Page 1

3GPP TSG SA WG2#29

Tdoc S2-030163
San Francisco, USA January 20 – 24, 2003
Source:

Lucent Technologies
Title:

Draft IP Session Control API in support of S2-030162
Agenda Item:

9
Document for:
Information
At this meeting a CR has been introduced (S2-030162) which takes the requirements in 22.127 for OSA IP Session Control and in line with this adds a new section, 7.10, to 23.127.

This document is provided as background information on the IP Session Control API that will be proposed and reviewed in due course in CN5. Below is a draft of the new API.
IP Session Control API

Introduction

The current OSA specification has a set of requirements and APIs to allow network applications to interrupt, control (change QoS) and monitor data sessions within the GPRS/UMTS network (DSC API). Within a single data session, however, there may be multiple TCP or UDP flows between the end-user and various target systems depending on the type of user application (HTTP, FTP, RTSP). A flow is a sequence of request and responses between the user and the same target system, defined by the destination IP address, source IP address, destination port number, source port number and protocol. Yet, the DSC API only allows control at the data session level, not the flow level. If application providers were given fine-grained control and management over individual IP flows/sessions to the handset new personalized services, better billing mechanisms, and better QoS control would be enabled.This document discusses a new API that enables IP flow-level control for 3rdparty applications.

NOTE: The new API can either be standalone to complement the existing DSC API or the current DSC API can be extended to incorporate the control and monitoring of IP flows.

Defintions:

An IP flow is a sequence of packets where the IP header field values for the source IP address, source port, destination IP address, destination port, and protocol are the same for every packet.

An IP Session comprises a flow or a set of flows defined by source IP address/port, destination IP address/port, protocol, and TOS, where any of these could be defined by using a wildcard (e.g. the set of flows going to port 80, or the set of flows with target IP address X.X.X.X., or the set of flows with a certain TOS value)

Logic:

An application registers its interest in an IP session.

An application can control all of the flows within the IP session by specifying QoS parameters, redirecting flows to different destination addresses or setting volume thresholds.

An application can be notified when a new IP flow within an IP session has started.

An application can register its interest in an event that may occur within an IP session.

An application can be notified when an event it has registered has occurred.

Examples: (flow diagrams to be added)

Hierachy of IP sessions where the bottom level is an IP flow.

New flow notification within an IP sessionbecause each IP session maycontain multiple IP flows.

The IP Session SCFs are described in terms of the methods in the Application interfaces and IP Session interfaces. Table 1 gives an overview of the IP Session methods and to which interfaces these methods belong.

Table 1: Overview of Application and IP Session interfaces and their methods

	Application interface
	IP Session interface

	superviseIPSessionRes
	superviseIPSessionReq

	
	releaseIPSessionReq

	controlIPSessionRes
	controlIPSessionReq

	flowStartedNotification
	

	notifyOnConditionRes
	notifyOnConditionReq

	getInfoRes
	getInfoReq

IP Session Control Interface Classes

The IP Session control provides a means for an application to control data flows at the IP level.

Interface Class IpIPAppDataSession

Inherits from : IpInterface

The application side of the IP Session interface is used to handle IP session request responses and notifications.

Table 2 IpIPAppIPSession Interface
	<<Interface>>

IpAppIPSession

	

	superviseIPSessionRes(IPSessionID : in TpIPSessionID): void

controlIPSessionRes(IPSessionID : in TpIPSessionID, absoluteVolume : in TpVolume, qualityOfService : in TpIPSessionQosClass): void

flowStartedNotification(IPSessionID : in TpIPSessionId, flowInfo : in TpIPFlowProperties): void

(Note: IPSessionID ==NULL means this IP flow does not belong to a named IPSession with a IPSessionID)

notifyOnConditionRes(IPSessionID : in TpIPSessionID, eventList : TpIPEventList): void

getInfoRes(IPSessionID : in TpIPSessionID, sessionInfo : in TpIpSessionInfo): void

Method superviseIPSessionRes()

This asynchronous method idicates that the request to supervise an IP session was successful. It includes the session identifier. A packet is considered to be part of a session if its IP packet properties, source/destination address, source/destination port, protocol, and TOS byte match those within the session definition.

Parameters

IPSessionID : in TpIPSessionID

Specifies the session ID.

Method controlIPSessionRes()

This asynchronous method indicates session values that were negotiated in the network.

Parameters

IPSessionID : in TpIPSessionID

Specifies the session ID.

absoluteVolume : in TpInteger

Specifies the total volume (in bytes) that the session can use.

qualityOfService : in TpIPSessionQosClass

Specifies the quality of service that was negotiated for the session.

Method flowStartedNotification()

This asynchronous method indicates that a new flow has started within a session for which the application is interested. Since a session can contain more than one IP flow this allows the application to be notified each time a new flow is started.

