_ID; ProSe_App_User_ID} of the one or more Applications.
Upon request from one or more Applications to discover Application users, a discovering UE using direct discovery (Rx side) monitors discovery signals of UEs of interest i.e. discovery signals containing the applicable UE identifier(s) and indices to the relevant {App_ID; ProSe_App_User_ID} combinations.
The above is illustrated below, by means of signalling charts.

Note that Appendix A outlines a solution not relying on {App_ID; ProSe_App_User_ID} indices, but only on a UE identifier.

Registration and Discoverability
[image: image3.emf]ProSe UE1

App1

ProSe UE1

ProSe

server

App1 Server

(f(Application))

1) Register @ProSe Server

[S-TMSI1]

S-TMSI1 Assigned

Verify UE authorization

2a) Register ACK

[ProSe ID1]

S-TMSI1 / ProSe ID1Discoverable

ProSe Allowed

Store ProSe ID1

4) REQ Discoverable

[(App ID1,)

ProSe_App_User_ID1]

5) REQ Discoverable

[S-TMSI1 / ProSe ID1, App

ID1, ProSe_App_User_ID1]

a) Verify App authorization based on received App ID

b) Create S-TMSI1 entry:

{ S-TMSI1 / ProSeID1; Entry 1}: App ID 1, ProSe_App_User_ID1

UE authorized for ProSe

S-TMSI1 used and/or

ProSe ID1 assigned

6a) ACK Discoverable

7a) ACK Discoverable

User ID:

green@app1

2b) Register NACK

UE not authorized for ProSeSTOP

3) IND UE ProSe allowed

User ID:

green@app1

Assign / Activate

ProSe_App_User_ID1

Use assigned / Activate

ProSe_App_User_ID1

6b) NACK Discoverable

7b) NACK Discoverable

Exchange / Revoke use of ProSe_App_User_ID1 by

other application users, as per users-set application

level discoverability restrictions

Figure 3. Registration and Discoverability

	1)
	The UE registers to the ProSe server indicating its UE identifier, here its S-TMSI (S-TMSI1).

Note: for out-of-coverage operation this registration step does not take place; the UE ought to be implicitly authorized and configured to use ProSe. In this case it is also pre-configured, e.g. at manufacture, with a dedicated UE identity,

	2a)
	The ProSe server determines that the UE is authorized for ProSe and acknowledges the registration to the UE. If a ProSe ID is assigned (optional) for use for discovery (e.g. instead of S-TMSI) then it is indicated in the acknowledgement to the UE. The acknowledgemet may include the S-TMSI as a confirmation to the UE.

	2b)
	The ProSe server determines that the UE is not authorized for ProSe and negatively acknowledges the registration, possibly indicating the cause thereof to the UE.

	As a result of 2a the UE is now allowed to use ProSe and can be discoverable (radio discovery) and proceeds with Step 3)

As a result of 2b) the UE is not allowed to use ProSe, and does not proceed with Step 3).

	3)
	The UE indicates to ProSe-enabled applications that the UE is allowed to use ProSe

	Active ProSe-enabled applications use the assigned ProSe_App_User_ID or activate an already assigned/configured ProSe_App_User_ID. “Assignment” refers to an application server providing the ProSe_App_User_ID to an application instance for a given Application user. “Configuration” refers to a ProSe_App_User_ID readily available at the application i.e. without preliminary communication with an application server.

	4)
	The application requests that its Application user be ProSe discoverable by indicating the ProSe_App_User_ID to the UE. It could also include the App ID, but an alternative is instead that the UE itself determines the appropriate App ID (if App IDs are “owned” by the operator).

	5)
	The UE forwards the request from the application to the ProSe server, including its S-TMSI (or ProSe ID), the application App ID and the related ProSe_App_User_ID. It should be possible to also aggregate the request from several applications into a single request to the ProSe server, in which case the UE then indicates for each application, the App ID and ProSe_App_User_ID.

	6a)
	The ProSe server determines using the received App ID that the application is authorized to use ProSe. It creates an entry for this UE storing the received App ID and ProSe_App_User_ID. It acknowledges the request to be discoverable to the UE.

Option 1: The ProSe server simply acknowledges the request from the UE, possibly including the assigned ProSe ID.

Option 2: The ProSe server indicates the Entry index corresponding to the {App ID; ProSE_App_User_ID} pair for this UE, within the said acknowledgement to the UE. This index value is later used in the discovery phase.

