SA WG2 Temporary Document

Page 12

SA WG2 Meeting #127
S2-183389
16 – 20, April 2018, Sanya, P.R.China
(revision of S2-18xxxx)
Source:
Motorola Mobility, Lenovo
Title:
Update of UE-Assisted Solution
Document for:
Approval
Agenda Item:
6.10
Work Item / Release:
FS_ENTRADE / Rel-16
Abstract of the contribution: 
1. Discussion
The UE-assisted solution is updated with the following changes:

(a) The "ETDF Authentication and Provisioning" procedure is removed. The ETDF authentication was meant to verify the authenticity of the UE-ETDF in the UE. However, this authentication procedure is not needed any more because the UE can retrieve the UE-ETDF over-the-air from a trusted NW-ETDF in the HPLMN. The UE is trusted by the network as long as the UE can derive the same AppKeys as the AppKeys calculated by the network.
(b)
The UE receives a list of applications for which it should provide encrypted traffic detection information. This list is not received from the NW-ETDF but it is received during the PDU session establishment procedure. 

The figure below provides an overview of the updated UE-assisted solution.

[image: image1.emf]NW

ETDF

UE

5GC

A. (Optional) If UE has no UE-ETDF, then the UE downloads the UE-ETDF from NW-ETDF in HPLMN.

The NW-ETDF provides an instance of UE-ETDF to UE with a unique signature.

1. PDU Session Est. Request

ETDF Container (Device-ID, OS-ID)

2. 5GC determines UE is 

capable of providing encrypted 

traffic detection information.

PCF determines the list of apps 

for which encrypted traffic 

detection should be provided by 

the UE.

3a. Request an AppKey for each 

app in the list

3b. Calculate an AppKey for 

each app in the list using the 

stored signature of UE-ETDF.

3b. Provide the AppKey for each 

app in the list

5. PDU Session Est. Accept

ETDF Container (list of apps)

6. The UE-ETDF calculates an 

AppKey for each app in the list 

using its own signature.

4. The AppKey for each app in 

the list are provided to UPF.

Same AppKeys calculated if UE-

ETDF and NW-ETDF use the same 

signature

7. The UE-ETDF determines 

when an app in the list initiates 

a new encrypted data flow.

In the first packet of the 

encrypted data flow the UE-

ETDF embeds the AppKey of 

the app that initiated this data 

flow.

8. UPF detects the app 

associated with an encrypted 

data flow by using the AppKey 

provided by the UE.

UP packet 

with embedded 

AppKey

A. The NW-ETDF knows the 

UE’s device id and the 

signature of the UE-ETDF.

If the received AppKey is unknown, 

the UE-ETDF is considered 

untrusted. 


Fig. 1: Overview of the UE-assisted solution

A.
If the UE has no UE-ETDF and the UE is capable of retrieving a UE-ETDF, then the UE requests from the NW-ETDF in HPLMN to provide an instance of UE-ETDF. The NW-ETDF creates an instance of UE-ETDF with a unique signature and provides the UE-ETDF to UE over a secure connection. The signature of UE-ETDF is calculated by a proprietary algorithm that is known only to UE-ETDF and to NW-ETDF. For example, the signature is calculated with a proprietary hash function using all octets in UE-ETDF. 

1.
The UE sends a PDU Session Establishment Request and indicates that the UE can provide "encrypted traffic detection information" for encrypted flows carried over the requested PDU session.
2.
The PCF determines the list of applications for which the UE should provide "encrypted traffic detection information".

3.
The PCF requests from NW-ETDF to provide an Application Key (AppKey) for each application in the list. The NW-ETDF uses the stored signature of the UE-ETDF to calculate an AppKey for each application and sends the calculated AppKeys to PCF.
4.
The PCF forwards the AppKeys to SMF, and the SMF sends the list of applications and the AppKey associated with each application to UPF.

5.
The UE receives a PDU Session Establishment Accept message including the list of application for which it should provide "encrypted traffic detection information" to the network.

