

SA WG2 Temporary Document
Page 8

SA WG2 Meeting #129	S2-1811392
15 - 19 October 2018, Dongguan, P.R. China
Source:	Huawei, Hisilicon
Title:	Update and evaluation to solution 14/15
Document for:	Discussion/Approval
Agenda Item:	6.19
Work Item / Release:	FS_eSBA / Rel-16
[bookmark: OLE_LINK6]Abstract of the contribution: This contribution proposes updates and evaluation to solution 14 and 15.
1 Discussion
This contribution proposes some updates and evaluation to solution 14 and 15.
2 Proposal
It is proposed to add the following text into TR 23.742.

/*************************** Start of the first change ************************/
[bookmark: _Toc523749599]6.14	Solution 14: NF/ Service Set based Service Framework
[bookmark: _Toc523749600]6.14.1	Introduction
This solution addresses key issues 3 "Improvements to service framework related aspects".
The design principle of this solution:
-	One NF/Service Instance is identified by the NF/Service Set ID and Instance Pointer.
-	Decouple the Producer Discovery and Instance selection procedure which is separately determined at the Consumer and Framework function. The Producer Discovery is to find the suitable NF/Service Set which providerprovide the required NF/NF service consumer requested by the consumer. The Instance selection is to find one provider instance within the indicated NF/Service Set.
-	When a Producer NF/Service Instance is register to NRF via the Framework function, the corresponding Service Set ID and Instance pointer is provided to the Framework Function. When the Consumer communicate with the Producer Instance, it discovers the Framework Function based on the Producer Service Set and the Framework Function determines the Producer Instance to be contacted. The change of Producer Instance within the Producer Set does not need be aware by the Consumer.
[bookmark: _Toc523749601]6.14.2	High level description
The high-level architecture of this solution is illustrated in the following figure:

Figure 6.3.14.2-1 NF/ Service Set based Service Framework Architecture
NF/Services are grouped into NF/Service Sets. Within one NF/Service Set, the capability of each NF/service Instance are same. For From NRF view the Service Set defined in Rel-16 is similar as the NF Set defined in Rel-15, e.g. AMF set. One NF/Service Set can be deployed across DCs. Each NF/service set has one globally unique identity.
The NF/Service Sets instances are deployed in Units. Each Unit shares the same platform function and includes one or multiple NF/Service sets, which can be same or different NF/Service types, and ana Service Framework. It A unit is located within one DC(Data Center). The NF/Service instances within a Unit may not expose to services outside of the Unit. The Framework Function provide functions like registration/discovery of internal service instances for internal service management, registration/discovery with NRF for outside communication, communication between internal NF/Service instances and outside the Unit, load balance among service instances connected to it, etc. It is built on top of the existing service Frameworks Function, e.g. Linkerd (refer to https://linkerd.io/1/features/), Istio. It is also possible that the NF/Service instances within the Unit communicate with outside directly without going through the Framework Function.

Figure 6.4.14.2-X NF/Service Set across Units
One NF/Service set is composed by the NF/Service instances located at the same or different Units. NF/Service instances within a NF/Service set share the same set of data.
If the NF/Service instance does not expose to service outside of the unit, it only register to the Framework Function. If the NF/Service instance wants to expose service outside, besides the registration to the Framework Function, the NF/Service Instance is also registered to the NRF via the standardized interface. When the NF/service instance is registersed to NRF, depend on whether or not it wants to be accessed directlyexpose outside, the information registered in NRF may be is different. If the NF/service instance is hidden toward outside, the set ID of the service instance, and the Unit address pointing to the Framework Function are registered to NRF. On the contrary, iIf the service instance is directly registered to the NRF, i.e. no service instance hiding, the service instance ID and the Unit address pointing to the service instant instance itself are registered to NRF. For each registered address at NRF it is associated with one weight factor, which reflect the capacity of the NF/service instance associated with the registered address.
When one NF/Service Set is deployed across several DCs, the Unit Addresses associated with each DC are registered in NRF. And each Unit Address is associated with a weight factor.
When a consumer initiates communication, it first invokes service discovery.
· In case the Framework Function is used, the producer set ID together with Unit address pointing to Framework Function are provided to the consumer in the service discovery response. The consumer can initiate communication with producer by including the producer set ID in the message, and send the message to the indicated Unit address which points to the Framework Function. The Framework Function selects producer instances based on the producer set ID and the previously registered NF/Service instance. Thus the Load balancing is achieved by the Framework Function
NOTE:	the producer set ID can be part of the Unit address to be communicated, e.g. information in the FQDN.
· In case the Framework Function is not used, the NF/Service Set ID and Instance Pointer, together with Unit address pointing to Instance address, are provided to the consumer in the service discovery response. It is same as the Rel-15 NF/Service discovery procedure.
· If the NF/Service Set is spread across DCs, the weight factor of each Unit address is also returned to the consumer, and the consumer selects a Unit address based on the weight factor associated with it and other parameters, e.g. proximity.
The Producer discovery messages may be between the consumer and the NRF directly, or the message may be relayed by an entity within the Unit, e.g. the Framework Function. If it is relayed, the framework function may respond the consumer directly without invoking discovery service toward the NRF, if the producer service can be found locally.
[bookmark: _Toc523749602]6.14.3	Illustrated procedures
The following figure depicts message exchange between a Consumer Instance and a Producer Instance. In the below figure, the Consumer Instance/Producer Instance is assumed to be a Service.