Parameters

IPSessionID : in TpIPSessionID

Specifieds the session ID.

flowInfo : in TpIPFlowProperties

Specifies the properties of the new flow. Includes source and destination addresses and ports and the IP protocol.

Note: This could possibly cause scalability problems if many IP flows are started at the same time.
Method notifyOnConditionRes()

This asynchronous method indicates that one or more conditions have been met within the IP Session manager.

Parameters

IPSessionID : in TpIPSessionID

Specifieds the session ID.

conditionList: in TpConditionList

Specifies a list of conditions that have been met within the session.

Method getInfoRes()

This asynchronous method is called in response to a getInfoReq.

Parameters

IPSessionID : in TpIPSessionID

Specifieds the session ID.

sessionInfo : in TpIPSessionInfo

Specifies the current status and information about the session.

Interface Class IpIPDataSession

Table 3 IpIPSession Interface
	<<Interface>>

IpIPSession

	

	superviseIPSessionReq(srcIP, src Mask, srcPortStart, srcPortEnd, destIP, destMask, destPortStart, destPortEnd, protocol, TOS, bi-Directional, callbackOnNewFlow, logOption): TpIPSessionID

releaseIPSessionReq(IPSessionID): void

controlIPSessionReq(IPSessionID, volume, QoS, redirectOnVolume0, redirectAll, releaseIfUnable): void

notifyonEventReq(IPSessionID, eventConditionList): TpEventID

getInfoReq(IPSessionID):void

Method superviseIPSessionReq()

This method allows the application to define an IP session that it has interest. It returns an IPSessionID that is used by the application for future method invocations.

Parameters

srcIP : TpAddress

Specifieds the source IP address.

srcMask : TpAddress

Specifies the mask to be used for the source address, thus allowing a range of addresses to be supervised.

srcPortStart : TpPort

Specifies the first port in the range. If this is 0, then all ports match, regardless what srcPortEnd is.

srcPortEnd : TpPort

Specifies the last port in the range. If this is 0, then all ports match regardless what srcPortStart is.. (Note srcPortStart should be less than or equal to srcPortEnd).

destIP : TpAddress

Specifieds the destination IP address.

destMask : TpAddress

Specifies the mask to be used for the destination address, thus allowing a range of addresses to be supervised.

destPortStart : TpPort

Specifies the first port in the range. If this is 0, then all ports match regardless what destPortEnd is..

destPortEnd : TpPort

Specifies the last port in the range. If this is 0, then all ports match .regardless what destPortStart is. (Note destPortStart should be less than or equal to destPortEnd).

protocol : in TpProtocol

Specifies the protocol in the IP header. A protocol of –1 matches all protocols.

TOS : in TpTOS

Specifies the TOS byte in the IP header for all matching flows. A TOS of –1 matches all TOS byte fields.

biDirectional : in TpBoolean

If true means that the source and destination addresses are interchangeable. Packets within flows in either direction can match the session.

callbackOnEachNewFlow : in TpBoolean

If true, the application is notified when a new flow is started within the session of interest. (Note The IP Session module should keep track of the list of active flows within each IP session, thus a new flow can be identified comparing packets to the list of active flows
.)

logOption : in TpLogOptions

Specifies the type of logging information that is kept about the session.

Method releaseIPSessionReq

This method allows the application to terminate all flows within the session.

Parameters

IPSessionID : in TpIPSessionID

Specifieds the session ID.

Method controlIPSessionReq

This method allows the application to set and/or modify the parameters of the session.

Parameters

IPSessionID : in TpIPSessionID

Specifies the session ID.

volume : in TpVolume

Specifies the volume of data allowed to be transferred for the session. When the volume becomes 0, either all packets in the session are dropped or they are redirected to another destination address, specified in the parameter redirectOnVolume0. TpVolume specifies whether the volume is an absolute value or incremental value.

qualityOfService : TpQosClass

Specifies the QoS for the flows in the session.

redirectOnVolume0 : in TpAddress

If the session exceeds its allowable volume allotment all IP flows originating at the source address of the session are redirected to this destination address.

redirectAll : in TpAddress

All IP flows originating at the source address of the session are redirected to this destination address.

exception : in TpParameterException

Specifies what to do in case the parameters cannot be met.

Method notifyOnConditionReq

This method allows the application to specify when it should be notified about certain conditions that occur within the session. Conditions may include packet count and volume and timing.

Parameters

IPSessionID : in TpIPSessionID

Specifies the session ID.

conditionList : in TpConditionList

Specifies a list of conditions that trigger callback notifications.

Method getInfoReq()

This method allows the application to request information about the session. This may include session duration, volume of bytes, number of packets, addresses, etc.

Parameters

IPSessionID : in TpIPSessionID

Specifies the session ID.

IP Session Control Service Properties

IP Session Data Definitions

TpIPSessionQosClass

Same as TpDataSessionQosClass defined in DSC API.

TpIPFlowProperties

Defines the properties of an IP flow.