	6b)
	The ProSe server determines using the received App ID that the application is not authorized to use ProSe. It negatively acknowledges to the UE the request from the application to be discoverable. In case UE sent the aggregate request in step 5), the ProSe Server could send an aggregated response indicating per requested application whether the request was accepted or not.

	7a) 7b)
	The UE forwards the response from the ProSe server to the application. Upon 7a), the application (server) thereafter exchanges the ProSe_App_User_ID of the application user with application users as per the restrictions / permissions set at the application by this application user.

	The application user is now discoverable using ProSe, according to the restrictions enforced at the application.

Discovery with UE identifier and Application user index

[image: image4.emf]ProSe UE1

App1

ProSe UE2

Discovery

Channel

App1 Server

(f(Application))

ProSe

server

ProSe UE2

App1

ProSe UE1

User ID:

blue@app1

ProSe_App_User_ID2

User ID:

green@app1

ProSe_App_User_ID1

Assumption:green@app1 and blue@app1 are mutually discoverable:

·ProSe_App_User_ID2 is known at App1 in ProSE UE1

·ProSe_App_User_ID1 is known at App1 in ProSe UE2

Registration and REQ Discoverable successfully completed

S-TMSI2 AssignedS-TMSI1 Assigned

1a) REQ Discover [App ID1, ProSe_App_User_ID2]

S-TMSI1 / ProSeID1

Entry 1: App ID 1, ProSe_App_User_ID1

S-TMSI2 / ProSe ID2

Entry “1”: App ID 1, ProSe_App_User_ID2

2a) REQ ProSe Discover [App ID1, ProSe_App_User_ID2]

3a) REQ ProSe Discover ACK [S-TMSI2 / ProSe ID2, “1”]

4b) DiscoverMe [S-TMSI2/ProSe ID2, “1”]

5) Discovered [ProSe_App_User_ID2]

“blue@app1 is in proximity”

4a) REQ DiscoverMe [(App ID1,) ProSe_App_User_ID2]

Figure 4. Discovery using UE identifier and Application user index
	UE1 and UE2 are successfully registered to the ProSe Server.

At App1, blue@app1 permits green@app1 to discover her: ProSe_App_User_ID2 is made available to App1 in ProSe UE1.

At App1, green@app1 permits blue@app1 to discover her: ProSe_App_User_ID1 is made available to App1 in ProSe UE2.

The ProSe server holds a record for S-TMSI1 (ProSe ID1) of {App ID1, ProSe_App_User_ID1} and for S-TMSI2 (ProSe ID2) of {App ID2, ProSe_App_User_ID2}.

	1a)
	Given the permission above, App1 on UE1 requests UE1 to be able to discover ProSe_App_User_ID2 by means of ProSe.

	2a)
	Upon reception of the REQ Discover from App 1, UE1 determines it holds no UE identity record (nor App ID record for this UE) for {App ID1; ProSe_App_User_ID2} and therefore requests for it from the ProSe Server.

	3a)
	The ProSe server retrieves S-TMSI2 / ProSe ID2 based on the {App ID1; ProSe_App_User_ID2} received from UE1, as well as the Entry index (“1”) of {App ID1; ProSe_App_User_ID2} for S-TMSI2. The ProSe server responds back to UE1 indicating S-TMSI2 and the index “1”, which in turn stores a corresponding entry of S-TMSI2 with {App ID1; ProSe_App_User_ID2} under index “1”.

	UE1 is now able to discover the proximity specifically of {App ID1; ProSe_App_User_ID2} by monitoring the occurrence of S-TMSI2 (or ProSe ID2) together with index “1” on the discovery channel.

	Following similar steps, UE2 is also able to discover the proximity of {App ID1; ProSe_App_User_ID1} by monitoring the occurrence of S-TMSI1 (or ProSe ID1) together with index “1” on the discovery channel.

	4a)
	blue@app1 requests to be discovered, using UE2. App 1 on UE2 issues a request to be discovered to UE2, indicating the ProSe_App_User_ID2 corresponding to blue@app1.

	4b)
	Upon receipt of the REQ DiscoverMe from App 1, UE2 sends a DiscoverMe signal on the discovery channel, indicating its S-TMSI2 / ProSe ID as well as the index value (“1”) corresponding to {App ID1, ProSe_App_User_ID2}.