Figure 6.3.14.3-1: Procedure of across Unit service communication
1.	The Service Consumer Instance initiates Service Eiscovery DiscoveryE. The message is sent Eto NRF. EThe request includes the parameters to find the Service Producer Instance, e.g. service set type, location info, and depending on service set type, some service specific info like DNN may also be included.
If the Discovery message is relayed via the framework function and the producer service can be found locally, the framework function respond the consumer directly without invoking discovery service toward the NRF.
 2.	In the service discovery response, the service producer service set ID and the Unit address are returned to the consumer instance.
 3.	The Consumer constructs a request message which includes the Service Producer set ID information received in step 2, and sends the message to the Unit address received in step 2. Depending on the type of the Unit address, i.e. pointing to the registered instance or framework function, the message may be sent directly to a producer instance or to an entity within the Unit, e.g. Framework Function, which chooses producer instance and forwards the message to the producer instance.
4.	The producer handles the request message, and sends response message to consumer instance.
[bookmark: _Toc523749603]6.14.4	Impacts on existing NFs, NF Services and Interfaces
The impacts on existing services and interfaces are:
NRF:
· The NF/Service Set ID is registered to the NRF. However, the NF/Service Set can be regarded as Rel-15 NF Instance. NRF does not need differentiate on whether it is NF/Service Set or a NF Instance, no impact on the NRF.
· Each NF/NF Service Set may be associated with one, or multiple Unit addresses together with an associated weight factor. When the NRF selects Unit address, the weight factor need be taken into account.
[bookmark: _Toc523749604]6.14.5	Evaluation of the Solution
Editor's note:	This clause provides an evaluation of the solution.
In this solution the NF/Service are group into NF/Services Sets and managed by the Framework Function. This solution have the following characteristics:
· NF/Service Registration management, for each NF/Service instance, it register to the Framework Function and optionally register to NRF. The Framework Function is aware of the addition, removal or failover of NF/Service instances within the Unit.
· Authorization control: Based on the registered NF/Service profile the Framework Function or NRF can authorize the access to the service of Producer.
· Discovery: By separating the whole discovery procedure into two steps, i.e. NF/Service Set Discovery and Instance selection, the Service Framework Function does not need to understand the business service logic related discovery strategies, which involves parameters used for services discovery, and the related discovery failure handling. Also the consumer are not need be aware the status of the provider Instance, e.g. scaling in/out.
· Communication: when the message is routed via the Framework Function, the Framework Function always routes message based on the NF/Service Set ID and Unit address. One simple and unified routing mechanism can be used.
· Load Balancing/Failover management/Routing Control: The Framework Function manages the NF/Service Instance. The NF/Service context is shared among the NF/Service Instance within the same the NF/Service Set. The Instance within the same set is replaceable with each other, Thus the change of the NF/Service Instance need not be notified to the peer NF/Service instances.
· Backward compatibility: The interface between the Framework function and NRF is compliant with the Rel-15 defined Service Based interface. No need to enhance Rel-15 Service Based Interface to carry complicated routing information from NF/Service instance to Service Framework Function, and no need to change existing NF/Service instance implementation.
From above it can be seen that any change of the Provider Service Instance, e.g. scaling in/out, it does not impact the Consumer Service Instance. The Framework Function is responsible for NF/Service instance selection for the communication between NF/Service instances. Hence, the NF/Service instance can focus on business logic. Also the Framework function route the message using the same mechanism. It avoid the Framework function need be involved the business logic.
