
[bookmark: _Toc104439705][bookmark: _Toc112689024][bookmark: _Toc112689319][bookmark: _Toc112774641][bookmark: _Toc113357225][bookmark: _Toc116639152][bookmark: _Toc131163522][bookmark: _Toc97108982][bookmark: _Toc100782814][bookmark: _Toc100983192]SA WG2 Meeting #162	S2-2404514
[bookmark: _Hlk91755148][bookmark: _Hlk92114058]April 15th – 19th, 2024; Changsha, China 					
	
Source: 	China Mobile
Title: 	Discussion Paper: TR 23.700-54 KI#2.1 Evaluation of Solutions: Proxying IP, TCP and Ethernet via MPQUIC steering functionality
Document for: 	Discussion
Agenda Item: 	19.13
[bookmark: _Hlk91784932]Work Item / Release:	FS_MASSS / Rel-19
Abstract of the contribution: This document evaluates all the agreed solutions for the KI#2.1, which targets at using an integrated MPQUIC architecture to steer, switch and split non-UDP traffic (i.e., connect-ip, connect-tcp and connect-ethernet). Based on the status quo as well as the maturity of the corresponding IETF technologies adopted, i.e., MASQUE, the document recommends some principles that could be applied to prioritize the selection of the extended CONNECT protocols.

1	Discussion
The key issue #2.1 of ATSSS_Ph4 discusses how MPQUIC could be used to steer, switch and split (so-called SSS) non-UDP traffic, in addition to SSS’ing UDP-traffic (as having been standardized in Rel-18)：

· What enhancements are required to existing Rel-18 MPQUIC steering functionality described in TS 23.501 to support proxying of TCP traffic using MPQUIC;
· What enhancements are required to existing Rel-18 MPQUIC steering functionality to support proxying of general IP traffic using MPQUIC;
· What enhancements are required to existing Rel-18 MPQUIC steering functionality to support proxying of Ethernet traffic using MPQUIC.

In the Rel-18 ATSSS, for the support of UDP traffic via MPQUIC, the HTTP/3 proxy functionality is introduced with which the fundamental method ‘CONNECT’ [RFC-9110] is extended thru the protocol ‘connect-udp’[RFC-9298]. The UDP proxying payload is encapsulated via the HTTP Datagram payload [RFC-9297]. Since HTTP/3 [RFC-9114] is based on QUIC, then QUIC protocol is naturally included and also its datagram extension [RFC-9221] is adopted. Further, ATSSS is about the traffic communication over, possibly, two paths, i.e., the 3GPP access path and the non-3GPP access path. So, to achieve the effect of dual-path traffic transport for ATSSS, the multipath QUIC technology [IETF-multipath-quic] was included in Rel-18. The two endpoints selected for the HTTP/3 proxy connection are UE and UPF, with HTTP proxy client running on UE and HTTP proxy server on UPF.
[bookmark: _Toc500949101]
1.1	Workflow & Encapsulation of MPQUIC: Using MASQUE-UDP as Example
Fundamentally, the whole workflow and all associated details to achieve MPQUIC for UDP flows can be demonstrated in the following five (5) steps:
1. Proxy UDP in HTTP:
· This step conforms to the RFC-9298 [RFC-9298], i.e., proxy UDP in HTTP. According to the RFC, HTTP utilize the “method=CONNECT” and the “protocol=connect-udp”.
· The format of UDP-proxying HTTP Datagram payload is defined as:
UDP Proxying HTTP Datagram Payload {
 Context ID (i),
 UDP Proxying Payload (..),
 }
Here, the ‘UDP proxying payload’ is the original UDP traffic that is supposed to be transported via MPQUIC at the end. The format indicates the first layered encapsulation structure of the UDP data.
· Based on the section #5 of the RFC-9298, UDP packets are encoded using HTTP Datagrams payload with the Context ID field set to zero, with which the UDP Proxying Payload field contains the unmodified payload of a UDP packet.
· The ‘UDP Proxying HTTP Datagram Payload’ will be encapsulated in HTTP/3 Datagram, as shown in the next.