6.
The UE-ETDF calculates an AppKey for each application in the received list by using its signature. If the signature used by UE-ETDF is the same as the signature used by NW-ETDF in step 3b and if both the UE-ETDF and the NW-ETDF use the same derivation function, then the AppKey calculated by the UE-ETDF and by the NW-ETDF for each application will be the same. If the UE-ETDF is compromised (e.g. modified by a malicious user), then the AppKeys calculated by the UE-ETDF will not match the AppKeys calculated by the NW-ETDF.
7.
The UE-ETDF determines when an application in the received list initiates an encrypted data flow. In the first packet of this encrypted data flow (e.g. in a TCP SYN packet to port 443 or in a TLS ClientHello packet), the UE-ETDF embeds the AppKey associated with the application that initiated the encrypted data flow.

8.
The UPF anchor in 5GC detects the new encrypted data flow and determines the application associated with this encrypted data flow by using the AppKey embedded in the first packet of this data flow. If the received AppKey is not known to UPF, then the UE-ETDF in the UE is assumed untrusted and the UPF may enforce certain policy to apply to all encrypted data flows sent by this UE.
2. Proposal
It is proposed to update Solution 1 in TR 23.787 according to the above discussion. The proposed changes are shown below.
* * * 1st Change * * * 

6.1
Solution #1: UE-Assisted Solution

6.1.1
Functional Description

6.1.1.1
General
The clauses below specify a solution that enables the network to detect the application associated with an encrypted data flow by using the "detection information" embedded by the UE into the first packet that initiates the encrypted data flow. This solution relies only on the "detection information" provided by the UE and does not require interfaces with external application servers, thus, it fulfils the requirements of Key Issue #2 (detection of encrypted traffic for applications without agreements with the MNO).


The key features of this UE-assisted solution are the following:

1.
The UE has an Encrypted Traffic Detection Function (UE-ETDF) which detects when a new encrypted data flow is initiated by a UE application, and embeds an "AppKey" to the first packet of the encrypted data flow. An AppKey is the "encrypted traffic detection information" provided by the UE and it is used by the network to detect the application associated with an encrypted data flow. 

2.
If the UE does not have a UE-ETDF, the UE can retrieve a UE-ETDF from a trusted network function in the HPLMN, called NW-ETDF.

3.
During the PDU session establishment, the UE indicates if it is capable of providing "encrypted traffic detection information" and, if it is, the UE is provided with a list of application identities. The UE must provide "encrypted traffic detection information" to the network when one of these applications initiates an encrypted data flows over the PDU session.
4.
The "encrypted traffic detection information" provided by the UE is the Application Key (AppKey) associated with the application that initiated the encrypted data flow. The AppKey for every application is created by the UE-ETDF and by the NW-ETDF. 

5.
If the UE-ETDF is modified in any way (e.g. by a malicious user), then the AppKeys created by the UE-ETDF will not match the AppKeys created by the NW-ETDF. Therefore, the network will receive unknown AppKeys from the UE and will determine that the UE-ETDF has been compromised.

6.
When the network (the UPF) receives a known AppKey in a user-plane packet of an encrypted data flow, the network uses this AppKey to detect the application associated with the encrypted data flow.
6.1.1.2
Reference Architecture
As shown in figure 6.1.1.2-1, two new functions are introduced: An Encrypted Traffic Detection Function in the UE (UE-ETDF) and an Encrypted Traffic Detection Function in the network (NW-ETDF). The UE-ETDF can communicate with the NW-ETDF over a new interface (Netdf) by using the user plane (i.e. IP transport).

