SA WG2 Temporary Document

Page 10

SA WG2 Meeting #128
S2-186429
July 2 - 6, 2018, Vilnius, Lithuania,
(revision of S2-18xxxx)
Source:
Deutsche Telekom

Title:
Update of Solution 3.1 “Amendments to Service Interaction model” to address editors notes
Document for:
Approval

Agenda Item:
6.19

Work Item / Release:
FS_eSBA / Rel-16

Abstract of the contribution: This contribution proposes updates to Solution 3.1 in order to resolves some editor's notes.
1 Introduction
This contribution addresses the following editor’s notes:

Editor's note: communication mechanism impacts to roaming are FFS.

· Added separate sub-chapter for the roaming architecture

Editor's note: It is FFS how these policies are managed, and what shall be standardised in 3GPP.
· Added clarification as follows:
“It is expected that the specification and management of these policies is specific to the framework.”
Editor's note: Further details on the message delivery (pushed to a producer instance by the service framework or pulled by a service instance from a “request queue) are FFS. Existing realizations of service frameworks shall be taken into account when defining the details of the solution.
· Addressed by the following note:
“NOTE: Details on the message delivery, i.e. pushed to a producer instance by the service framework or pulled by a service instance are subject for stage 3 decision. Existing realisations of service frameworks should be taken into account when defining these details.”
Editor's note: This clause describes related high-level procedures for the solution.

· Added sequence charts and the corresponding step-by-step descriptions.
Additionally two different deployment options have been described in the description of the Service Access Point (SAPo) to show the flexibility of the solution.

2 Proposal

This document proposes updates to Solution 3.1 in TR 23.742 as shown below.

* * * Start of Change 1 * * *

6.3.1
Solution 3.1: Amendments to Service Interaction model
6.3.1.1
Introduction
This solution addresses key issues 3 “Improvements to service framework related aspects”.

The service based architecture of R15 inherits aspects from the reference point based p2p interaction concepts. In this direct interaction model the services themselves have several responsibilities that are not part of the services’ business logic. Service instances have, for example, to discover other service instances as their communication peers, to select one of them, to supervise the message flow, to perform message authorization actions and to maintain the communication relationship with the selected peer for subsequent transactions. Service consumers also need to be involved in load balancing between their potential communication peers before or during a communication relationship.

This puts some redundant burden on the implementation of the services which can limit the development and deployment agility and interoperability. But even more critically, the delegation of some of these responsibilities to the services can cause limitations for automation flexibility and for customer service availability, especially in case of service failures, and therefore have a negative influence on the overall system availability and reliability.

This solution proposes a amendments to the service interaction model that addresses these issues outlined above on architectural level.

6.3.1.2
High-level Description

This solution covers two main aspects which are shortly discussed in the next sub-sections:
-
Reduction of the complexity of the services.
-
Improvement to the overall system reliability and availability.
6.3.1.2.1
Reduction of service complexity

This aspect addresses the reduction of the service complexity by identification and extraction of functionality that is common to all services and placing it into a component outside of the actual service.

These common functionalities include:

-
Discovery of communication peers.
-
Selection of communication peers, including load-balancing between selectable communication peers.
-
Delivery of messages between communication peers, and matching of responses where needed.
-
Policy enforcement, authorization of the message delivery.
-
Handling of addition, removal and replacement of service instances, i.e. when new selectable peers become available or existing peers disappear form the system.
6.3.1.2.2
Reliability improvements

This aspect addresses the way how service instances communicate with each other. Today the services themselves have the responsibility for the discovery and selection of peers for inter-service communication and for keeping the state of these communication relationships alive for subsequent transactions. This behaviour is based on the assumption and pre-condition that both communication peers are highly available and reliable themselves, which is not valid anymore in a cloud based deployment environment.

In case of service failures in one service instance, each corresponding communication peer must be notified about it and perform failover strategies to find and connect to a replacement peer service instance and to restore and synchronize the communication and application state.

This solution removes the need for such failover mechanisms to be implemented as part of every service.

6.3.1.2.3
 Solution Preconditions, Assumptions and Requirements

Preconditions:

· there is no long-living binding between service instances and application context

NOTE:
This precondition can be fulfilled e.g. by separation of “compute” resources from “storage” resources.

Assumptions:

· There exists a mechanism (e.g. Service Mesh, messages oriented middleware …) to decouple communication peers from each other, in order to:

-
Remove the need for implementation of peer-discovery, -selection and -binding from each service

-
Remove the need for implementation of dedicated failover strategies from each service

· That mechanism provides an API that allows service instances to send messages to a type of peer service (not a dedicated service instance).