2. HTTP/3 Datagram
· This step conforms to the RFC-9297 [RFC-9297], i.e., HTTP Datagram.
· The section #2.1 of the RFC defines the format of HTTP/3 Datagram:
HTTP/3 Datagram {
 Quarter Stream ID (i),
 HTTP Datagram Payload (..),
 }
Here, the ‘HTTP Datagram Payload’ is from the previous step, and ‘Quarter Stream ID’ for QUIC stream-ID.
· The ‘HTTP/3 Datagram’ will be encapsulated via the RFC-9221 (QUIC unreliable Datagram), with the integration of the IETF WG draft, Multipath-QUIC [IETF-multipath-quic].

3. Multipath QUIC:
· This step conforms to the IETF QUIC WG draft, ‘draft-ietf-quic-multipath’ [IETF-multipath-quic].
· HTTP/3 is based on QUIC. So, in theory, the immediate flow-step after the above step-2 should be revolving around the QUIC encapsulation. However, because the MPQUIC is comprised of 2 paths, one 3GPP access-path and one non-3GPP access-path, the application HTTP/3 (after the step-2) must invoke the IETF multipath-QUIC protocol to set up multiple QUIC transport paths (actually, only 2 in this context).
· An individual path in a QUIC-multipath is determined by the IP 4-tuple of source and destination IP address as well as source and destination port: <src-ip, src-port, dst-ip, dst-port>. While, the multipath-QUIC uses the same packet header formats as QUIC version 1 to minimize the difference between multipath and non-multipath traffic being exposed on wire, the QUIC multipath extension requires the use of non-zero ‘connection ID’ to differentiate traffic over different paths. According to TS 23.501 [23.501], the ‘MPQUIC link-specific multipath’ addresses/prefixes can be used for the settings of path endpoints.
· One particular point we want to point out is that, according the section #2 of the IETF multipath-QUIC draft, an application using Multipath QUIC will typically need additional algorithms to handle the number of active paths as well as how they are used to send packets. As these differ depending on the application's requirements, their specification is out of scope of the IETF document [IETF-multipath-quic]. Thus, this suggests that, in the case of MPQUIC steering functionality, HTTP/3 be the so-called application and it has to specify its own algorithm for (multi-) path scheduling.

4. QUIC datagram
· This step conforms to the RFC-9221 [RFC-9221], i.e., QUIC Unreliable Datagram.
· Since the multipath-QUIC protocol uses the same packet-header format as the QUIC version 1, the step-3 will not have any impact on the packet format encapsulation. Therefore, the QUIC datagram frame as defined in RFC-9221 shall directly encapsulate the ‘HTT/3 Datagram’ [RFC-9297] as referenced in the step-2:
DATAGRAM Frame {
 Type (i) = 0x30..0x31,
 [Length (i)],
 Datagram Data (..),
 }
Here, the field ‘Datagram data’ contains the ‘HTTP/3 datagram’ as shown in the step-2. Moreover, a Datagram-Frame belongs to a QUIC connection as a whole and are not associated with any stream ID at the QUIC layer
· Until then, we can see the layered-structure of all encapsulations as: the original UDP payload, the HTTP datagram, the HTTP/3 datagram, and the QUIC datagram. In the next step, we will talk about how to map an encapsulated QUIC datagram to a QoS flow that has been selected based on QoS rules (23.501 Clause 5.32.6.2.2).

5. QoS flow (as mapped with a UDP flow)
· The TS 23.501 clause 5.32.6.2.2 specifies that a QoS flow, with an (ATSSS) steering mode, will be selected for each UDP flow, covering uplink and downlink directions.
· The TS 23.501 clause 5.32.4 (QoS support for MA PDU session) states that a QoS Flow is not associated with specific access, i.e., being access agnostic. So, the same QoS is supported when the traffic is distributed over 3GPP and non-3GPP accesses (depending on the steering mode in ATSSS policy (for UE) and N4 rules (for UPF). The SMF shall provide the same QFI in 3GPP and non-3GPP accesses so that the same QoS is supported in both accesses.
· Correspondingly, the section #7.4 of the IETF ‘multipath-QUIC’ draft [IETF-multipath-quic] talks about the packet scheduling: Multipath-QUIC implementations need to include a packet scheduler that decides the path over which the next QUIC packet will be sent. Most frames can be sent and received on any active path. The scheduling is a local decision, based on the preferences of the application and the implementation.
· Since the (IETF) scheduling is dependent on application and/or implementation, the distribution algorithm of packets over both paths (of a multipath QUIC) can be considered seamlessly together with the ATSSS steering mode (via ATSSS-rules/UE and N4-rules/UPF).