******************************* Second Change *******************************
[bookmark: _Toc523749605]6.15	Solution 15: High reliable deployment via the binding information stored at Framework Function
[bookmark: _Toc523749606]6.15.1	Introduction
This solution is to address the Key Issue 4 and in particular how to maintain the bindings between service consumer and respective service producer to support high reliable deployment.
It is based on architecture defined in 6.14 NF/ Service Set based Service Framework. When one Service Instance communicates with another Service Instance, it includes the binding ID information, which is generated by the service producer. The Service Consumer instance stores the received binding ID until the UE context is released. The binding information, i.e. the binding between the binding ID and service instance, is stored in a new functional module within the Service Framework where the service producer is deployed. When the binding is changed, e.g., the service instance is scaling in/out or failure, the communication peer does not need to be aware. Thus the high reliability can be reached if the service instance to be communicated is replaced, e.g. due to failure.
[bookmark: _Toc523749607]6.15.2	High level description
Similar as the definition of the AMF Instance at Rel-15, it is assumed that the service instance is identified by a Service Set ID and Instance pointer. When the Service Producer Instance is communicated per the Service Consumer request, the Service Producer Instance provides a binding identifier (i.e. binding ID) and returned it to the Service Consumer. The Service Consumer use the binding ID to identify the Producer Instance to be contacted. Two types of bindings ID are defined:
-	Service Set ID based, bind to a service set but and is not limited to a dedicated Instance.
-	Service Set ID and Instance pointer based. Depending on the meaning of binding ID, it can be bound to a specific service instance but the service instance can be replaced, or only to one dedicated Instance.
The Service Consumer instance stores the received binding ID until the UE context is released, and includes it in the following request targeted to the same Producer Service. When the message reached reaches the Unit where the service producer instance is located, it is routed to a service producer instance based on the binding ID included in the message. The binding between the binding ID and a service producer instance is stored within the Unit, e.g. framework function. The Service Producer instance Id may change, while the binding Id exposed to the Service Consumer remains the same. In that case different transactions may reach to different Service Instance even using the same binding ID.
The UE context are shared among the NF/Service Instance within the same NF/Service set. If one NF/Service Instance fails, the message targeting to the failed NF/Service Instance is routed to another NF/Service Instance within the same NF/Service set. The replacing NF/Service Instance retrieve the UE contexts to handle the incoming message. Thus the high reliability can be achieved. How to select the replacing NF/Service Instance is implemented as below:
· If not all the NF/Service Set instance within the same Units are failure, based on the binding ID type the Framework Function avoid select the failed NF/Service instance or reselect another NF Service Instance based on the preconfigured rule via OAM, e.g. when the NF/Service Instance-1 is failure it is replaced by NF/Service Instance -5.
· If a NF/Service Set is spread across multiple Units in different DCs, and all the NF/Service Set instance within the same Units are failure (which does not happen often) and if there are binding IDs bound to NF/Service instances in the failed Unit, the NRF notifies the communication peers of the NF/Service Set of the Unit failure event. Upon receiving the Unit failover notification, the communication peer re-selects a target Unit Address based on the NF/Service Set ID, and send messages to the target Unit using the same binding ID. The Service Framework Function in the target Unit selects a target NF/Service instance based on the binding ID and preconfigured rule.
· The replacing NF/Service Instance updates the Service Consumer instance with a new binding ID.
[bookmark: _Toc523749608]6.15.3	Illustrated procedures
The below procedure illustrate how to exchange the binding ID between the consumer and producer. And how the message is routed based on binding ID.

