SA WG2 Temporary Document

Page 1

SA WG2 Meeting #128
S2-187449
July 2 - 6, 2018, Vilnius, Lithuania,
(revision of S2-186430)
Source:
Deutsche Telekom

Title:
Update of Solution 4.1SBA with stateless and unsticky services to address editors notes
Document for:
Approval

Agenda Item:
6.19

Work Item / Release:
FS_eSBA / Rel-16

Abstract of the contribution: This contribution proposes updates to Solution 4.1 in order to resolves some editor's notes.
1 Introduction

This contribution addresses the following editor's note as stated below:

in 6.4.1.2.5
High-level Solution Architecture

Editor's note: Details on necessary context data, any race conditions to be addressed, local knowledge of data, and storage layer are subject to future contributions and therefore FFS.
Dependencies to other solutions to key issues:

-
Solution 3.1 in the key issue 3 "Improvements to Service Framework" relies on the unstickiness and the statelessness of service instances (see clause 6.3.1.2.3 pre-condition).
· Selection on NF instance/NF Service instance is subject of solution in 3.1.
· Regarding standardized context data: 
The storage layer is considered to be primary and only storage for context data and offers both to store opaque (vendor specific structured or unstructured) context data as well as standardized structured context data. The minimum context data that need to be standardized is determined by what data are required to support multi-vendor interoperability amongst NFs/NF services of same type. If the minimum cannot be determined a superset or all data would need to be standardized.
· Regarding race conditions:

· Read operation of any context data in the storage layer is possible at any point in time and state of the NFs instance/ NF service instances.
· Update operations could e.g. lock the context data for time it is processed by a service instance. How and whether to do it should be left to the normative phase..
· Whether race conditions can occur or not depends on how the services are defined and on the amount of overlapping (shared) context. Currently no such conditions have been identified.
· Regarding local knowledge of data:
Local knowledge of data in the sense of local at the NF instance/NF Service instance is only required until a procedure is completed (has some transient state) and a stable state can be stored at the data layer. Storage layer is assumed to be a distributed database and it is up to implementation/deployment issue how the synchronization between any instances of the storage layer is achieved.
· Network Slicing: 
In case of network slicing, the storage layer can either be shared across network slices or be slice specific (based on operator deployment). 
2 Proposal
This document proposes updates to Solution 4.1 in TR 23.742 as shown below.

* * * Start of Change 1
6.4.1
Solution 4.1: SBA with stateless and unsticky services

6.4.1.1
Introduction

This solution addresses key issues 4 "Architectural Support for Highly Reliable Deployments".
When the 5G system is deployed in the cloud, the overall reliability of the system shall be at least at the same level as non-cloud implementations / deployments. In a typical cloud environment, NFs or NF services may fail at any time and in general more frequently than traditional network nodes. For this reason, the 5G system shall be able to deal with the unexpected loss of NF instances / NF services instances in a way that avoids impact on the customer service or detrimental side effects on the network (e.g. signalling storms) when such failures occur.

Unexpected loss of NF instances/NF service instances leads to system and / or customer service impact when the failed instance has active bindings (e.g. tightly coupled UE-specific information) with other NF instances / NF service instances. This might require the standardisation of complex recovery mechanisms to return to normal operation while minimising end user service impact.

Such complex mechanisms would have to include the transfer of the failed instance's load / service contexts to other existing instances or to newly instantiated "replacement" NF / NF service instances. This may cause limitations to network automation, e.g. when:

-
Newly instantiated NFs / NF services that replace the failed instance need to be specifically configured to act as replacement for the failed instance.
-
Existing NFs / NF services need to be specifically configured to integrate the newly instantiated NFs / NF services as the replacement of the failed instance.
-
Existing NFs / NF services need to be specifically configured to take over for the failed instance.
-
Previously existing bindings and / or service contexts have to be restored and be moved to existing or the new instance(s).

It should be noted that the restoration of pre-existing bindings or service contexts might not be possible in many cases, i.e. the recovery procedure implies the loss of the bindings or service contexts.