1.2	MASQUE for IP
The MASQUE-for-IP is very similar to that for UDP.

This enhancement conforms to the RFC-9484 [RFC-9484], which allows to proxy any IP packet in HTTP. The RFC allows an HTTP client to create an IP tunnel through an HTTP/3 server that acts as an IP proxy. The RFC-9484 defines a new HTTP upgrade token ‘connect-ip’, and utilizes the ‘method=CONNECT’ and the ‘protocol=connect-ip’. The format of a HTTP datagram is defined as follows:
IP Proxying HTTP Datagram Payload {
 Context ID (i),
 Payload (..),
 }
where the field ‘Payload’ contains an IP packet. This datagram is encapsulated in a ‘HTTP/3 Datagram’ [RFC-9297] and then further with ‘QUIC datagram’ [RFC-9221]. The multipath-QUIC part is same. Note that RFC-9484 states that IP packets are supposed to be encoded using HTTP Datagrams with the Context ID set to zero, with which the ‘Payload’ field contains a full IP packet (from the IP Version field until the last byte of the IP payload).

1.3	MASQUE for TCP
While the MASQUE-for-TCP also uses the similar extended CONNECT protocol (as that of connect-UDP), its specification as shown in the IETF WG I.D. ‘draft-ietf-httpbis-connect-tcp’ [HTTP3-proxy-tcp] has noticeable difference. Please reference the Figure# 1.5 for the workflow. Note that while the IETF draft is being handled in the IETF Httpbis WG, the adopted mechanism is still MASQUE-based.

Thanks to some problems in the classic HTTP CONNECT (in RFC-9110 section #9.3.6) [RFC-9110], this WG draft defines a new HTTP upgrade token ‘connect-tcp’ to handle TCP specific proxy issues via HTTP/3. It utilizes the ‘method=CONNECT’ and the ‘protocol=connect-tcp’.

1.4	MASQUE for Ethernet
The MASQUE-for-Ethernet is similar to that for UDP.

This enhancement conforms to the IETF WG I.D. ‘draft-ietf-masque-connect-ethernet’ [HTTP3-proxy-ethernet].

This IETF draft targets at proxying layer-2 (i.e., Ethernet) over HTTP. The I.D. allows an HTTP client to create Layer 2 Ethernet tunnel through an HTTP server to an attached physical or virtual Ethernet segment. It defines a new HTTP upgrade token ‘connect-ethernet’ to handle Ethernet proxy via HTTP/3. It utilizes the ‘method=CONNECT’ and the ‘protocol=connect-ethernet’. The format of the HTTP datagram is defined as follows:
Ethernet Proxying HTTP Datagram Payload {
 Context ID (i),
 Payload (..),
 }
The field ‘Payload’ contains an Ethernet frame. This datagram is encapsulated with ‘HTTP/3 Datagram’ [RFC-9297] and then further with ‘QUIC datagram’ [RFC-9221]. The multipath-QUIC part is same. Note this I.D. states that Ethernet frames are supposed to be encoded using HTTP Datagrams with the Context ID set to zero, with which the ‘Payload’ field contains a full Ethernet frame packet.

1.5	Integrated MASQUE Workflow to Proxy IP, UDP, TCP & Ethernet
When we put the MASQUE scheme for UDP, IP, TCP and Ethernet together, we can come up with an holistic MASQUE workflow to support proxying UDP, IP, TCP and Ethernet traffic, as shown in the Figure #1.5 below:

[image:]
Figure 1.5: Integrated MASQUE Workflow for Proxying UDP, IP, TCP & Ethernet
Obviously, when MASQUE is adopted to proxy UDP, IP and Ethernet traffic, though different CONNECT-protocols might use different HTTP upgrade tokens, they differ only at the step-1 and all the other four steps can be shared. Comparably, the ‘templated TCP proxying’ has its uniqueness, whose workflow is shown with the ‘broken’ line in the Figure# 1.5.