[image: image2.emf]5G

Access 

Network

5GC

UE-ETDF

UE

PCF SMF

UPF

Data Network

Remote Server

NW-ETDF

N4

N6

N5 N7

Netdf


Figure 6.1.1.2-1: Reference architecture for 5GS

6.1.1.2.1
UE-ETDF

The UE-ETDF is a UE functional component that can be either pre-installed in the UE or can be retrieved from the NW-ETDF, as discussed below. The UE-ETDF performs the following functions:

(a)
It derives an Application Key (AppKey) for each application provided by the network during the PDU session establishment procedure;

(b)
It detects when a new encrypted data flow is initiated in the UE (e.g. by detecting TCP SYN packets to port 443);

(c)
It determines the UE application that initiated the encrypted data flow; and

(d)
It piggybacks in the first packet of an encrypted data flow an AppKey which can be used by a network (UPF) to determine the application that initiated the encrypted data flow. How the AppKey is created for an application is discussed later. The AppKey is essentially the "encrypted traffic detection information" that is provided by the UE to the network. The AppKey should not be confused with a security key. As explained below, the AppKey of an application is a number derived from the application identity (e.g. by using as a hash function).

The main objective of UE-ETDF is to include an AppKey in the first packet of an encrypted data flow. The first packet of an encrypted data flow can be e.g. a TCP SYN packet to port 443, a TLS ClientHello packet, a UDP packet to port 80 (QUIC), etc. When the UE-ETDF detects the first packet that initiates an encrypted data flow, it determines the application that triggered this packet and then piggybacks to this first packet the AppKey corresponding to this application. As shown in figure 6.1.1.2.1-1, the AppKey is piggybacked only to the first packet of an encrypted data flow. The subsequent packets of the encrypted data flow do not carry the AppKey or any other additional information. The UPF in the network uses the AppKey in the first packet of an encrypted data flow to associate this data flow with the application that corresponds to this AppKey.

[image: image3.emf]UE

AppKey

Remote 

Server

Header

Payload

First packet of an 

encrypted data flow

Network uses the AppKey to 

determine the application associated 

with the encrypted data flow

Network

Subsequent packets of 

the encrypted data flow


Figure 6.1.1.2.1-1

The AppKey can be piggybacked to the first packet of an encrypted data flow with various mechanisms. For example:

1.
When the UE uses IPv6 communication, the AppKey could be included in a new IPv6 Extension Header, as shown below.


[image: image4.emf]Version 

Class 

Flow-label

Payload 

length

Next 

Header 

= ETDF

Source 

Address

Destination 

Address

Destination 

Address

Next 

Header 

= TCP

AppKey TCP Payload

New Extension 

Header

IPv6 header


2.
When the UE uses IPv4 communication, the AppKey could be included by using a new Protocol Type.

3.
The AppKey could be included in the TCP header, e.g. by using a new TCP Option.

4.
The AppKey could be included in the TLS header, e.g. by using a new TLS Extension Type.

5.
The first packet could be encapsulated within GRE and use the AppKey as a GRE Key, as shown below. 


[image: image5.emf]Version 

Class 

Flow-label

Payload 

length

Next 

Header 

= GRE

Source 

Address

Destination 

Address

Destination 

Address

Protocol 

Type = 

TCP

GRE 

Key =

AppKey

TCP Payload

GRE Header

IPv6 header (it can be applied to IPv4 header)


Editor's note: The exact mechanism for including the AppKey into the first packet of an encrypted data flow is FFS.

6.1.1.2.2
NW-ETDF

The NW-ETDF performs the following functions:
(a)
Upon request, it provides to UE an instance of the UE-ETDF over a secure connection (e.g. over a TLS connection). The NW-ETDF provides to every UE a unique instance of the UE-ETDF, i.e. a UE-ETDF with a unique "signature".

(b) For every UE-ETDF instance delivered to a UE, the NW-ETDF stores the signature of the UE-ETDF instance and the device identity of the UE.

(c) It calculates the Application Key (AppKey) of each application provided by the PCF. How each AppKey is calculated is explained in Fig. 6.1.2.2-1, steps 3-6. The AppKeys together with their associated application identities are forwarded to UPF and are used in UPF for detecting the application that initiated an encrypted data flow.




The solution does not require multiple NW-ETDFs; a single NW-ETDF is sufficient.

