SA WG2 Temporary Document

Page 3

3GPP TSG-WG SA2 Meeting #137E e-meeting
S2-2002124
Elbonia, February 24 – 27, 2020
(revision of S2-200xxxx)
Source:
Huawei, HiSilicon
Title:
Discussion on Application Descriptor
Document for:
Discussion
Agenda Item:
6.6
Work Item / Release:
[5GS_Ph1] / [Rel-16]
Abstract: This discussion paper aims at discussing how to deal with the Application Descriptor.
1. Introduction
The Application Descriptor has been introduced as one form of Traffic Descriptor in URSP in Rel-15. This paper focuses on the Application Descriptor in URSP for discussion.
2. Discussion
The URSP is used to select a proper existing PDU Session for the traffic, or select the proper parameters for a new PDU Session when none are already existing. The Traffic Descriptor is used to identify the application needs, and includes IP/Non-IP Descriptors, Application Descriptors, Domain Descriptors, DNN and Connection Capability as described in TS 23.503.

The Non-IP Descriptor is only used for applications transferred in Non-IP type PDU Session, i.e. Ethernet type and Unstructured PDU Session. The Connection Capability is only used for some general services, e.g. IMS, MMS. Hence, these two descriptors cannot cover all the scenarios.

The IP Descriptors is defined by destination IP 3 tuples. It is easy to implement but the IP address of an application server is not unique and can change dynamically. Especially in edge computing scenario, one application can have multiple servers and the IP addresses of the servers are not static. So, in fact, it is hard for Operators to set the proper value for IP Descriptor beside some very specific scenarios.

The Domain Descriptor is defined by destination FQDNs (or limited regular expressions of FQDNs, still limited to certain domain names). The problem is the same as IP Descriptor.

Values in the DNN field can be very flexible and could fix the above problems. However, the number of DNNs is limited, as its definition limits it to point to actual DNNs regardless of the slice..

The Application Descriptor is used to match the traffic of a certain application, i.e. at application granularity. This granularity is vital for several core features of the 5G system, e.g. slicing and edge computing mentioned above, as it could differentiate a specific application efficiently, regardless of its traffic patterns, etc.

Observation 1: Application Descriptor is an efficient granularity for network to enforce traffic matching, especially for several core features of the 5G system, e.g. slicing and edge computing.

The Application has thus been introduced in Rel-15, and SA2 has decided to reuse the stage 3 parameters used in the context of NB-IFOM and describe them in the stage 2 specification. Therefore, the Application Descriptor has been defined as OSid + OSappid currently. This leads however to certain problems in practice:

1. Applications may run on a variety of OSes, some of which are proprietary and domain-specific. Especially in the context of 5G, there are many more connected devices than just mainstream smartphones, incl. connected TVs and appliances (fridge, vocal assistants, etc), game consoles, cars and other vehicles, factory equipment, smart cities, domain-specific devices (e.g. health, power grid, etc.), 5G-RGs, etc. Covering the intended scenarios for 5G requires that the Application Descriptor scales properly in light of the variety of existing and future OSes. OSes might also not care about 3GPP connectivity and not select a specific OSId reflecting their specific design. This scales poorly in a more diverse ecosystem than 4G's.

2. Even for a single OS, there can be many sources for the software (e.g. Android supports many APK stores, Linux supports many software distributions, each having a variety of software repositories, Windows itself can have many sources for software beside the "Microsoft Store", etc). Moreover, most OSes allow self-installation (or even self-compiling from source). In practice, currently most OSes will not allocate a unique APP ID to its own software, but use the “name” of software to differentiate them. For example, in Android, the APP Developer could use “Packet Name” to name their applications and the corresponding Application Store will ensure such Packet Name is unique within the Application Store, but not for the whole device (which often have multiple sources of software. When an application runs, it will tell the OS/Application layer about its Packet Name. This information cannot be trusted to be genuinely the same as what the operator provides (i.e. to prevent false positives), except in the most locked down scenarios (where the operator has full control of the device, and the user none). In the worst case, this would require to consider the OSId to be per repository/source of software, but that would not scale at all, especially for devices with more than one source (most devices except very specific one-purpose devices)
Observation 2: Currently, the application descriptor defined by OSid+OSappid does not work well because

1) The OSid is a poorly defined parameter and cannot reflect the diversity of environments of devices that are supposed to be used in 5G systems now and in the future.

2) Within a single OS, there is no trustable unique APP ID.

Proposal 1: Based on Observation 1 and Observation 2, it is proposed to define new type of Application Descriptor. The App descriptor should be unique, and independent from the OS and/or software repository.
One of the use cases is the deployment of specific slices to specific operator-controlled applications. In this case, the operator should be able to identify its own applications. Also, operators must be able to manage their own applications internally without referring to an external body. Hence, the operator should be able to define application descriptors by themselves.
The other case is the application is from a 3rd party. If a 3rd party wants to use a special slice, it will interact with operators. But the 3rd party developer must be able to use a lightweight mechanism for identifying its applications, so that it will not require complex interaction with each operator. Operators should be able to identify applications with server-side component from a variety of software vendors.

