SA WG2 Temporary Document

Page 1

SA WG2 Meeting #89
S2-120753
06 - 10 February 2012 - Vancouver, Canada
(revision of S2-12xxxx)
Source:
Research In Motion UK Limited
Title:
Device Trigger communication model
Document for:
Discussion
Agenda Item:
9.7.4
Work Item / Release:
SIMTC-Reach / Rel-11
Abstract of the contribution: This contribution analyzes communication model A and B. The contribution proposes to standardize only model A after identifying a number of critical issues of model B and presenting an example service flow with model A.
Discussion

During the SIMTC offline drafting meeting in Berlin, there was a discussion on the device trigger communication models. Two communication models, namely model A and model B, were discussed. In model A, the trigger is routed to the Trigger Dispatcher function (the term can be any as we do not have agreed term on this) at the UE. The Trigger Dispatcher function identifies the destined application at the UE side and delivers the trigger information to the corresponding application. An application at the UE side is referred to as an application client in this contribution. The application client is responsible for initiating the IP communication towards the application server. In model B, the trigger is routed to the Local Relay/Gateway function which responds to the trigger by establishing IP communication session towards the server. Upon the completion of IP session establishment, the server will initiate IP communication with the application client by sending the first application layer packet. Since the Berlin meeting, a number of companies presented contributions on the communication models over the SA2 conference calls. As we have not reached a consensus on this yet, we would like to present our view on the communication models and make a proposal based on our discussion.
For in-depth analysis of model B, let us begin our discussion by assuming that the IP communication is carried over TCP for simplicity’s sake. Indeed, majority of the contemporary data applications use TCP as their transport layer protocol. Also, most of our analyses would hold even for other transport layer protocol, such as UDP. Suppose the Local Relay/Gateway establishes a TCP session towards the server after receiving a trigger from the server. After initial TCP handshake, the server is supposed to send an application layer packet to the corresponding application client. With the connection-based characteristic of TCP, communication peers need to sync the SYN, ACK numbers. It cannot be guessed by any party other than the TCP peers as both ends choose random numbers for their initial SYN numbers. As the Local Relay/Gateway initiated the TCP session, there is no way for the UE side application to know either SYN or ACK number. Therefore, the communication cannot be performed. 
For the second problem, let us assume that the application client did not have an active socket. This is highly likely if the application has not been involved in the IP communication for long. The server sends the first application layer packet over the established TCP session, but there is no way for the packet to reach the corresponding application client because the application does not even have an active socket. 
Even if we assume that the application client owns an active TCP socket, there is no way for the application to bind the socket to the appropriate TCP port number as the port number is already owned by the Local Relay/Gateway. No existing operating system allows more than one socket to share the identical port number for a transport layer protocol. Indeed, the port number identifies the process from TCP layer’s point of view. If a port number is bound to more than one application, when an incoming packet arrives at the TCP layer, the TCP cannot determine to which application the packet is destined.

So far, we have identified a number of issues with model B and observed that the issues cannot be resolved easily if not impossible. Let us investigate if there is any problem with model A. In order to examine the validity of model A, we developed an example service flow. The service flow consists of two phases: preparation phase and operation phase.  Figure-1 shows the preparation phase and Figure-2 presents the trigger delivery in the operation phase. In both figures, the functionalities of multiple 3GPP entities are abstracted in a box labelled with 3GPP CN. 

[image: image1.emf]App

Trigger 

Dispatcher

CNMTC-SvrApp. Svr

App

Trigger 

Dispatcher

3GPP CNMTC-SvrApp. Svr

1. Registration

2. Registration Ack (App ID, Ext ID)

3. Subscription (Ext ID, App ID)

4. Subscription Ack


Figure-1. Device Trigger service preparation
1. When an application, which utilizes the device trigger service, at the UE was launched for the first time, the application registers with the Trigger Dispatcher function.

2. The Trigger Dispatcher function assigns an application ID to the application. The assigned application ID is unique within the service range of the Trigger Dispatcher. The application ID shall be used by the Trigger Dispatcher function when it determines the corresponding application after a trigger arrives. In order to be consistent with the communication model, the Trigger Dispatcher function is not allowed to access the Application PDU. In practice, the Application PDU may be encrypted over application layer. If so, the Trigger Dispatcher function is not able to access the application PDU. Optionally, the Trigger Dispatcher function may provide the external ID to the application. The application client may get the external ID by other means. It is FFS how the application acquire the external ID for the service.
3. The application client contacts to the application server and subscribes to a service that the application server provides. The communication may go directly to the application server if hybrid model is used, or goes through an MTC-Server if indirect model is used. While the UE application subscribes to the service, the UE application provides the external ID and the application ID. The application ID does not need to be globally unique.
4. The application server acknowledges the subscription to the application client. 

[image: image2.emf]App

Trigger 

Dispatcher

CNMTC-SvrApp. Svr

App

Trigger 

Dispatcher

3GPP CNMTC-SvrApp. Svr

Establish IP session & communicate

1. Trigger (Ext ID, App ID, App-PDU)

2. Trigger Req.(MTC Svr ID, Ext ID, App ID, App-PDU)

3. Trigger Msg.(App ID, App-PDU)

4. API call(App-PDU)

Figure-2. Delivery of Device Trigger with Model A in operation phase
1. When an event occurs, the application server prepares the Trigger (External ID, Application ID, Application PDU) and sends the Trigger to an MTC-Server.
2. On receiving the Trigger from the application server, the MTC-Server prepares a Trigger Request message conforming to the protocol over Tsp reference point. While the MTC-Server constructs the Trigger Request, the MTC-Server includes its own ID. The ID will be used for authentication/authorization at MTC-IWF.
3. 3GPP entities determine the routing information based on given External ID and delivers the Trigger message to the UE. The Trigger message includes Application ID and Application PDU. NAS at the UE or SMS Dispatcher function will forwards the Trigger message to the Trigger Dispatcher module.

4. The Trigger Dispatcher determines the appropriate application client based on the Application ID in the Trigger message, and delivers the Application PDU to the application by calling a defined API. If the application resides at the different device from the Trigger Dispatcher function, a virtual API will be used for the Application PDU delivery. The Trigger Dispatcher function is agnostic whether the application client locates within the same device or not.

Conclusion

Based on the discussions in the previous section, we propose to choose only model A as the communication model.

3GPP

SA WG2 TD


_1389467873.vsd
App


Trigger Dispatcher


CN


MTC-Svr


App. Svr


App


Trigger Dispatcher


3GPP CN


MTC-Svr


App. Svr


1. Registration


2. Registration Ack (App ID, Ext ID)


3. Subscription (Ext ID, App ID)


4. Subscription Ack



_1389457057.vsd
App


Trigger Dispatcher


CN


MTC-Svr


App. Svr


App


Trigger Dispatcher


3GPP CN


MTC-Svr


App. Svr


Establish IP session & communicate


1. Trigger (Ext ID, App ID, App-PDU)


2. Trigger Req.(MTC Svr ID, Ext ID, App ID, App-PDU)


3. Trigger Msg.(App ID, App-PDU)


4. API call(App-PDU)