6.1.2
Procedures





















6.1.2.1
UE-ETDF Retrieval
If the UE-ETDF is not pre-installed in the UE, the UE may request to retrieve the UE-ETDF from the NW-ETDF as shown in the figure below. This procedure is optional and is required only once.
[image: image7.emf]E. Provide UE-ETDF instance 

NW

ETDF

A. Get UE-ETDF (Device-ID, OS-ID, Vendor-ID) 

UE

C. Calculate 

Signature of 

UE-ETDF instance

D. Store 

[Signature, Device-ID] 

pair

B. Create a new 

instance of 

UE-ETDF


Figure 6.1.2.1-1

A.
The UE determines it has no UE-ETDF and attempts to retrieve it from the NW-ETDF in HPLMN. For this purpose, the UE discovers the IP address of NW-ETDF (e.g. by making a DNS query or by using pre-configured information), establishes a secure connection with the NW-ETDF (e.g. with TLS/SSL) and sends a request to NW-ETDF, including its Device-ID (e.g. IMEI), its Operating System ID (OS-ID) and, optionally, a Vendor-ID. The OS-ID is required so that the NW-ETDF can provide a UE-ETDF suitable for the UE’s operating system. The Vendor-ID is optional and can be useful when the NW-ETDF needs to provide a vendor-specific UE-ETDF to the UE.

B.
The NW-ETDF creates a unique instance of the UE-ETDF for this UE. A unique instance is required so that every UE has a UE-ETDF with a different "signature". The signature of the UE-ETDF is calculated by an algorithm known only to the UE-ETDF and to the NW-ETDF (e.g. by using a hash function). It is assumed that any other entity (other than UE-ETDF and NW-ETDF) cannot derive the signature of a UE-ETDF because it cannot determine the algorithm for calculating the signature. As discussed in the next clause, the signature of the UE-ETDF is used by the UE-ETDF and by the NW-ETDF for calculating the AppKeys that should be provided by the UE as "encrypted data traffic detection information".

The NW-ETDF creates the UE-ETDF instance by considering the OS-ID and, optionally, the Vendor-ID provided by the UE. 

C.
The NW-ETDF calculates the signature of the created UE-ETDF instance. 

D. The NW-ETDF stores the calculated signature together with the Device-ID provided by the UE. This signature will be used later when the NW-ETDF is requested to provide one or more AppKeys for this UE.

E.
The NW-ETDF sends the created UE-ETDF instance to the UE over the secure connection. 

6.1.2.2
PDU Session Establishment for Encrypted Traffic Detection
A UE, which has a UE-ETDF function and can provide "encrypted traffic detection information" to the network, may request the establishment of a PDU session as shown in Fig. 6.1.2.2-1. 
[image: image8.emf]PCF SMF

1b. Nsmf_PDUSession_ 

CreateSMContext Request

PDU Session 

Establishment Req.

(ETDF Container (Device-ID, 

OS-ID))

3. AppKeys Request

Device-ID, Rand, List of [App-ID]

4. Retrieve Signature 

for the Device-ID

5. Calculate an 

AppKey for each 

App-ID

6. AppKeys Response

List of [App-ID, AppKey]

11. UE-ETDF 

calculates its 

Signature

12. UE-ETDF 

calculates an AppKey 

for each App-ID

UPF

8. N4 Session Est. Request

Encrypted packet detectionrules

9a. N4 Session Est. Response

13. Subsequent steps of PDU session establishment

2. Npcf_SMPolicyControl_Get

(ETDF Container (Device-ID, 

OS-ID))

7. Npcf_SMPolicyControl_Get

PCC Rules, Authorized QoS,

Rand, List of [App-ID, AppKey]

9b. UPF knows the 

AppKey associated 

with each App-ID

NW

ETDF

UE

AMF

1a. NAS Message 

PDU Session Id, S-NSSAI, 

DNN, ...

PDU Session 

Establishment Req.