· That mechanism provides an API that allows service instances to receive messages from another service instance.

· That mechanism has internal functionality to perform peer-discovery and -selection on behalf of the sending service instance, i.e. it implements, or interacts with, a service repository such as the NRF.

· That mechanism can deliver messages from the sending peer to the selected receiving peer.

· That mechanism provides means to support short-lived peer-bindings, if required for certain communication patterns. Bindings may exist for a single message exchange or over a sequence of such exchanges as needed.

· That mechanism is message content agnostic, i.e. it supports any payload.

· That mechanism supports interaction between different data centers / points of presence, while hiding the deployment topology of the system from each of the service instances.

· That mechanism supports authorisation and enforcement of policies for the delivery of messages, including location affinity rules in case of distribution across multiple PoPs.

Requirements:

· The service logic must be designed to be interoperable with the selected mechanism.

· The services shall be able to use the APIs, provided by the selected mechanism.

6.3.1.2.4
High-level Solution’s Architecture

The following figure illustrates a high-level architecture, where the common functionalities are separate from the business logic of the service implementations and provided by common service framework functionalities.

Figure 6.3.1.2.4-1 Non-roaming architecture
The access to the functionalities of the common service framework is offered via Service Access Point (SAPo) functional elements which provide a northbound API, the Service Access Point API (SAPA) towards the services. Multiple SAPo instances (as needed by operator deployment) may exist as shown in the diagram above. Each SAPo instance allows registration and deregistration of services as well as sending and receiving messages by the services. SAPOs may also monitor the presence of registered service instances, e.g. via a keep-alive mechanism. The SAPA is object of standardisation by 3GPP. It defines the API for the common set of service framework functionalities.

SAPA is generic in terms of the access to the common set of service framework functionalities, and agnostic of the content of messages exchanged between services. Therefore, technically speaking, any service instance can make use of any SAPo instance. However, in actual deployments, SAPos might be pooled for use by certain sets of service instances. Such configuration, and number of deployed SAPos, depends on operator deployment strategy.

The actual implementation of the service framework is implementation specific and not object of standardization by 3GPP. It is assumed that existing solutions (e.g. service mesh, enterprise message systems, …) can be leveraged to implement the proposed service framework solution. The Service Access Points (SAPo) are hiding such implementation details of the service frameworks behind a common API. Therefore, services are able to run on any service framework implementation that provides a SAPo, compatible with the 3GPP-defined SAPA.

As stated, the SAPA must be standardised on both stage2 and stage3 level so that multivendor interoperability of the services is supported. It is possible in principle that the “southbound” interface of the SAPo also uses a standard protocol, e.g. AMQP (standardised by OASIS) for enterprise message systems. In this case, it is not precluded that SAPo is integrated into a service implementation; however, this combined implementation would then only operate with AMQP-based frameworks and lose its generic interworking capability with any SAPA-based (3GPP) framework.

The intention of this architecture is to de-couple communication peers from each other, to simplify the internal structure of the services and to overcome limitations of the traditional P2P interaction concept, especially with respect to failover handling.

The functional blocks of the service framework and their role in the architecture are described in the following subsections.

NOTE:
As with the NRF in Release 15 the mentioned Service Framework Functions can be slice specific or shared across slices.

6.3.1.2.4.1
SAPo (Service Access Points) and SAPA (Service Access Point API)

Service Access Point is a software component that acts as an adapter between the implementation specific service framework and the services that make use of service framework functionalities. The SAPA is the “contract” between services and the SAPo, which is defined, standardised and documented by 3GPP.
The SAPA provides methods for the registration/de-registration of NF services instances as well as for the sending and receiving of messages. The details of the message exchange with the SAPo, e.g. whether the SAPA provides 1:1 replica of R 15 SBI or uses a simple encapsulation of R 15 SBI, are up to stage 3 decisions.
The implementation of the SAPo depends on the vendor specific implementation of the service framework; therefore it can be assumed that each service framework vendor will provide its own SAPo implementation. This solution proposal makes no assumption about the way how SAPo’s are implemented and provided
6.3.1.2.4.2
Registration- Discovery and Authorization Management

The architecture figure depicts functional blocks for the registration-, authorization- and discovery- management as part of the service framework. This functionality correlates with the functionality of the Network Repository Function (NRF).

