SA WG2 Temporary Document

Page 3
-

3GPP TSG SA WG2 Meeting #60
S2-074428
8 – 12 October, 2007

Kobe, Japan
Source:
Nokia, Nokia Siemens Networks, Nortel
Title:
I1-ps terminal impacts
Document for:
Discussion / Approval
Agenda Item:
9.7.3.5
Work Item / Release:
IMS_CSC/Release 8
Abstract of the contribution: This contribution discusses the impacts of I1-ps option to the IMS terminal implementation.
Discussion

During the discussions of ICS I1-ps alternative, there has been some concern raised about the complexity of I1-ps UE implementation. We try to address this concern by taking an example software architecture of a VCC terminal as a starting point and then explaining how it needs to be extended to support ICS I1-ps alternative. With this we try to clarify what kind of changes need to be implemented in an ICS terminal supporting I1-ps in comparison to a VCC terminal. The starting point could as well be plain IMS terminal and this approach does not imply that ICS terminal must support VCC. However, this approach was chosen, because from the terminal point of view ICS is closely related to the telephony application as is VCC, and in this sense it seems natural to implement ICS as an extension to VCC. The presented architecture is general and the implementation specific logic is not described, as it differs from terminal to terminal.
Example VCC terminal architecture
Our example software architecture of a VCC terminal is illustrated in the figure below. Starting from bottom up, the terminal implements CS Stack and CS Media, which are controlled by CS Call Engine. These components implement the regular CS call handling. Similarly we have PS Media and the SIP Stack, which are controlled by the SIP Session Engine. These three components provide the multimedia functionality, in this case at least VoIP. VCC Engine provides the VCC functionality. It is aware of ongoing CS and VoIP calls and the provisioned operator policies and gets the needed triggers to perform domain transfers between CS and VoIP calls. Telephony Engine provides the telephony functionality that is common for both CS and VoIP calls, for instance call logging. Finally on top of this architecture there is the Phone UI, which is the interface towards the user.
[image: image1.wmf]Phone

UI

CS

Stack

SIP

Stack

SIP

Session

Engine

Telephony

Engine

VCC

Engine

User

interface

Switching

between

CS

call

and

PS session

SIP

state

machine

CS Media

PS Media

CS

Call

Engine

Common

handling

,

e.g

logging

,

etc..

CS

state

machine

Extended architecture to support ICS and I1-ps

The needed changes concentrate to the VCC Engine, which is now renamed to ICS + VCC Engine. To support I1-ps, this component needs to establish the SIP dialog for I1-ps in parallel to CS call. The ICS call control events are sent inside this dialog. ICS+VCC Engine also controls the CS media based on SIP events occurring in the SIP dialog. For instance, if the remote party places the call on hold, the event comes inside the SIP dialog, and ICS+VCC Engine is responsible of placing the CS media locally on hold. ICS + VCC Engine also needs to handle domain transfers as it was required to support plain VCC. Naturally now the I1-ps SIP dialog needs to be handled in domain transfers as it is specified in TR 23.892. The SIP Session Engine is required to support SIP dialogs specified for I1-ps. The control of CS media, hold and resume, must be able to be handled locally, without any signaling to CS network.
[image: image2.wmf]Phone

UI

CS

Stack

SIP

Stack

SIP

Session

Engine

Telephony

Engine

ICS + VCC

Engine

User

interface

Ties

together

CS

call

and

I1

-

ps,

also

handles

the

handovers

SIP

state

machine

,

supports

I1

-

ps

CS Media

PS Media

CS

Call

Engine

Common

handling

,

e.g

logging

,

etc..

CS

state

machine

Control

CS

media

based

on SIP

events

To clarify how this architecture works in practice, let’s take an example, where user establishes a CS call towards remote party and places it on hold. User dials the remote party number on the Phone UI. Telephony server applies it’s common functionality to it and passes the request to ICS + VCC Engine, which then establishes the CS call using CS Call Engine and the I1-ps SIP dialog using the SIP Session Engine towards the remote party. ICS+VCC Engine receives the events of successfully connected CS call from CS Call Engine and established SIP dialog from SIP Session Engine and passes this information up to Telephony Engine, which notifies the Phone UI that the call is now connected. After a while user places the call on hold. Again the request passes Telephony Engine and reaches ICS+VCC Engine. When using the ICS I1-ps, mid-call services like hold are controlled via the I1-ps SIP dialog. ICS+VCC Engine indicates the hold event to the SIP Session Engine, which sends it towards the remote party in the I1-ps SIP dialog. ICS+VCC Engine places the CS media locally on hold, without any signaling towards the CS network. Resuming the held call is handled similarly, as is any other mid-call signaling.
Conclusion

It is concluded for a VCC terminal to support ICS and I1-ps the following functionalities need to be implemented:
· Establishing I1-ps SIP dialog.

· Decoupling of I1-ps SIP dialog and the CS call.
· ICS call control functionalities using I1-ps SIP dialog.
· Controlling CS media based on events in I1-ps SIP dialog.
Further it is concluded, that the changes are straightforward and their magnitude is moderate.
Proposal

It is proposed, that the above discussion should be taken into account in further considerations of the applicability of I1-ps.
It is left up to the meeting to decide whether parts of the above discussion should be added to TR 23.892.

3GPP

SA WG2 TD