In the following clauses, a solution is presented that avoids the above issues and does not require the specification of complex recovery procedures that would probably have to be specific per NF / NF service type and / or failure scenario.
6.4.1.2
High level description

6.4.1.2.1
Solution aspects

The solution proposed here contains two main aspects to address the above issues:

-
Specifying the NFs / NF services as "unsticky" so that long-living bindings between NF / NF service instances are avoided.
-
Specifying the NFs / NF services as "stateless" (separation of compute and storage resources), i.e. NF / NF service instances store state / service context information in an external storage layer (e.g. UDM/UDR) when the state / service context is stable (e.g. at the completion of a transaction).
Thereby, failed instances can effortlessly be replaced by newly instantiated or already existing ones, which can then promptly recover the stored state / service context from the storage layer when and as needed.

6.4.1.2.2
Issues related to long-living bindings between NFs / NF services

Today the UE gets assigned serving NFs (e.g. based on the UE's location). The UE will continue to be served by these NF instances until a trigger to re-allocate a serving NF occurs (e.g. UE moves out of the service area of its current serving NF instance(s)). Thereby bindings are created between the UE and its serving NF instances, and orderly re-bindings (i.e. change of serving NF instance) can only occur by system procedures (e.g. mobility) specified in 3GPP.

In the Rel-15 5GC, serving instances of AMF, SMF, SMSF and PCF are selected per UE. This creates UE specific bindings between the selected AMF, SMF, SMSF and PCF NF instances.

Furthermore, the identities of the serving NFs are stored in the UDM/UDR, which creates another set of bindings in the 5GC.

Loss of any of the UE's serving instances destroys the associated bindings and thereby breaks the UE's service context environment in the network, causing the correlated customer service to fail.

In a cloudified 5G system, a long-living binding to a dedicated NF or NF service instance always means a long-living binding to a dedicated SW instance that represents the NF / NF service. Consequently, the above system and service impact would occur any time a SW instance is lost (e.g. due to HW failure or SW bug).

A summary of identified problems and challenges with long-living bindings in the cloud (non-exhaustive list) can be given as follows:
-
Complex scaling operations across the network:

-
when scaling out:
-
make the new instances known to other services to 'start using them', this leads to high configuration effort;

-
need to transfer bindings from already existing instances to new ones, this leads to the need for complex reallocation procedures.

-
when scaling in:
-
make other instances aware that the to-be-removed instance shall no longer be used;

-
transfer bindings to other instances or await orderly unbinding (e.g. UE detaches).

-
Need for load-(re)balancing:

-
with long-living bindings a load distribution for new bindings has to be done;
-
in case of unequal load of service instances a dedicated re-distribution of load, implying transfer of the binding(s), has to be done (additional load re-distribution mechanism needed).
-
in case of failure:

-
customer impact is likely in case of service instance failure;
-
reallocation (transfer of bindings) similar to scale-in but additional challenges need to be handled due to the "unexpected scale in";
-
complex configuration or complex automation procedures.
6.4.1.2.3
Issues related to stateful NFs

A typical NF / NF service is defined by its service logic (executed by a compute resource) and some service context data (located in a storage resource) on which the service logic is applied. Both the service logic and the service context data are well-defined in 3GPP specifications for the 5G system.

Historically, 3GPP network entities retain service contexts locally even when they are not used, i.e. not currently being subject to service logic processing.

If a NF / NF service instance holds unused service context information (e.g. a UE's MM context) internally (i.e. compute and storage resources are not separated) and the instance becomes unavailable (due to HW or SW failure) the service context data is lost and the customer's service is impacted.

Identified problems and challenges with NF / NF service internal storage of service context information in the cloud are similar to the issues listed in relation of long-living bindings, as also the service contexts need to be managed in a similar way to the bindings and case of scaling, load (re-)balancing or failure recovery. In addition, local storage of service contexts within NF instances / NF service instances limits the use of such context data by other entities as it is necessary to have knowledge about the location of the desired context data within a specific NF instance / NF service instance.

6.4.1.2.4
Solution Preconditions, Assumptions and Requirements

Preconditions:

-
the 5G system is made up a suitable set of 3GPP defined "modules" (NFs and/or NF services) that allow fast spin-up and teardown of instances.

Assumptions:

-
There exists a suitable storage layer that can be used by all relevant NF / NF service instances for storing and retrieving service context data.

-
The service context data stored in the storage layer corresponds to the 3GPP defined NF / NF service context data that a NF / NF service processes when applying its service logic.