Figure 6.15.3-1 Binding information stored at the Framework Function and its usage
The binding between the service instance and the binding ID is handling maintained within the Unit, e.g. by the Framework Function. As an example, the binding can be established when the service instance is started, e.g. as part of the service instance registration procedure. The Service Framework includes a function module which stores the following information: the Service Set ID, Instance Pointer, IP address. Thus no matter which type binding ID is used by the service instance later, the Function in the Unit, e.g. Framework Function, can always route the message to the service instance.
Binding ID exchange between the consumer and producer:
1.	The consumer allocates a binding ID, which is used for following transaction request from the peer service instance, and include this information in the message sent to producer. The type of binding ID consumer allocated is per how the consumer prefer following transaction request from peer side communicate with it.
If the following transaction request from peer side is preferred to be handled by any instance within the same service consumer set, the binding ID is Service Set ID based. If the following transaction request from peer side is prefer to be handled by this instance, the binding ID is Service Set ID and Instance Pointer based.
NOTE: the consumer's binding ID is included only if the consumer can behave as service producer
2.	The Function in the Unit, e.g. the framework function, selects the producer instance.
3.	The Message 1 is forwarded to the selected producer instance.
4.	The producer instance provides a producer's binding ID to the consumer instance in response message. The type of binding ID allocated is similar as the step 1.
5.	The response message is forwarded to the Consumer. The Consumer stores the received Producer's binding ID as part of the UE context.
Binding ID usage for the following transaction:
6.	Consumer sends message 2, including producer's binding ID received at step 5.
7.	If the producer’s binding ID allocated at step 4 is the Service Set ID and Instance pointer based, Producer 1 is selected based on producer's binding ID.
If the producer’s binding ID allocated at step 4 is the Service Set ID based, the Function in the Unit, e.g. the framework function, re-selects the producer instance. The re-selected producer instance may be different comparing to the Producer 1. In that case if the transaction need be routed to the same Producer Instance for following transaction, another information need be provided, e.g. a different binding information which is called as temporary binding ID defined in clause 6.9 is used.
8.	Message 2 is forwarded to Producer 1.
Binding information updated:
9.	The binding between the binding ID and Producer 1 is released, e.g. due to producer instance scale in/out.
Message handling after the binding information is released:
10.	The consumer sends Message 3 which include the producer's binding ID provided by Producer 1.
11.	Since there is no producer instance associated with the binding ID, but the binding ID includes the Service Set ID information, a new producer instance is selected based on Producer service set ID and optional preconfigured rule.
12.	Message 3 is forwarded to Producer 2.
13.	The Producer 2 retrieve the UE context and provides a new producer's binding ID which is associated with producer 2 or this Set.
14.	The response message is forwarded to the Consumer.
[bookmark: _Toc523749609]6.15.4	Impacts on existing NFs, NF Services and Interfaces
Editor's note: This clause describes impacts to existing services and interfaces. .
The impact of this solution includes:
- The Framework function manage the mapping between the producer NF/Service instance and binding ID. The Service Framework update the association when the producer instances are changed.
- The Producer NF/Service instance generate and send the binding ID to consumer NF/Service instance. The Consumer NF/Service instance store the received binding for the following transaction with producer NF/Service Instance. The Producer NF/Service instance may update the binding ID and send to the consumer NF/Service Instance anytime.
- The consumer NF/Service instance includes the binding ID when it communicate with the producer NF/Service instance. The Service Framework must be able to target the service request to the corresponding instance based on the binding ID in the service request.
- The Service Framework Function route messages based on binding ID to corresponding NF/Service instance.
[bookmark: _GoBack]
[bookmark: _Toc523749610]6.15.5	Evaluation of the Solution
Editor's note:	This clause provides an evaluation of the solution.