With these in mind, we will discuss the fundamental solution principles in the following section.

[bookmark: _Toc97269612][bookmark: _Toc104439707][bookmark: _Toc112689026][bookmark: _Toc112689321][bookmark: _Toc112774643][bookmark: _Toc113357227][bookmark: _Toc116639154][bookmark: _Toc131163524]2	Principles for Applying MASQUE
2.1	PDU Session Types: IP vs. Ethernet
The MASQUE for IP/UDP/TCP proxies IP-layer packets over a layer-3 tunnel, while the MASQUE for Ethernet creates a layer-2 Ethernet tunnel to proxy Ethernet frames over HTTP, for which the encapsulated ‘payload’ as shown in [RFC-9298] contains a full Ethernet frame.

Currently, the Rel-18 MPQUIC functionality (TS 23.501: clause 5.32.6.2.2) says MPQUIC may be enabled for an MA PDU Session with type IPv4, IPv6 or IPv4v6, when both the UE and the network support this functionality. The MPQUIC functionality shall not be enabled when the type of the MA PDU Session is Ethernet.

Moreover, the TS 23.501 clause 5.6.10.2 (support of Ethernet PDU session type) states that ‘…For UL traffic the UE strips the preamble and frame check sequence (FCS) from the Ethernet frame…’. However, the mattered IETF draft [HTTP3-proxy-ethernet] requires the convey of a full Ethernet frame, i.e., from the MAC destination field to the last byte of the Frame check sequence (FCS) field. The close of this gap requires the coordination & alignment between the 3GPP and the IETF.

Further, in the IETF-119 which was just held in March, 2024, the MASQUE WG saw the updated presentation of the CONNECT-Ethernet document:
· Because the Ethernet standard is governed by the IEEE 802.x, the IETF MASQUE WG had advised previously the authors of the draft of engaging with the IEEE 802.x, enquiring whether having Ethernet proxied via MASQUE is plausible and can be done in IETF. Currently, the draft is being circulated in the relevant IEEE 802.x chairs for early feedback. As of now, the feedback (from IEEE to IETF) is positive. There is no pressing concerns of red flags and no formal liaison is felt to be necessary – Great! Still, it requires that once the draft is in near-stable final form, the IETF WG will have to reach out to IEEE 802.x again for review.
· FCS handling: The current implementation in the draft transmits the Frame Check Sequence. Because of the extra 4-octet ‘encapsulated’ payload, the draft is considering the possibility of dropping it at the client and then recalculating it on the proxy. This has not been agreed though.

When compared to the MASQUE-for-IP (UDP/TCP), all the above demonstrates the specialty of MASQUE-for-Ethernet, which might make the IP-based PDU session type not effective, if not infeasible. Therefore, given the existence of a few uniqueness in MASQUE-for-Ethernet, we would like to recommend the 1st solution principle:
Principle#1: 	The session type of a PDU session determines the choice of the supported extended ‘CONNECT protocol’. That is, the IP-type PDU session, including IPv4, IPv6 and IPv4v6, supports the connect-IP/UDP/TCP only and the Ethernet-type PDU session supports the connect-ethernet only. The MASQUE scheme is not supported for the Unstructured PDU session type.

2.2	Maturity of the corresponding IETF Technologies
While both the connect-UDP and connect-IP based MASQUE-proxying have RFCs support, the connect-TCP has only an IETF WG draft behind it.

TCP is much more complicated (than UDP), e.g., being connection-oriented, having complicated flow-control requirements, possibly facing TCP handshake hanging for several minutes because a proxy might have to attempt the TCP connection (to the target) before returning its response header. While the current TCP-proxy draft [HTTP3-proxy-tcp] works on addressing various challenges, not having a mature RFC might place the connect-TCP proxying on a subordinate position.