(ETDF Container (Device-

ID, OS-ID))

10a. Namf_Communication_ 

N1N2MessageTransfer

PDU Session ID, …

PDU Session Establishment 

Accept

(ETDF Container (Rand,

List of [App-IDs]))

10b. NAS Message 

PDU Session Id, ...

PDU Session 

Establishment Accept

(ETDF Container (Rand,

List of [App-IDs]))


Figure 6.1.2.2-1

1.
The UE sends a PDU Session Establishment Request that contains an ETDF Container. This container indicates to the network that the UE can provide "encrypted data traffic detection information" for the encrypted data flows sent over this PDU session. The ETDF Container includes the UE’s Device-ID (e.g. IMEI) and the UE’s OS-ID (e.g. Android, iOS, etc.).

Editor’s Note: The UE may not include the ETDF Container in every PDU Session Establishment Request message but it may include the ETDF Container in the initial Registration Request message sent to AMF. The AMF may then store the ETDF Container in the UE Context and may forward the ETDF Container to SMF whenever the UE requests a new PDU session. Whether this approach is better is FFS.
2.
The SMF receives the PDU Session Establishment Request (via the AMF) and requests policy from PCF by invoking the Npcf_SMPolicyControl_Get operation, as specified in TS 23.502, clause 5.2.5.4.2. The ETDF Container provided by the UE is forwarded to PCF.

3.
Since the PCF receives the ETDF Container, it knows that the UE is capable of providing "encrypted data traffic detection information". The PCF creates the list of applications for which the UE should provide "encrypted data traffic detection information". For example, the PCF creates the list [App-1, App-2, App-3] if the network wants to detect the encrypted data flows associated with App-1, App-2 and App-3. The PCF takes into account the OS-ID in the received ETDF Container in order to create the application identities for the operating system supported by the UE. The PCF requests from the NW-ETDF the AppKeys associated with the applications in the list. The PCF may provide a random number, Rand, to NW-ETDF for calculating the AppKeys.

4.
Based on the Device-ID received from PCF, the NW-ETDF retrieves the signature of the UE-ETDF in the UE. In case the UE-ETDF was retrieved from the NW-ETDF (as shown in Fig. 6.1.2.1-1), the NW-ETDF calculated and stored the signature before delivering the UE-ETDF to UE. In case the UE-ETDF was not retrieved from NW-ETDF (but was pre-installed in the UE), the NW-ETDF is provisioned with the signature of the UE-ETDF. How this provisioning is performed is outside the scope of 3GPP specifications. 

5.
The NW-ETDF uses the stored signature of the UE-ETDF, the Rand (if provided) and the Application identity to calculate the AppKey for this application. The calculation of the AppKey could be based on a proprietary hash function, as shown below. If a Rand value is used, then the AppKey calculated for an application will be different every time the AppKey is calculated.

[image: image9.emf]Hash

function

App-ID

Signature

Rand

AppKey


6.
The NW-ETDF provides to PCF an AppKey for each one of the requested applications.

7.
The PCF sends to SMF the requested PCC rules and the authorized QoS (as already specified in TS 23.502). In addition, it sends to SMF the application identities and the associated AppKeys received from NW-ETDF. If the PCF has sent a Rand value to NW-ETDF, it sends this Rand value to SMF too.

8. 
The SMF sends encrypted packet detection rules to UPF. Each rule includes an AppKey and the associated application.

9.
Now the UPF can use the AppKeys received from the UE (in the first packet of each encrypted data flow) to detect the application associated with every encrypted data flow. This is further discussed in the next clause.

10.
The SMF sends a PDU Session Establishment Accept message to UE, which includes an ETDF Container. This container indicates to UE that it should activate encrypted traffic detection and it should provide AppKeys to the network over the user plane. These AppKeys assist the network detecting the application associated with every encrypted data flow. The ETDF Container includes the list of applications for which the UE should provide "encrypted data traffic detection information" (i.e. the list created by PCF in step 3) and includes the Rand, if it is received from PCF in step 7.