The SAPA must contain methods to perform registration, de-registration, authorization. SAPA does not require methods for discovery, because the service producer selection by a service consumer is not required in this solution (it is an implicit functionality provided by the framework).
Editor's note: It is FFS whether discovery on the SAPA is needed when backward compatibility is required.

6.3.1.2.4.3
Communication Mechanism

The Communication Mechanism is the core part of the service framework because it is in full control of the message exchange. It is responsible for the routing and forwarding of messages between consumer and producer NF instances/ NF service instances and supports the automatic establishment and destruction of temporary bindings between NF instances/NF service instances when needed. Messages are in this model addressed to types of producer NFs/NF services, not to individual producer NF instances/ NF service instances. The routing mechanism takes over the responsibility of the discovery and selection of communication peers, as well as the process of the actual delivery of messages between the peers. The internal protocols and mechanisms used by the communication mechanism for the plain message delivery are implementation specific.

NOTE 1:
 Management of temporary bindings is described in other solution proposals.
The SAPA must therefore contain methods allowing service instances to delegate message delivery and receiving to the service framework. This might also include mechanism for the notification of message delivery failures.

The Communication Mechanism shall also monitor the message delivery process and might use this information for support of load-balancing as well as for the detection of failure conditions.

NOTE 2:
Cross data center communication follows the same principles as with release 15 deployments.

6.3.1.2.4.4
Policy Enforcement

The described Communication Mechanism decouples the communication peers from each other and applies common procedures to all messages exchanged between communication peers. Amongst other things this allows for a common enforcement of communication related policies, if required.

For example, the Communication Mechanism may provide a policy enforcement mechanism to limit the message rate in receiving and sending directions up to discarding of messages in case of overload.

Another example is to handle location affinity in deployments where the service frameworks spans over multiple locations.

It is expected that the specification and management of these policies is specific to the framework.
6.3.1.2.4.5
Load Balancing

Due to the proposed monitoring of the message delivery process, the routing management component shall have a certain degree of awareness of facts like:

· message retention/delivery times,

· delivery failures for certain message types or communication peer instances,

· overall system load, etc.

Such facts, combined with potential additional implementation specific algorithms, might be used by the service framework to apply load-balancing to the message delivery process.

NOTE: Details on the message delivery, i.e. pushed to a producer instance by the service framework or pulled by a service instance are subject for stage 3 decision. Existing realisations of service frameworks should be taken into account when defining these details.
6.3.1.2.4.6
Failover Management

A major point that this solution addresses is a drastically simplified management of failover situations. In the traditional P2P based interaction model with long-living bindings between communication peers (as specified in R15) the responsibility for failover handling is put on the service implementations.

The solution, described in this document proposes an implicit management of failover situations in the service framework and removes this burden from the service implementation. This is achieved by the decoupled, unsticky communication relations between the service instances in combination with a stateless service design (request messages are not sent to a specific instance of a service, but to a service type instead). This makes service instances in general replaceable without specific recovery procedures to be specified. If the communication mechanism detects certain service instances being unresponsive, then the corresponding message will be routed to another service instance that can process it without impacting the customer. This ensures that only "healthy" instances are used.

E.g. a heartbeat mechanism might be introduced that allows an early detection of failed service instances and supports the health monitoring mechanism.
6.3.1.2.4.7
Roaming architecture
Following figure illustrates the architecture in the roaming case.

[image: image1]
Figure 6.3.1.2.4.7-1 Roaming architecture

The SEPP (Security Edge Protection Proxy) is connected to the Service Framework via a R-SAPo (Roaming-SAPo) and registers itself with an indication of the reachable PLMNs. The roaming procedures are transparent to the NF/NF services.
The R-SAPo does not expose SBI methods, but instead just forwards messages to and receives messages from SEPP.
6.3.1.2.4.8
SAPo Deployment options

Though this solution makes no explicit assumption about how the SAPo shall be implemented and provided, this section describes two different options to indicate consequences for the overall system deployment and flexibility.
In these two options the SAPo can either be integrated and delivered with the Service Framework (SFW) or be a part of the service implementations directly.
[image: image2.png]
Figure 6.3.1.2.4.8-1 SAPo integrated in the Service Framework
The sequence above illustrates a NF/NF service registration procedure for the case that the SAPo is part of the Service Framework. In this case the register request from the NF service instance [01] and the returned response [03] are 3GPP compliant service invocations. The SAPo translates them to and from a Service Framework specific format.
With this deployment option, services as well as the Service Framework are in general replaceable by different implementations, since they are de-coupled by a 3GPP standardized SAPA. A service implementation can operate on different Service Frameworks as well as different service implementations can operate on the same Service Framework.
[image: image3.png]
Figure 6.3.1.2.4.8-2 SAPo integrated in the Service implementation

The second deployment option shows the case when the SAPo is integrated into the NF service implementation. In this case the register request from the NF service instance [01] and the returned response [03] are Service Framework specific service invocations and therefore not 3GPP compliant. The service implementations might in this case share a framework specific library that encapsulates the interaction with a dedicated implementation of the Service Framework.