	5)
	UE1 receives a discovery signal containing S-TMSI2 (or ProSe ID2) and index value “1”. UE1 determines it holds a record for S-TMSI2 / ProSe ID2, and therafter also determines the index value received (“1”) matches a recorded index it holds for S-TMSI2. Matching the S-TMSI /ProSe ID and index value, UE1 retrieves the record {App ID1, ProSe_App_User_ID2}. It then notifies App 1 (App ID1) it has discovered ProSe_App_User_ID2.

	App1 on UE1 identifies ProSe_App_User_ID2 corresponding to blue@app1. Green@app1 is thereafter notified of the proximity of blue@app1.

Discovery Range Class
As currently required by Stage 1, an application can request to use a range class for discovery (subject to operator authorization). N range classes are defined from shortest to longest (Stage 1 requires Nmin=3).

Our interpretation of range class is for a UE to be discovered using direct radio signals, to be allowed to use a given transmit power by the network. The shorter the range class, the lower the transmit power.

As seen above, a discovery signal from a given UE (UE identifier) can contain the indices for one or more {App ID; ProSe_App_User_ID}. A discovery signal could then be defined such that the indices it contains are only from applications requesting the same range class. Additionally, it could also contain indices from applications requesting a higher range class, but not from applications requesting a lower range class.
Pros & Cons

The pros and cons of the proposal in this document are summarized hereafter.

Pros:

· Scalability

· Lesser signalling on the discovery channel compared to proposals requiring one discovery signal per each Application user. A discovery signal in this proposal includes the UE identifier of an individual UE as well as one or more indices allowing to identify associated Application users (one index per Application user). A receiving UE matches the received UE identifier (S-TMSI / ProSe ID) with the record it holds, and only notifies an Application (if active) on the UE when an index in the discovery signal matches an index record it holds for this UE identifier.

· A received index for a UE identifier indicates the application user is active and “wants” to be discovered. The UE therefore only notifies applications of active Application users that want to be discovered.

· Entirely under control of the operator which can verify at each step the authorization of a particular UE and of associated applications.
· The ProSe server is contacted for discovery only to upload a UE identifier and {App_ID; ProSe_App_User_ID}, or to download the UE identifier corresponding to a given {App_ID; ProSe_App_User_ID}

Cons:

· The ProSe server holds records of UE identifiers and associated one or more {App ID, ProSe_App_User_ID}. This data must be uploaded to the ProSe server by UEs to be discovered, and downloaded from the ProSe servers by discovering UEs. Any change in the records must be uploaded and downloaded as well.

Communication

Following discovery of a UE of interest, a UE may request the establishment of a communication path with that UE using the detected UE identifier.

Conclusions

This contribution proposes a solution to the issue of discovery of UEs and of Application users when direct radio signals (discovery signals) are exchanged between UEs on a common discovery channel. The solution preserves the confidentiality and privacy of the Application user identity and of the permanent identities of the UEs in the EPS, whilst minimizing the amount of signaling exchanged on the discovery channel.

Some associated functionality is proposed for a ProSe server to store for each UE the identity of the UE and associated identifiers of applications and application users for this UE. A discovering UE can query the ProSe server to retrieve this information, based on a request from the application. The discovering UE can then monitor the discovery channel for discovery signals including the UE identity that was retrieved, and additional information that allows an application instance on this UE to discover Application users.

It is proposed that this solution be included in the Stage 2 TR for further consideration into normative specifications.
Appendix A

The solution exposed in this paper relies on an indexed list of {App_ID; ProSe_App_User_ID} for each UE, where the index is assigned by the ProSe server, and used at discovery.

It should be noted that a solution is also possible without the use of such index (whilst retaining the list however!). However, it is not fully compatible with the discovery range class.

[image: image5.emf]ProSe UE1

App1

ProSe UE2

Discovery

Channel

App1 Server

(f(Application))

ProSe

server

ProSe UE2

App1

ProSe UE1

User ID:

blue@app1

ProSe_App_User_ID2

User ID:

green@app1

ProSe_App_User_ID1

Assumption:green@app1 and blue@app1 are mutually discoverable:

·ProSe_App_User_ID2 is known at App1 in ProSE UE1

·ProSe_App_User_ID1 is known at App1 in ProSe UE2

Registration and REQ Discoverable successfully completed

S-TMSI2 AssignedS-TMSI1 Assigned

1a) REQ Discover [App ID1, ProSe_App_User_ID2]

S-TMSI1 / ProSeID1

Entry 1: App ID 1, ProSe_App_User_ID1

S-TMSI2 / ProSe ID2

Entry 1: App ID 1, ProSe_App_User_ID2

2a) REQ ProSe Discover [App ID1, ProSe_App_User_ID2]

3a) REQ ProSe Discover ACK [S-TMSI2 / ProSe ID2]

4b) DiscoverMe [S-TMSI2/ProSe ID2]

5) Discovered [ProSe_App_User_ID2]

“blue@app1 is in proximity”

4a) REQ DiscoverMe [(App ID1) ProSe_App_User_ID2]

Figure 5. Discovery using UE identifier only

	UE1 and UE2 are successfully registered to the ProSe Server.

