SA WG2 Temporary Document

Page 3

3GPP TSG-WG SA2 Meeting #138E e-meeting
S2-2002943
Elbonia, April 20 – 23, 2020
(revision of S2-200xxxx)
Source:
Huawei, HiSilicon
Title:
Discussion on enhanced application level descriptor
Document for:
Discussion
Agenda Item:
9.1
Work Item / Release:
TEI-17 / Rel-17
Abstract: This discussion paper aims at discussing how to deal with the Application Descriptor.
1. Introduction
The Application Descriptor has been introduced as one form of Traffic Descriptor in URSP in Rel-15. A Traffic descriptor (containing one or more components described in Table 6.6.2.1-2 of TS 23.503) determines when the rule is applicable.
2. Discussion
The Application has been introduced in Rel-15, and SA2 has decided to reuse the stage 3 parameters used in the context of NB-IFOM and describe them in the stage 2 specification. Therefore, the Application Descriptor has been defined as OSid + OSappid currently. If the OS has unique OSappid, the UE could find the specific application presented by the Application Descriptor. However, the Application Descriptor cannot cover the following scenarios:
1. Applications may run on a variety of OSes, some of which are proprietary and domain-specific, such as cars and other vehicles in V2X. The same type of V2X terminal may support variety of existing and future OSes, such as the OS for Automatic Driving and the OS for In-vehicle infotainment (Linux, Android). Autonomous driving requires domain controllers not only to be integrated with versatile capabilities such as multi-sensor fusion, localization, path planning, decision making and control, V2X and high speed communication, but to have interfaces for cameras (mono/stereo), multiple radars, LiDAR, IMU, etc. In-vehicle infotainment is sort of smart phone No doubt they will access to 5G. OSes might also not care about 3GPP connectivity and not select a specific OSId reflecting their specific design.

2. Even for a single OS, there can be many sources for the software (e.g. Android supports many APK stores, Linux supports many software distributions, each having a variety of software repositories, Windows itself can have many sources for software beside the "Microsoft Store", etc). Moreover, most OSes allow self-installation (or even self-compiling from source). In practice, currently most OSes will not allocate a unique APP ID to its own software, but use the “name” of software to differentiate them. For example, in Android, the APP Developer could use “Packet Name” to name their applications and the corresponding Application Store will ensure such Packet Name is unique within the Application Store, but not considering other Application Stores. In the worst case, this would require to consider the OSId to be per repository/source of software, but that would not scale at all, especially for devices with more than one source (most devices except very specific one-purpose devices)
Observation 1: Currently, the application descriptor defined by OSid+OSappid cannot cover all the scenarios for application level descriptor. The scenarios that cannot be covered is widely used or would be widely used soon.
Proposal 1: Based on Observation 1, it is proposed to define new type of Application Descriptor. The App descriptor should be unique and independent from the OS and/or software repository. And it would be better to define it in Rel-17.
One of the use cases is the deployment of specific slices to specific operator-controlled applications. In this case, the operator should be able to identify its own applications. Also, operators must be able to manage their own applications internally without referring to an external body. Hence, the operator should be able to define application level descriptors by themselves.

The other case is the application is from a 3rd party. If a 3rd party wants to use a special slice, it will interact with operators. But the 3rd party developer must be able to use a lightweight mechanism for identifying its applications, so that it will not require complex interaction with each operator. Operators should be able to identify applications with server-side component from a variety of software vendors.

Observation 2: The unique application level descriptor should support the applications both deployed by operators themselves and developed by 3rd parties.

Operators can manage their own identification scheme. However, for a global scheme, it makes sense to have a central registrar. In this case, it would be better to have a trustable and reliable 3rd party managing a central registrar. For example, GSMA has approved a WID (TSG#38 Doc032) [1] to define the APP ID in GSMA. The WID is aiming to standardize the definition of APP ID, including APP ID format, APP ID uniqueness, APP ID provisioning. GSMA could be a candidate for operating such a registrar (as they are doing for other parameters), or for designing a suitable registrar. It is of course necessary that such a registrar be open to all application developers (i.e. not restricted to members) and able to provide identities in a relatively short time once requested.
Observation 3: It is expected a central registrar would take charge of Application Descriptor registration. And both operators and 3rd Party are able to manage the registration.
Proposal 2: Based on Observation 2 and Observation 3, it is proposed that the Application Descriptor should allow both global (operator-independent) and local (operator-specific, i.e. HPLMN of the UE) identities.

3. Conclusion and proposal(s)
According to the discussion above, it is proposed that:
· The application level descriptor should be unique, and independent from both the OS and the software repositories. Unique Application Descriptor is the suggested name.
· The application level descriptor should allow both global (operator-independent) and local (operator-specific, i.e. HPLMN of the UE) identities. Global identities would be assigned by a single registrar; local identities would be assigned uniquely by the operator of which the UE is subscribed.
Therefore, the application level descriptor should be defined with the following: <global/local> <application describing string>

· where global: defined by a central independent registrar, such as GSMA if they are willing to take the role

· where local: defined by the HPLMN of the UE: this value is only valid in conjunction with the PLMN ID (or PLMN ID+NID) of the HPLMN of the UE.

· application describing string: a string which is unique with respect to the registrar

Although it is not up to 3GPP specs to define how the business process for assigning/using these identifiers would work, it is expected such a mechanism could look like that:

· On the application/UE side:

· Application level developer which is developing an app that needs special treatment with one, a few, or any operator (e.g. requires some slicing and/or edge computing support), asks the operator(s) and/or the global registrar for an App descriptor. The assigned App descriptors are then tied to the software (as part of the code, field in the package, etc). Software updates can then be provided as more/different values are supported

· When the application runs, the OS fetches the application level descriptor(s) and tries to match it with one of the URSP rules.
· On the operator side:

· When the operator deploys a specific service (slice, edge computing application), it associates the appropriate unique application level descriptor (either from the global registrar, or from its own local registrar) to the service, e.g. S-NSSAI, edge computing application, and configures the URSP rules in the UDR accordingly. UE registered to the service will receive the corresponding URSP rules as per existing procedures.

4. References
[1] GSMA, TSG#38 Doc032, Network Slicing New Work Item Proposal.
[image: image1.png]

3GPP

SA WG2 TD