11.
The UE-ETDF in the UE calculates its own signature.

12.
The UE-ETDF in the UE uses its own signature, the Rand and the Application identity to calculate the AppKey for each application in the received list. It uses exactly the same calculation as the NW-ETDF in step 5. Thus, the UE derives exactly the same AppKeys as the AppKey derived by NW-ETDF and provided to UPF.

13.
The PDU session establishment procedure is completed. After that, the UE-ETDF detects the encrypted data flows initiated by the applications in the received list and, in the first packet of every encrypted data flow, it adds the AppKey of the application which initiated this flow.
6.1.2.3
User-Plane Procedure
After the ETDF Authentication and Provisioning is executed, the network can reliably detect an application associated with an encrypted data flow by using the "detection information" (the AppKey) provided by the UE. The entire procedure is shown in the figure below.

[image: image11.emf]5GC

NW

ETDF

2. Detect a packet that 

initiates an encrypted data 

flow and find the application 

which requested the 

encrypted data flow

3. Retrieve the AppKey for 

this application

4. Transmit the packet of the encrypted 

data flow including the AppKey

Header

Payload

AppKey

5. UPF uses the AppKey 

to detect the application 

associated with the 

encrypted data flow

Remote 

Server

6. Forward the packet

to the remote server

Subsequent packets of the encrypted data flow (packets sharing the same 5-tuple)

7. UPF applies the traffic policy configured for the detected 

application

UE

ETDF

1. PDU session establishment for Encrypted Traffic Detection


Figure 6.1.2.3-1: User-plane procedure for encrypted traffic detection

1.
The PDU session establishment procedure is executed, as discussed in the previous clause.
2.
The UE-ETDF detects the first packet of an encrypted data flow and finds the UE application which initiated this data flow. The first packet of an encrypted data flow could be a TCP SYN packet to port 443, a TLS ClientHello packet, etc.

3.
If the application which initiated the encrypted data flow is included in the list of applications received from the network, then the UE-ETDF shall provide detection information for this data flow. This detection information is the AppKey corresponding to the application that initiated the data flow. The UE-ETDF retrieves the AppKey corresponding to the application that initiated the data flow and embeds this AppKey in the first packet of the data flow.

4.
Subsequently, the UE transmits the data packet of the encrypted data flow to the network including the AppKey. As discussed in clause 6.1.1.2.1, the AppKey could be embedded in an IPv6 header (e.g. by using a new IPv6 Extended Header), in an IPv4 packet (e.g. by using a new Protocol Type), in a GRE header, etc. The AppKey is constructed as a small-length number (e.g. 16 bits) that can be easily embedded into the first data packet.

5.
When the UPF receives the packet, it uses the embedded AppKey to detect the application associated with the new encrypted data flow. As discussed before, the UPF has received from PCF (via SMF) a list of application ids and their corresponding AppKeys.

6.
Finally, the UPF forwards the packet to its final destination (the remote server) after removing the AppKey.

7.
If the UPF is provisioned with traffic policy for the detected application, the UPF applies this policy for all the packets of the encrypted data flow. These packets share the same value of 5-tuple (source/destination address, source/destination port, protocol).
6.1.3
Impact on existing entities and interfaces
Editor's note: Impacts on existing nodes or functionality will be added.
* * * End of Changes * * * 

3GPP

SA WG2 TD


_1580055615.vsd
Version Class Flow-label


Payload length


Next Header = GRE


Source Address


Destination Address


Destination Address


Protocol Type = TCP


GRE Key =
AppKey


TCP Payload


GRE Header


IPv6 header (it can be applied to IPv4 header)



_1584784356.vsd
Hash
function


App-ID


Signature


Rand


AppKey



_1580055614.vsd
Version Class Flow-label


Payload length


Next Header = ETDF


Source Address


Destination Address


Destination Address


Next Header = TCP


AppKey


TCP Payload


New Extension Header


IPv6 header