At App1, blue@app1 permits green@app1 to discover her: ProSe_App_User_ID2 is made available to App1 in ProSe UE1.

At App1, green@app1 permits blue@app1 to discover her: ProSe_App_User_ID1 is made available to App1 in ProSe UE2.

The ProSe server holds a record for S-TMSI1 (ProSe ID1) of {App ID1, ProSe_App_User_ID1} and for S-TMSI2 (ProSe ID2) of {App ID2, ProSe_App_User_ID2}.

	1a)
	Given the permission above, App1 on UE1 requests UE1 to be able to discover ProSe_App_User_ID2 by means of ProSe.

	2a)
	Upon reception of the REQ Discover from App 1, UE1 determines it holds no UE identity record for {App ID1; ProSe_App_User_ID2} and therefore requests for it from the ProSe Server.

	3a)
	The ProSe server retrieves S-TMSI2 / ProSe ID2 based on the {App ID1; ProSe_App_User_ID2} received from UE1 and indicates back S-TMSI2 / ProSe ID2 to UE1 which in turn creates a record of S-TMSI2 / ProSe ID2 with {App ID1; ProSe_App_User_ID2}

	UE1 is now able to discover the proximity of {App ID1; ProSe_App_User_ID2} by monitoring the occurrence of S-TMSI2 (or ProSe ID2) on the discovery channel.

	Following similar steps, UE2 is also able to discover the proximity of {App ID1; ProSe_App_User_ID1} by monitoring the occurrence of S-TMSI1 (or ProSe ID1) on the discovery channel.

	4a)
	blue@app1 requests to be discovered, using UE2. App 1 on UE2 issues a request to be discovered to UE2, indicating the ProSe_App_User_ID2 corresponding to blue@app1.

	4b)
	Upon receipt of the REQ DiscoverMe from App 1, UE2 sends a DiscoverMe signal on the discovery channel, indicating its S-TMSI2 / ProSe ID2.

	5)
	UE1 receives a discovery signal including S-TMSI2 / ProSe ID2. UE1 determines it holds a record for S-TMSI2 / ProSe ID2, namely {App ID1; ProSe_App_User ID2}. It then notifies App 1 (App ID1) it has discovered ProSe_App_User_ID2.

Note that UE1 could hold a set of several records for S-TMSI2 / ProSe ID2 i.e. a multiplicity of {App IDx; ProSe_App_User_IDy} records. In this case, upon detecting S-TMSI2 / ProSe ID2 in a discovery signal, it notifies all applications identified in the record, it has discovered the corresponding ProSe_App_User_ID.

	App1 on UE1 identifies ProSe_App_User_ID2 corresponding to blue@app1. Green@app1 is thereafter notified of the proximity of blue@app1.

This approach yields minimal signalling on the discovery channel. A discovery signal includes the UE identifier of an individual UE only. A receiving UE matches a received UE identifier with the record it holds, fetches all {App ID, ProSe_App_User_ID} associated with the UE identifier, and notifies the Applications (if active) on the UE of the discovery of the corresponding ProSe_App_User_ID. A receiving application thereafter enforces discovery restrictions/permissions in place.

The proposal requires that the ProSe server hold records of UE identifiers (S-TMSI / ProSe ID) and associated one or more {App ID, ProSe_App_User_ID}. This data must be uploaded to the ProSe server by UEs to be discovered, and downloaded from the ProSe servers by discovering UEs. Any change in the records must be uploaded and downloaded as well.

A UE receiving a discovery signal including a UE identifier (S-TMSI / ProSeID) for which it holds one or more {App ID, ProSe_App_User_ID} records, must inform all applicable (i.e. with matching App IDs) active applications that it has discovered the corresponding ProSe_App_User_ID even if a corresponding application user is not active at the application. It relies on the application to enforce the activity status of an application user.
3GPP

SA WG2 TD