This solution focus on how to maintain the communication between the consumer and producer, i.e. via the binding ID. How to share the data among the NF/Service Instance within the same NF/Service Set is independent on how long the binding is maintained.
This solution have following characteristics:
· It provides a method to setup a long-living binding between the service consumer and producer. The binding can be set either with the service Set ID or Service Set ID and Instance Pointer. The binding is released when the UE context is released, e.g. then the PDU Session is released.
· The producer instances can decide how to bind a consumer instance with a producer instance, for example, a consumer instance can be bound to a producer instance only for a transaction, or for a period of time (e.g. it is maintained until the producer set is rescaled).
· The Service Framework Function maintains the binding between the binding ID and the producer NF/Service instance. The Service Framework can update the binding to a new producer instance in middle of the PDU Session e.g. when the producer instances are deregistered. The consumer NF/Service instance does not need to be aware which producer NF/Service instance is bound to the binding ID.
· Support partial or all the NF/Service Instance within one Unit are failure.
By using the binding ID it avoid the unnecessity to change the NF Service Instance for each transaction but also keep the flexibility if the NF/Service Instance change per transaction is required.
******************************* End of Changes *******************************

3GPP
SA WG2 TD

image2.emf
X

1

Instance

1

X

1

Instance

2

X

1

Instance

3

X

1

Instance

4

X

1

Instance

5

X

1

Instance

6

Service X1 Set

Framework Function 1 Framework Function 2

Unit 1 Unit 2

Microsoft_Visio___2.vsdx

X1 Instance 1

X1 Instance 2

X1 Instance 3

X1 Instance 4

X1 Instance 5

X1 Instance 6
Service X1 Set
Framework Function 1
Framework Function 2
Unit 1
Unit 2

image3.emf
Consumer

Consumer

Framework

Function

3. Request Message (Consumer Set ID, Producer Set ID)

4. Response Message

Producer

Framework

Function

NRF Producer

1. Service Discovery Request

2. Service Discovery Response (Producer Service Set ID)

Consumer

Producer

Microsoft_Visio___3.vsdx

Consumer
Consumer Framework Function
3. Request Message (Consumer Set ID, Producer Set ID)
4. Response Message
Producer Framework Function
NRF
Producer
1. Service Discovery Request
2. Service Discovery Response (Producer Service Set ID)
Consumer
Producer

image4.emf
Consumer

Framework

Function

Producer 1

8. Message 2(Producer’s binding ID)

9. Unbind

10. Message 3 (Producer’s binding ID)

Producer 2

13. Message 3(Producer’s binding ID)

4. Res Message 1 (Producer’s binding ID)

Framework

Function

2. Producer Instance

selection

5. Res Message 1 (Producer’s binding ID)

6. Message 2(Producer’s binding ID)

7. select Producer

instance based on

binding ID

11. Binding doesn't exist,

select instance based on

set ID

1. Message 1(Producer’s set ID, Consumer’s binding ID)

14. Res Message 3(new Producer’s binding ID)

15. Res Message 3(new Producer’s binding ID)

3. Message 1(Producer’s set ID, Consumer’s binding ID)

Microsoft_Visio___4.vsdx

Consumer
Framework Function
Producer 1
8. Message 2(Producer’s binding ID)
9. Unbind
10. Message 3 (Producer’s binding ID)
Producer 2
13. Message 3(Producer’s binding ID)
4. Res Message 1 (Producer’s binding ID)
Framework Function
2. Producer Instance selection
5. Res Message 1 (Producer’s binding ID)
6. Message 2(Producer’s binding ID)
7. select Producer instance based on binding ID
11. Binding doesn't exist, select instance based on set ID
1. Message 1(Producer’s set ID, Consumer’s binding ID)
14. Res Message 3(new Producer’s binding ID)
15. Res Message 3(new Producer’s binding ID)
3. Message 1(Producer’s set ID, Consumer’s binding ID)

image1.emf
Framework Function 1

NRF

Service a1

Service a2

NF A

Service a1

Service a2

NF A

NF A Set

Service x1

Service x1 Set

Service x1

Framework Function 2

Service b1

Service b2

NF B

NF B Set

Service y1

Service y1 Set

Service y1

Service y2

Service y2 Set

Service y2

Service b1

Service b2

NF B

SEPP

PLMN A

PLMN B

Service x1

Service x2 Set

Service x2

Unit 1

Unit 2

Microsoft_Visio___1.vsdx

Framework Function 1
NRF

Service a1
Service a2
NF A

Service a1
Service a2
NF A
NF A Set
Service x1
Service x1 Set
Service x1

Framework Function 2

Service b1
Service b2
NF B
NF B Set
Service y1
Service y1 Set
Service y1
Service y2
Service y2 Set
Service y2

Service b1
Service b2
NF B
SEPP
PLMN A
PLMN B
Service x1
Service x2 Set
Service x2
Unit 1
Unit 2

