

SA WG2 Meeting #S2-154	S2-2210358
14 - 18 November 2022, Toulouse, France	(revision of S2-220xxxx)

Source:	Ericsson
Title:	Discussion on Data burst
Document for:	Discussion / Approval
Agenda Item:	9.19.1
Work Item / Release:	FS_XRM / Rel-18 

Abstract of the contribution: This contribution discusses the concept of the ‘Data burst’.
[bookmark: _Toc352077766]1. Introduction
The term/concept ‘Data Burst’ is currently defined in TR 23.700-60-120 as: “a set of multiple PDUs generated and sent by the application in a short period of time.” 

In our view this definition is ambiguous since it is unclear as what constitutes “a short period of time” and what is the relation between these PDUs. It is always up to the application how to map the application information into PDU Sets.

There are two major flavours of encoding, e.g., video frames and mapping these into PDU Set(s):
1. encoding the whole frame in one go and map it into a single PDU Set (multiple PDU Sets would increase overhead and reduce capacity without any benefits);
2. encode the whole frame into multiple network slices, where the encoder produces the network slice at different time instances. As result, the encoding is spreading out in time into multiple frame slices and each slice should be mapped into a separate PDU Set in order to send the PDU Set immediately (avoid introducing delays). 
The first approach will result in a single PDU Set followed by a subsequent silent period until next frame is encoded. This approach enables RAN capacity solutions such as delay scheduling and PDU Set dropping, but is also the optimal flavour for UE power saving as it spreads out the data the least amount and enables the most sleep time during the silent periods. In this scenario, the data and thus PDUs generated by the AS that are sent to the client will be constituting a PDU Set.

The second encoding flavour, of spreading out the data (slices) generation in time disables any capacity solutions, as the frame will be spread out over multiple PDU Sets which makes it impossible to make any prediction of scheduling or dropping. Also, it limits the possibility to move the UEs to a sleep-state (power save state) as the silent periods will be very short, e.g. when 50 fps is used, then assuming 8 slices per frame, the silent period shrinks from 20ms to 2.5ms. In general, encoding algorithms that spread out frame encoding over multiple slices will create data in continuous fashion, basically making it impossible for any sleep time for the UEs at all. Also in this scenario, the data and thus PDUs generated by the AS that are sent to the client will be constituting a PDU Set.

A simplified illustration of the two encoding flavors is shown below.
[image: ]
Figure 1: Different Encoding schemes (simplified)
The “Normal” encoding relates to the first approach, where a full frame is send at a periodicity of every 20ms (50fps). It is assumed here, that the encoding of one full frame take less than 20ms. The data of the full frame is send as PDU set, every 20ms. The lower illustration (GDR encoding) relates to the second flavor. Here, the encoder is configured to subdivide a frame into 8 slices and to encode each slice sequentially. Since only a fraction of the image is encoded (one eighth), the encoding is much faster and takes here only ~2.5ms. The encoder can send each slice with an periodicity of ~2.5ms.

There is one more flavour where slices are generated and grouped to be sent together as multiple PDU Sets. In such approach the latency reduction enabled by slicing (the encoder produces slices sequentially with a certain rate, see figure 1) is disabled by delaying them through grouping. Note, when the encoder is anyhow delaying each slice, the encoder can put multiple slices into the same PDU Set. Finally, assuming such 'burst' of PDU Sets is either completely transmitted or entirely lost, the potential benefit of separating prediction across slices to achieve some resilience to loss (like losing only part of a frame with less impact to other parts) is also lost. Further, the prediction loss to achieve such separation is a loss in compression efficiency (will generate more data), especially if the separation loss resilience benefit is removed by grouping. 
While that 3rd flavour is discarded as a not viable solution for XR services, it appears to be the only one that gets close to current ‘Data burst’ concept definition.

[bookmark: _Hlk110953872]Based on the analysis above, we identify that there is no scenario requiring a ‘Data burst’ concept that cannot be addressed by PDU Set concept. Given the “Data Burst” concept is assumed to be a construct that application layer/application server is aware of, we propose to ask SA4 for feedback on whether, additionally to the concept of PDU Set, the ‘Data burst’ concept is needed, draft LS is provided in S2-210676.
 
image1.emf
Duration: less than 20 ms

“Normal” encoding

Sending of 

Frame

encoding starts

encoding ends

Slice 1 

Slice 8 

GDR encoding

encoding starts

encoding ends

~2.5ms 

Sending of slice