Observation 3: The Application descriptor should support the applications both deployed by operators themselves and developed by 3rd parties.

It is important that application identities are unique, both to avoid false positives (applications are considered matching the criteria when they should not, e.g. because the identity is not really unique) and false negative (applications are not considered matching the criteria when they should, e.g. because a subset only of the possible identities are matched, e.g. when an application can be identified by a large, potentially open-ended, number of schemes).

Operators can manage their own identification scheme. However, for a global scheme, it makes sense to have a central registrar. In this case, it would be better to have a trustable and reliable 3rd party managing a central registrar.. For example, GSMA has approved a WID (TSG#38 Doc032) [1] to define the APP ID in GSMA. The WID is aiming to standardize the definition of APP ID, including APP ID format, APP ID uniqueness, APP ID provisioning. GSMA could be a candidate for operating such a registrar (as they are doing for other parameters), or for designing a suitable registrar.
It is of course necessary that such a registrar be open to all application developers (i.e. not restricted to members) and able to provide identities in a relatively short time once requested.
Observation 4: It is expected a 3rd party entity would take charge of Application Descriptor registration and it seems GSMA has interest to discuss and standardize the definition of APP ID.

Proposal 2: Based on Observation 3 and Observation 4, it is proposed that the Application Descriptor should allow both global (operator-independent) and local (operator-specific, i.e. HPLMN of the UE) identities. Global identities would be assigned by a single registrar (TBD, perhaps GSMA) and local identities would be assigned uniquely by the operator of which the UE is subscribed.
Proposal 3: it is proposed to send an LS to GSMA to ask whether they would like to be/point out such a 3rd Group.
3. Conclusion and proposal(s)
According to the discussion above, it is proposed that:
· The App descriptor should be unique, and independent from both the OS and the software repositories.

· The App descriptor should allow both global (operator-independent) and local (operator-specific, i.e. HPLMN of the UE) identities. Global identities would be assigned by a single registrar; local identities would be assigned uniquely by the operator of which the UE is subscribed.
Therefore, the App descriptor should be defined with the following: <global/local> <application describing string>

· where global: defined by a central independent registrar, such as GSMA if they are willing to take the role (Note: please see detail in the LS, S2- 2002125)

· where local: defined by the HPLMN of the UE: this value is only valid in conjunction with the PLMN ID (or PLMN ID+NID) of the HPLMN of the UE.
· application describing string: a string which is unique with respect to the registrar
Although it is not up to 3GPP specs to define how the business process for assigning/using these identifiers would work, it is expected such a mechanism could look like that:

· On the application/UE side:

· Application developer which is developing an app that needs special treatment with one, a few, or any operator (e.g. requires some slicing and/or edge computing support), asks the operator(s) and/or the global registrar for an App descriptor. The assigned App descriptors are then tied to the software (as part of the code, field in the package, etc). Software updates can then be provided as more/different values are supported

· When the application runs, the OS fetches the application descriptor(s) and tries to match it with one of the URSP rules (NOTE: there would be up to two application descriptors against witch to match: one global, and one for the HPLMN of the UE.)

· On the operator side:

· When the operator deploys a specific service (slice, edge computing application), it associates the appropriate Application descriptor (either from the global registrar, or from its own local registrar) to the service, e.g. S-NSSAI, edge computing application, and configures the URSP rules in the UDR accordingly. UE registered to the service will receive the corresponding URSP rules as per existing procedures.

It is expected the global registrar to have the following characteristics:

· It should work well with the operator community (as it is meant to register application descriptors for running in operator networks)

· The identification should allow for an arbitrarily high number of unique and unambiguous identities (e.g. a long enough string)

· For scalability purposes, it is understood that registering for an application would be necessary if it is deployed in more than a few operators' networks, therefore it is important that the registration mechanism be open and low effort for the applicant.

· It should avoid fragmentation and risk of false negatives. Operator-specific applications are covered by the local application descriptors.

Pros of the proposal:
· The proposal is scalable:

· to the number of application developers: it can support any application developer that develops applications requiring special treatment in operators network.
· to the number of operators: the global application descriptor allows an application to be supported on any number of operator networks without having to interact individually with each operator (of course, the operator has to provide the network-side support — slice, edge computing platform — required for the special treatment)

· to the number of applications and application versions: it can support an arbitrary number of applications, and is resilient with respect to the number of (concurrent or subsequent) application versions

· to the number of supporting operating systems and repositories: there has been many operating systems in the past, and will be more in the future. Operating systems (even on a single device) often have multiple concurrent sources for the applications running on it, including the application developer can directly provide the software without going through a repository. It is not possible nor desirable to require the operator to identify applications for each and every operating system and software source, regardless of their popularity in the operator's network.