On the other aspect, the RFC-9484, for proxying IP over HTTP, provides a way via the constructed URI to extend the support. The section #4.6 (of the RFC-9484) explains that the variable ‘ipproto’ in a URI might contain an Internet Protocol Number, as defined in IANA-registry. It can be TCP, UDP, or any IP protocol. This variable ‘ipproto’ represents an allowable next header value carried in IP headers that are directly sent in HTTP/3 Datagrams. Once a client (e.g., UE) chooses to restrict a given request to a specific IP protocol, an IP proxy can leverage this information to optimize its resource allocation (i.e., applicable to TCP, UDP, etc.).

Further, the Figure# 1.5 demonstrates the ‘templated TCP proxying’ has some uniqueness in its workflow.

Given these discrepancies, we suggest to reference the RFC-9484 (Proxy IP in HTTP) currently until the TCP-proxy draft becomes an RFC later.

Note: 	Currently, the connect-TCP IETF draft, namely ‘draft-ietf-httpbis-connect-tcp-02’, is in ‘WG Last Call’ state. We do project the corresponding IETF RFC would be published in the timeline of the Rel-19.
Principle#2: 	Always select the CONNECT-protocol with the most mature IETF technologies. That is, the following selection process (in decreasing order) would be recommended:
1) Select the CONNECT-protocol if conforming to an existing RFC; otherwise,
2) Select the CONNECT-protocol if having an IETF draft in the state of ‘IESG-review’; otherwise,
3) Select the CONNECT-protocol if having an IETF draft in the state of ‘WG Last Call’; otherwise,
4) Select the CONNECT-protocol if having an IETF draft in WG stable status; otherwise,
5) Select the CONNECT-protocol if having an IETF draft in WG-adopted status.
For example, by applying the Principle#2, the MASQUE connect-IP, which conforms to the RFC-9484, will be applied to proxy TCP in HTTP, instead of using the relatively less-mature MASQUE connect-TCP draft (currently in the state of IETF ‘WG Last Call’).

2.3	Prefer more-specific MASQUE-based Proxying
When all the extended CONNECT protocols have RFCs support, we propose to select the more-specific connect-protocol.

Specifically, in the scenario of proxying UDP datagram, it boils down to the choice between connect-UDP [RFC-9298] and connect-IP [RFC-9484]. The RFC-9484 (connect-IP) provides a way to allow a transport-layer datagram to be carried. But, in our opinion, this feature is just ‘add-on’. The additional processing to multiplex the UP-layer datagram might not be more efficient when compared to apply the connect-UDP [RFC-9298] directly. Therefore,

Principle#3: 	To prioritize the more specific extended CONNECT protocol with RFC support, unless the non-existence or immaturity of the protocol draft(s) forces to choose the more generic proxy mechanism.
For example, the more specific proxy-UDP [RFC-9298] would be prioritized over the more generic proxy-IP [RFC-9484]

3	Proposed Principles
In summary, we propose the following 3 principles upon applying the MASQUE contended CONNECT protocols for IP, UDP, TCP and Ethernet, with the decreasing priority order:
Principle#1: 	The session type of a PDU session determines the choice of the supported extended ‘CONNECT protocol’. That is, the IP-type PDU session, including IPv4, IPv6 and IPv4v6, supports the connect-IP/UDP/TCP only and the Ethernet-type PDU session supports the connect-ethernet only. The MASQUE scheme is not supported for the Unstructured PDU session type.
Principle#2: 	Always select the CONNECT-protocol with the most mature IETF technologies. That is, the following selection process (in decreasing order) would be recommended:
1) [bookmark: _GoBack]Select the CONNECT-protocol if conforming to an existing RFC; otherwise,
2) Select the CONNECT-protocol if having an IETF draft in the state of ‘IESG-review’; otherwise,
3) Select the CONNECT-protocol if having an IETF draft in the state of ‘WG Last Call’; otherwise,
4) Select the CONNECT-protocol if having an IETF draft in WG stable status; otherwise,
5) Select the CONNECT-protocol if having an IETF draft in WG-adopted status.
Principle#3: 	To prioritize the more specific extended CONNECT protocol with RFC support, unless the non-existence or immaturity of the protocol draft(s) forces to choose the more generic proxy mechanism.

3GPP
image1.png