-
Adequate reliability and availability of the storage layer can be achieved and is realised by methods internal to the storage layer.

NOTE 1:
the existence of NFs and/or NF services in Rel-16 is determined under key issue 1.

Requirements:

-
The service context information that is stored in the storage layer and necessary for multivendor interoperability between services shall be structured and standardised in 3GPP, similar to e.g. a UE context that is passed between AMFs during a relocation procedure. Deployment of the storage layer (e.g. UDR, UDSF) ensures that stored information is available as close to the requesting NF instance/NF service instance as needed.

NOTE 2:
This does not exclude any additional vendor-specific data being stored in the storage layer.

6.4.1.2.5
High-level Solution Architecture

It is proposed that:

-
Any available specific instance of a requested NF/NF service type within a slice or shared among available slices can handle an incoming message dedicated to that service, that means:
-
NF instance/NF service instances do not store other instance's IDs for sub-sequent requests.
-
Requests by service consumers do not contain NF instance/NF service instance IDs but only the type of the requested service.
-
How the specific NF instance/NF service instance that shall handle a particular request is selected or if and by who it needs to be selected, and what information to use in the selection process, depends on the inter-NF / NF service communication method (cf. key issue 3) and is out of scope of this solution.

NOTE 3:
NF/NF service type is a unique identification of the service, i.e. are different per optional feature set.

-
When the service context information reaches stable state it shall be stored in a storage layer external to the service instance; that means:
-
Any authorized service instance of the same or different type can access the service context data.
-
Any authorized 3rd party service may access that data.
Examples of service context information are:

-
Subscription -, policy -and application specific data.

-
Mobility management data.
-
Session/context data (related to user subscription and its UE session-, registration-and connection state).
-
standardized or exchanged as part of standardized NF service interfaces with other NFs. Represents a stable state, that can be recovered/re-created by a NF service in failure scenarios.


Dependencies to other solutions to key issues:

-
Solution 3.1 in the key issue 3 "Improvements to Service Framework" relies on the unstickiness and the statelessness of service instances (see clause 6.3.1.2.3 pre-condition).
6.4.1.2.5.1
NF instance/NF Service instance selection
Selection on NF instance/NF Service instance is subject of solution in 3.1.

6.4.1.2.5.2
Storage layer aspects
The storage layer is considered to be primary and only storage for stable context data and offers both to store opaque (vendor specific structured or unstructured) context data as well as standardized structured context data. The minimum context data that need to be standardized is determined by what data are required to support multi-vendor interoperability amongst NF services of same type.
On potential race conditions related to the storage layer:

- Read operation of any context data in the storage layer is possible at any point in time and state of the NF service instances.

- Update operations could e.g. lock the context data for time it is processed by a service instance. How and whether to do it should be left to the normative phase.
- Whether race conditions during interaction of the storage layer and NF services instances can occur or not depends on how the services and procedures are defined and on the amount of overlapping (shared) context. These need to be addressed on a case by case basis during normative phase. Currently no such conditions have been identified.
NOTE: race conditions can occur only as long as there is transient state within an NF service instance as described below. Race conditions cause by conflicting producer NF service instance selection by NF service consumers cannot occur because as per solution 3.1 NF service consumers do not select producer NF service instances (this is done by the service framework)
Regarding local knowledge of data:

Local knowledge of data in the sense of locally at the NF service instance is only required until a procedure is completed (i.e. while it has some transient state) and a stable state can be stored to the data layer. Storage layer is assumed to be a distributed database and it is up to implementation/a deployment issue how the synchronization between any instances of the storage layer is achieved.
Relation to network slicing:
In case of network slicing, an instance of the storage layer can either serve multiple network slices or be slice specific (based on operator deployment). 
Editor's note: how to handle timers and triggers for context stored in the storage layer and whether this is an internal storage layer functionality or a functionality of a separate service to be defined as part of modularization key issue is FFS.

6.4.1.3
Services and illustrated Procedures

Editor's note:
This clause describes services and related high-level procedures for the solution.

6.4.1.4
Impacts on existing Services and Interfaces

Editor's note:
Further details regarding impacts are FFS.

6.4.1.5
Evaluation of the Solution

Editor's note:
This clause provides an evaluation of the solution.

End of changes
3GPP

SA WG2 TD