· The proposal is independent of specific software repositories or OSes. Especially in the age of 5G where connected devices can take many more forms than just smartphones, it is important to not restrict slicing and edge computing to a few "smartphone-only" scenarios, and prevent other devices even with proprietary specific-use OSes from beneficiating from 5G features. The current mechanism makes it difficult for an operator to target more than a few OS/repository combinations, falling short of most real-life scenarios where they do not control the devices. In practice, the current mechanism is prone to both false positives (applications are matching when they should not) and false negatives (applications are not matching when they should). This is likely to result in poor user experience and be very complicated to actually pinpoint. This might endanger the development of evolved network slicing or edge computing deployments.
· The proposal has minimal impact to the specification: the Application descriptor remains, only its components are replaced, i.e. OSid + OSAppid are replaced by global/local 1-bit toggle + application describing string.

· The proposal allows operators to deploy custom applications without having to refer to a global body.

· The proposal does not require the modem and/or the OS to have OS-specific and ambiguous procedures to identify an application. In addition, the proposal does not require the operator to provide OS/repository-specific application information for the potentially unlimited number of OSes and software sources.
Arguments raised against the proposal:

· "The proposal requires an extra step from application developers and operators before it can be used". Indeed, as part of a deployment of a slice or edge computing scenario, this would require to also allocate a unique ID to the application, and configure it as part of the application. However, in any case, such applications would require specific deployment activity in the network to access these special resources, e.g. the deployment of a network slice with SLAs, UE subscription configuration, edge computing environment configuration, etc. This is just one step done differently as part of the deployment.
· "The proposal requires extra work for the OS to support the Application descriptor", e.g. app descriptor-related field/file in the package, and the ability to use this information to match the URSP. However, whatever is the chosen criteria, this requires OS support. Note that e.g. the DNN Traffic descriptor relies on the same awareness. This is not specific to application descriptor. Moreover, the current parameters also require a similar set of mechanisms to be put in place and checked to support the detection and matching of OSID/OSAppID.
· "The proposal does not guarantee that the application is what it claims to be": it is advocated that the current system allows an OS to guarantee that an application is what it claims to be, as it is claimed that it can check an application identity within a trusted repository. However, this claim is only correct in very limited scenarios, where the operator has full control over the device with a single repository, and the user has no control at all of the device. Most devices have the ability to install software from multiple sources (it is of course the case for computers (Windows, Linux...), but also Android-based devices and other OSes, including "self-install" — note that this is not hacking, unless changing a parameter in the "Settings" panel is considered "hacking"), and it is not possible to guarantee that all repositories will enforce such trusted relationship. Moreover, it is unlikely that this "trust" would be sufficient: if an operator considers the targeted resource to be important, it would have to secure the resources on the network-side regardless of the matching on the UE side. Note that the 5GS system has already mechanisms to control access to resources, such as secondary authentication, NSSAA, or application detection in PCC rules on the network side. If additionally, UE-side support is required, then this would need to be put in place as additional mechanisms for establishing trust (e.g. using certificates, signatures, etc.) which would be required for any UE side mechanism and do not exist today.
· "The proposal is too complex for my scenario / my scenario can work with the existing system": some narrow scenario can clearly work with the existing mechanism (OSId/OSAppId). However, it could be claim that the same scenarios are so specific that they could actually be supported without the existing mechanism as well. 5GS claims that it supports many more use cases related to IOT, industry needs, etc. Most of these scenarios would not be well supported by the current mechanism, as it has been proven above. We should not restrict the support of URSP rules to a few smartphone-centric scenarios that cover a very narrow field of what 5GS is about.
· "The proposal does not allow to discriminate "unwanted" applications": this is correct. The mechanism requires the application (or the repository) to advertise the application descriptor for matching purposes. If an application wants to evade detection, it can decide not to advertise its application descriptor, or not ask one in the first place. However, the OSId/OSAppId mechanism does not solve this scenario either: it is quite easy for an application to change its identity from the one the operator advertises, or ask the user to download an update via some different repository. In that case, the only mechanisms for an operator would be to apply network-side restrictions. In most scenarios indeed, it would be necessary to put in place network-side restrictions regardless, and additional measures based on application detection in URSP rules would then be redundant if not counter-productive. Moreover, this is not an advertised use of URSP, and may go against net neutrality considerations.
Other considerations:
· There are scenarios where usage can be easily identified, but not applications. For example, a 5G-RG has a number of functionality that cannot be easily tied to an application, but are otherwise well identified, e.g community wifi, IPTV, RJ11 voice, etc. A well-defined registered Application descriptor would work well in that case, whereas a OSId/OSAppID pair would require to fake software applications to support the URSP). This can be the case in other devices where the "application" that needs to be identified is not necessarily a "single running software process".
· What is OSID: As part of the discussion, the concept of OSId has been shown to have various meanings by its supporters, some restricting it to the actual OS (where it then fails the uniqueness criteria), other to repositories (but then, this is not supported by the signalling, and is potentially open-ended and not enforceable for certain devices).
4. References
[1] GSMA, TSG#38 Doc032, Network Slicing New Work Item Proposal.
[image: image1.png]
3GPP

SA WG2 TD