	Sequence Element Name
	Sequence Element Type
	Description

	SourceAddress
	TpAddress
	Source address of the flow

	DestinationAddress
	TpAddress
	Destination address of the flow

	SourcePort
	TpPort
	Source Port

	DestinationPort
	TpPort
	Destination Port

	Protocol
	TpProtocol
	IP Protocol (IETF standard)

TpConditionName

Defines the possible parameters that are used for conditions.

	Name
	Value
	Description

	P_CONDITION_VOLUME
	0
	Total volume used by the session

	P_CONDITION_TIME
	1
	Total time session is in operation

	P_CONDITION_PACKET_COUNT
	2
	Total number of packets delivered for the session

	P_CONDITION_NUMBER_FLOWS
	3
	Number of concurrent IP flows in the session

TpConditionOperator

Defines the conditional operators that can be used to compare values.

	Name
	Value
	Description

	P_CONDITION_OP_EQ
	0
	Equals operator

	P_CONDITION_OP_NE
	1
	Not equals operator

	P_CONDITION_OP_LT
	2
	Less than operator

	P_CONDITION_OP_LE
	3
	Less than or equals operator

	P_CONDITION_OP_GT
	4
	Greater than operator

	P_CONDITION_OP_GE
	5
	Greater than or equals operator

TpCondition

A condition that can be met within the IP Session.

	Sequence Element Name
	Sequence Element Type
	Description

	conditionName
	TpConditionName
	The name of the condition

	conditionOperator
	TpConditionOperator
	The operator, eq, ne, lt, le, gt, ge

	conditionValue
	TpInteger
	Value of condition

TpConditionList

An array of TpConditions

TpIPSessionInfo

Describes the characteristics of the session. Contains the dynamic information of the session.

	Sequence Element Name
	Sequence Element Type
	Description

	Volume
	TpInteger
	Total volume in bytes used by the session

	PacketCount
	TpInteger
	Total number of packets delivered for the session

	PacketsDropped
	TpInteger
	Total number of packets dropped for the session

	PacketsRedirected
	TpInteger
	Total number of packets redirected.

	StartTime
	TpInteger
	Starting time of session

	LastPacket
	TpInteger
	Time of last packet delivered for session

TpLogOptions

Defines the type of logging that can occur for the session. May not be supported.

	Name
	Value
	Description

	P_LOG_ALL
	0
	Logs information about every packet delivered for the flow

	P_LOG_SUMMARY
	1
	Logs aggregate information about about each flow in the session

	P_LOG_SESSION
	2
	Logs aggregate information about the session

TpVolume

Defines a volume of bytes for both setting/retrieving session allocations and usage.

	Sequence Element Name
	Sequence Element Type
	Description

	Volume
	TpInteger
	Amount allocated or used

	Incremental
	TpBoolean
	True if the volume allocated should be added to the current allocation, false if the volume is an absolute value

TpParameterException

Defines the course of action to take if the parameters cannot be met when modifying the session.

To Be Resolved

IP sessions can be defined in such a way that an IP flow can be part of more than 1 session. How are parameters for each flow in a session resolved when the flow may have more than one parent session and the parent sessions have different paramater values (e.g. QoS parameters). Which session’s parameters take precedence?

Need to be able to reset some of the values for the session, i.e. reset volume, start time, etc.

13.6
IP session function

The IP session function enables applications to access information (read only) about IP sessions in progress between a UE and IP networks (i.e., the MSISDN and Session Correlation identifier) using the IP address of the UE. An IP session comprises a flow or a set of flows defined by source IP address/port and destination IP address/port where any of these could be defined by using a wildcard (e.g. the set of flows going to port 80, or the set of flows with target IP address X.X.X.X.)

Applications should have the ability to :
· Release flows in an IP session:

This provides the ability for an application to force the termination of an IP session. The application may provide an indication of the reason for release of the IP session.

· Control an IP session:

This provides the ability for an application to modify the parameters of an IP session both during establishment of the session and while the sessions are in progress. The application may also allow the IP Session to continue with or without the modified information pertaining to the IP Session. This should also include the ability to refuse session establishment, the modification of Quality of Service parameters, the modification of the IP address and IP port and the modification of volume thresholds.

· Monitor an IP Session:

This provides the ability for an application to monitor an IP session. The application will specify a particular IP session and event condition. When the condition is met an event is generated and the application shall be informed accompanied with sufficient information. For example, an application could be notified when the data volume threshold of a particular user (defined by source IP address) is exceeded.

· Request flow Information

This provides the ability for an application to request information about the session of interest. This includes quality of service parameters, target IP address and port, duration of session, and data volume of session

The access to the data, which is typically stored within a network authentication server, is obtained via the OSA gateway (i.e., through this SCF). The IP session information/data shall be released based on specific defined policies between the network operator and the application service provider.

�PAGE \# "'Page: '#'�'" ��Although this might be costly in terms of performance.

CR page 10