With this deployment option, the service implementations are only replaceable for the same type of Service Framework. An operation on a different framework would require adaptations in the service implementation. On the other hand, this deployment option might allow for framework specific optimizations, e.g. to improve performance.
6.3.1.3
Illustrated Procedures

Editor's note:
This clause describes related high-level procedures for the solution.
The procedures illustrated in the following sub-sections are based on deployment option 1, as described in previous chapter.
6.3.1.3.1
Registration and de-registration of NF instances/NF service instances

This section describes the high-level procedures for the registration of NF instances/NF service instances at the service framework. In general, the procedures for the registration of NF/NF service (instances) are unchanged compared to R15.
Registration of NF instances/NF service instances
·
·
·
[image: image4.png]
Figure 6.3.1.3.1-1 NF/NF service instance registration procedure
01. The NF instance/NF service instance sends a 3GPP compliant register message to the Service Framework to register itself. The integrated SAPo performs all necessary actions to adapt the registration message to a format compliant with the vendor specific service framework implementation and forwards it to the framework.
02. The vendor specific service framework implementation performs any required steps to handle this registration.

03. The Service framework returns a 3GPP compliant register response back to the NF service instance.
De-Registration of NF instances/NF service instances

·
·
·
[image: image5.png]
Figure 6.3.1.3.1-2 NF/NF service instance de-registration procedure

01. The NF instance/NF service instance sends a 3GPP compliant de-register message to the Service Framework to de-register itself. The integrated SAPo performs all necessary actions to adapt the de-registration message to a format compliant with the vendor specific service framework implementation and forwards it to the framework.

02. The vendor specific service framework implementation performs any required steps to handle this de-registration.

03. The Service framework returns a 3GPP compliant de-register response back to the NF service instance.
6.3.1.3.2
Delivery of messages

·
·
[image: image6.png]
Figure 6.3.1.3.2-1 Message delivery procedure
01. The consumer NF instances/NF service instance sends a message to the Service Framework in order to initiate a message delivery. The integrated SAPo performs all necessary actions to adapt the message to a format compliant with the vendor specific Service Framework implementation and forwards it to the framework.
NOTE:
The message itself requires metadata to indicate the intended type of producer service to address.

02. The Service Framework will apply internal processing. This might include:

· application of policies to ensure the legitimacy of that certain message transfer

· required steps to investigate and setup a routing path to a producer NF service instance of the addressed service type

· application of load-balancing mechanisms to influence the selection of a producer instance

· gathering of monitoring information from that message transfer

03. The Service Framework delivers the messages to a suitable producer NF instance/NF service instance.
04. The producer NF instance/NF service instance processes the message.

05. The producer NF instance/NF service instance forwards a response message to the Service Framework in order to deliver it to the consumer NF instance/NF service instance that sent the request.
06. The Service Framework applies routing logic to deliver the response message to the consumer NF service instance that initiated the request.
07. The message is delivered to the consumer instance.
6.3.1.3.3
Failover Handling Procedures

Due to the decoupled service communication and the implicit load-balanced distribution of messages to one of the registered producers of the same type there are no special procedures for failover foreseen.

One exception is the case when a consumer sends a message to a special service type and fails/crashes before it is able to receive and handle the corresponding response.

6.3.1.4
Impacts on existing NFs/NF services and interfaces
The procedures for registration, de-registration and update of NF instances or NF service instances as well as the SBIs do not change on Stage 2 level.

Service implementations don’t need to handle the discovery of communication peers, the maintenance and potential recovery of the communication relationship as well as the enforcement of communication related policies.

Service implementations must register/de-register, and send and receive messages via SAPA.
NOTE:
 Impact on granularity and therefore whether NFs or NF services or both exist is studied in key issue 1 “Optimal modularization of the system”.

Editor's note: Further details regarding impacts are FFS

6.3.1.5
Evaluation of the Solution

Editor's note:
This clause provides an evaluation of the solution.
End of changes

3GPP

SA WG2 TD

[image: image7.png][image: image8.png]